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No.6Process Synchronization(2) Semaphores
• Problems with the software solutions.

– Not easy to generalize to more complex synchronizatio n 
problems.

– Complicated programming, not flexible to use.

• Semaphore: an easy-to-use synchronization tool

– An integer variable SS

– wait (S)    (S)    {

while ( SS<=0) ;    

SS-- ;

}

– signal (S)   (S)   {

SS++ ;

}

Semaphore usage (1):the n-process critical-section problem
• The n processes share a semaphore, 

Semaphore mutex ;       // mutex is initialized to 1 .

do {

wait(mutex);

critical section of P i

signal(mutex);

remainder section of P i

} while (1);

Process P i

Semaphore usage (2):as a General Synchronization Tool
• Execute B in Pj only after A executed in Pi

• Use semaphore flag initialized to 0

…
A
signal (flag) ;
…

…
wait (flag) ;
B
…

Pi Pj

Semaphore without busy-waiting
• Previous definition of semaphore requires busy wait ing

– It is called spinlock.

– spinlock does not need context switch, but waste CPU cycles 
in a continuous loop.

– spinlock is OK only for lock waiting is very short.

• Semaphore without busy-waiting:

– In defining wait(), rather than busy-waiting, the process makes 
system calls to block itself and switch back to wai ting state, 
and put the process to a waiting queue associated w ith the 
semaphore. The control is transferred to CPU schedu ler.

– In defining signal(), the process makes system calls to pick a 
process in the waiting queue of the semaphore, wake  it up by  
moving it to the ready queue to wait for CPU schedu ling.

Semaphore without busy-waiting
• Define a semaphore as a record:

typedef struct {

int value;   // Initialized to 1

struct process *L;
} semaphore;

• Assume two system calls:

– block() suspends the process that invokes it.

– wakeup(P) resumes the execution of a blocked process P.

• Normally this type of semaphore is implemented in k ernel.
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Semaphore without busy-waiting
• Semaphore operations now defined as: 

wait (S):
S.value--;

if (S.value < 0) {

add this process to S.L;
block();

}

signal (S): 
S.value++;

if (S.value <= 0) {

remove a process P from S.L;
wakeup(P);

}

Semaphore Implementation(1)
• In uni-processor machine, disabling interrupt befor e modifying 

semaphore. 

signal(SS) {

Disable_Interrupt ;
SS++ ;
Enable_Interrupt ;
return ;

}

wait(SS) {

do {
Disable_Interrupt;
if(SS>0) { 

SS-- ;
Enable_Interrupt ;
return ;

} else {
Enable_Interrupt ;

}
}  while(1) ;

}

Semaphore Implementation(2)
• In multi-processor machine, inhibiting interrupt of  all 

processors is not easy and efficient.
• Use software solution to critical-section problems

– e.g., bakery algorithm.
– Treat wait() and signal() as critical sections.

• Example: implement spinlock between two processes.
– Use Peterson’s solution for process synchronization.
– Shared data:

Semaphore S ;  S ;  Initially SS=1

boolean flag[2]; initially flag [0] = flag [1] = false.
int turn;   initially turn = 0 or 1.

Semaphore Implementation(3)
wait(SS) {

int i=process_ID(); //0�P0, 1�P1
int j=(i+1)%2 ; 

do {
flag [ i ]:= true; //request to enter
turn = j;
while (flag [ j ] and turn = j) ;
if (SS >0) {  //critical section

SS--;
flag [ i ] = false;
return ;

} else {
flag [ i ] = false;

}
} while (1);

}

signal(SS) {
int i=process_ID(); //0�P0, 1�P1
int j=(i+1)%2 ; 

flag [ i ]:= true; //request to enter
turn = j;
while (flag [ j ] and turn = j) ;

SS++; //critical section

flag [ i ] = false;

return ;
}

Two Types of Semaphores
• Counting semaphore – integer value can range over an 

unrestricted domain.

• Binary semaphore – integer value can range only between 0 
and 1;  simpler to implement by hardware.

• We can implement a counting semaphore S by using two 
binary semaphore.

Implementing counting semaphorewith two Binary Semaphores
• Data structures:

binary-semaphore S1, S2;
int C:

• Initialization:
S1 = 1
S2 = 0
C = initial value of semaphore S
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Implementing S
• wait(S) operation:

wait(S1);
C--;
if (C < 0) {

signal(S1);
wait(S2);

}
signal(S1);

• signal(S) operation:
wait(S1);
C ++;
if (C <= 0)

signal(S2);
else

signal(S1);

Classical Synchronization Problems
• The Bounded-Buffer Problem

• The Readers-Writers Problem

• The Dining-Philosophers Problem

Bounded-Buffer Problem
• A producer produces some data for a consumer to 

consume. They share a bounded-buffer for data 
transferring.

• Shared memory:
A buffer to hold at most n items

• Shared data (three semaphores)

Semaphore filled, empty, mutex;

Initially:

filled = 0, empty = n, mutex = 1

Bounded-Buffer Problem:Producer Process
do { 

…
produce an item in nextp

…
wait(empty);
wait(mutex);

…
add nextp to buffer

…
signal(mutex);
signal(filled);

} while (1);

Bounded-Buffer Problem:Consumer Process
do { 

wait(filled)
wait(mutex);

…
remove an item from buffer to nextc

…
signal(mutex);
signal(empty);

…
consume the item in nextc

…
} while (1);

The Readers-Writers Problem
• Many processes concurrently access a data object

– Readers: only read the data.

– Writers: update and may write the data object.

• Only writer needs exclusive access of the data.

• The first readers-writers problem:

– Unless a writer has already obtained permission to use the 
shared data, readers are always allowed to access d ata.

– May starve a writer.

• The second readers-writer problem:

– Once a writer is ready, the writer performs its wri te as soon 
as possible.

– May starve a reader.
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The 1st Readers-Writers Problem
• Use semaphore to implement 1 st readers-writer problem

• Shared data:

int readcount = 0 ;   // keep track the number of readers     
//  accessing the data object

Semaphore mutex = 1 ; // mutually exclusive access to 
// readcount among readers 

Semaphore wrt = 1 ;    // mutual exclusion to the data object 
// used by every writer

//also set by the 1 st reader to read the data 

// and clear by the last reader to finish reading

The 1st Readers-Writers Problem
…

wait(wrt);
…

writing is performed
…

signal(wrt);
…

Writer Process
…
wait(mutex);
readcount++;
if (readcount == 1)   wait(wrt);
signal(mutex);

…
reading is performed
…
wait(mutex);
readcount--;
if (readcount == 0)   signal(wrt);
signal(mutex);
…

Reader Process

The Dining-Philosophers Problem
• Five philosophers are 

thinking or eating

• Using only five 
chopsticks

• When thinking, no need 
for chopsticks.

• When eating, need two 
closest chopsticks.

• Can pick up only one 
chopsticks

• Can not get the one 
already in the hand of a 
neighbor.

The Dining-Philosophers Problem: Semaphore Solution
• Represent each chopstick with a semaphore

Semaphore  chopstick[5];  // Initialized to 1

do {
wait(chopstick[i]) ;
wait(chopstick[(i+1) % 5]) ;
…
eat
…

signal(chopstick[i]);
signal(chopstick[(i+1) % 5]);
…
think
…

} while (1);

Philosopher i
(i=0,1,2,3,4)

Incorrect Semaphore Usage
Mistake 1:

…
signal(mutex) ;
…
Critical 
Section
…
wait(mutex) ;

Mistake 2:

…
wait(mutex) ;
…
Critical 
Section
…
wait(mutex) ;

Mistake 3:

…
wait(mutex) ;
…
Critical 
Section
…

Mistake 4:

…
Critical 
Section
…
signal(mutex) ;

Starvation and Deadlock
• Starvation – infinite blocking.  A process may never be 

removed from the semaphore queue in which it is 
suspended.

• Deadlock – two or more processes are waiting infinitely for 
an event that can be caused by only one of the wait ing 
processes.

• Let S and Q be two semaphores initialized to 1
P0 P1

wait (S); wait (Q);
wait (Q); wait (S);M M

signal (S); signal (Q);
signal (Q) signal (S);
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Pthread Semaphore
• Pthread semaphores for multi-process and multi-

thread programming in Unix/Linux:

– Pthread Mutex Lock
(binary semaphore)

– Pthread Semaphore 
(general counting semaphore)

Pthread Mutex Lock
#include <pthread.h>

/*declare a mutex variable*/

pthread_mutex_t  mutex ;

/* create a mutex lock */

pthread_mutex_init (&mutex, NULL) ;

/* acquire the mutex lock  */

pthread_mutex_lock(&mutex) ;

/* release the mutex lock  */

pthread_mutex_unlock(&mutex) ;

Using Pthread Mutex Locks
• Use mutex locks to solve critical section problems:

#include <pthread.h>

pthread_mutex_t  mutex ;

…

pthread_mutex_init(&mutex, NULL) ;

…
pthread_mutex_lock(&mutex) ;

/*** critical section ***/

pthread_mutex_unlock(&mutex) ;

Pthread Semaphores
#include <semaphore.h>

/*declare a pthread semaphore*/

sem_t sem ;

/* create and initialize a semaphore */

sem_init (&sem, flag, initial_value) ;

/* wait() operation  */

sem_wait(&sem) ; 

/* signal() operation  */

sem_post(&sem) ;

Using Pthread semaphore
• Using Pthread semaphores for counters shared by mult iple threads:

#include <semaphore.h>

sem_t counter ;

…

sem_init(&counter, 0, 0) ;  /* initially 0 */

…

sem_post(&counter) ;    /* increment */

…

sem_wait(&counter) ;    /* decrement */

volatile in multithread program
• In multithread programming, a shared global variabl e 

must be declared as volatile to avoid compiler’s 
optimization which may cause conflicts:

volatile int data ;

volatile char buffer[100] ; 
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nanosleep()
#include <time.h>

int nanosleep(const struct timespec * req, 
struct timespec * rem);

struct timespec
{ 

time_t tv_sec; /* seconds */ 
long tv_nsec; /* nanoseconds 0-999,999,999 */ 

};


