
1

CSE 3221 Operating System Fundamentals
Prof. Hui Jiang

Dept of Computer Science and Engineering

York University

No. 3 Thread Process vs. Thread
• Traditional process contains a single stream of control.

(one process can do one thing at a time)

• Multithreaded process: contains several different streams of control.
Each stream is called a thread of this process

(multithreaded process can do multiple jobs simultaneously)

• A multi-threaded process contains several threads.

• Each thread includes:

– A thread ID

– A program counter

– A register set

– A stack & stack pointer

• All threads in a process share:

– Code section & data section

– OS resources (memory map, open devices, accounting, etc.)One single-threaded Process
User Space

Kernel Space

Process

stack User
Code

Global
Data

Process data (memory map,
Open files, working directory,
etc)

Registers

Stack pointer Program pointer

Multiple single-threaded Process
User
Space

Kernel
Space

stack User
Code

Global
Data

Registers

Process 1

stack User
Code

Global
Data

Registers

Process 2

stack User
Code

Global
Data

Registers

Process 3

One multi-threaded Process
User Space

Kernel Space

Process

User
Code

Global
Data

stack

Registers

stack

Registers

stack

Registers

Thread 1 Thread 2 Thread 3

Comparison
• One single-threaded process:

– can do one thing at a time

• Multiple single-threaded processes:

– can do many things at the same time

• One multi-threaded process

– Also can do many things at the same time

• Why multiple thread??
– Multi-threaded process requires less OS resources (memory)

– More efficient for OS to handle threads than proces s

2

Multithreading Benefits to use threads
• Threads occupy less memory than processes.

• Takes less time to create a new thread than a proce ss.

• Less time to terminate a thread than a process.

• Less time to switch between two threads within the
same process.

• Since threads within the same process share memory
and files, they can communicate with each other
without invoking the kernel.Reentrant and thread-safe code

• To be thread safe, the program must be reentrant:

– Program never modifies itself.

– No use of static/global data.

– Each Function calling keeps track of its own
progress.

Non-reentrant C code
int delta;

int diff (int x, int y)
{

delta = y - x;

if (delta < 0) delta = -delta;

return delta;

} Reentrant C code
int diff (int x, int y)
{

int delta;

delta = y - x;

if (delta < 0) delta = -delta;

return delta;

}

User Thread
• User thread: supported above the kernel and impleme nted by a

thread library in user space.

– The library supports thread creation, scheduling,
management with no support from the kernel.

– User threads are fast to create and manage (no need to
make a system call to trap to the kernel).

– The kernel is not aware of the existence of threads .

– User thread must be mapped to the kernel to execute .

– Examples:
• POSIX Pthread

• Mach C-threads

• Solaris UI-threads

3

Pure User Thread: many-to-one mapping
or

Kernel Threads
• Kernel threads are supported directly by OS.

• The kernel performs thread creation, scheduling, an d
management in the kernel space.

• Slow to maintain (need system call to kernel space) .

• Each kernel thread can run totally independently:

– One thread blocks, the kernel will schedule another
thread to run.

– Several kernel threads can run in parallel if many CPU’s
are available.

– OS to support kernel thread:

• Windows NT/2000/XP

• Solaris 2
• LinuxPure Kernel Thread:one-to-one mapping Combined Model:many-to-many mapping

Solaris Threads Thread data structure in Solaris
LWP ID

Registers

priority

Kernel Stack

…

4

Threading Issues
• fork() and exec() implementation

– One thread in a process call fork(), it duplicates all threads in
the process or just one calling thread.

– One thread calls exec(), it will replace the entire process
• Thread cancellation: terminating a thread before it finishes.

– Asynchronous cancellation

– Deferred cancellation

• Signal Handling
– Deliver the signal to the thread to which the signa l applies.

– Deliver the signal to every thread in the process

– Deliver the signal to certain threads in the proces s
– Assign a specific thread to receive all signals for the process

Thread Pools
• Create a number of threads at process start-up, pla ce them into a

pool, where they sit and wait for work.
• When the process receives a request, it awakens a t hread from

the pool, and serves the request immediately.

• Once the thread completes, it returns to the pool.
• If the pool contains no available thread, the serve r waits until one

becomes free.

• Benefits of thread pools:
– Faster to service a request.

– Thread pool limits the total number of threads in s ystem

(no overload).Linux Thread
• Linux uses pure kernel thread method with the one-t o-

one mapping.

• fork() creates a new process

– Create a new memory space for new process

– Copy from the address space of the calling process

• clone() simulates fork(), but

– It does not create new memory space

– The new process shares the same address space
of the original process

– � two processes sharing the same memory space

(something like thread)

User Threads: Pthreads
• A POSIX standard (IEEE 1003.1c) API for thread

creation and synchronization

• API specifies behavior of the thread library,
implementation is up to development of the
library

• Common in UNIX operating systems (Solaris,
Linux, Mac OS X)

Multi-threaded Process
User Space

Kernel Space

Process

User
Code

Global
Data

stack

Registers

stack

Registers

stack

Registers

Thread 1 Thread 2 Thread 3

Process Data (memory map, file descriptors, working directory, et c.)

Thread Library

User-Level
Thread Structures

Multiple-thread programming
• User thread vs. kernel thread

• Multi-threaded programming with POSIX thread (Pthre ad)

Pthread1 Pthread2 Pthread3 Pthread4

Kernel Thread 1 Kernel Thread 2

CPU 0 CPU 1

User Threads Pthread Library

Operating System

5

POSIX Thread (1)
• Creation and termination

#include <pthread.h>

pthread_create(pthread_t *thread, const pthread_attr _t
*attr, void *(*start) (void *), void *argv) ;

pthread_exit(void *value_ptr) ;

POSIX thread(2)
• Wait for another thread to terminate

• Cancellation

• Others

pthread_join(pthread_t thread, void **value_ptr) ;

pthread_cancel(pthread_t thread) ;

pthread_self(void) ;

pthread_detach(pthread_t thread) ;

pthread_attr_init(pthread_attr_t *attr) ;Example 1: thread.c
• Example: thread.c (How to use Pthread)

• Two threads:

– main() thread

– runner() thread

Example 2: alarm.c
• Example 1: alarm.c (No thread)

• Example 2: alarm_fork.c (multiple process)

• Example 3: alarm_thread.c (multiple thread)

Three Models to use Threads
• Pipeline

– Assembly line: each thread repeatedly performs the same
operation on a sequence of data sets, passing each result
to another thread for next step.

• Work Crew
– Each thread performs an operation on its own data

independently, then combine all results to get the final.

• Client/Server

– A client contacts with an independent server for ea ch job.

Pipeline
Input

Thread A Thread B Thread C

Output

6

Work Crew
Input

Thread A Thread B Thread C

Output

Client/Server
Input B

Server

Input A Input C

Output BOutput A Output C

