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• How CPU is used?

– Users run programs in CPU

• In a multiprogramming system, a CPU always has several jobs 
running together.

• How to define a CPU job?

– The important concept:

PROCESS
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• Process is a running program, a program in execution.
• Process is a basic unit of CPU activ ities, a process is a unit of 

work in a multiprogramming system.

• Many different processes in a multiprogramming system:
– User processes executing user code

• Word processor, Web browser, email editor, etc.

– System processes executing operating system codes
• CPU scheduling 

• Memory-management

• I/O operation

• Multiple processes concurrently run in a CPU.
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• A Process includes:

– Text Section: memory segment including program 
codes.

– Data Section: memory segment containing global  
and static variables.

– Stack and Heap: memory segment to save temporary 
data, such as local variable, function parameters, 
return address, ...

– Program Counter (PC): the address of the 
instruction to be executed next.

– All CPU’s Registers
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Figure 2.8   Typical Process Implementation
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Process Control Block
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• Process state

• Program counter

• CPU registers

• CPU scheduling information

• Memory-management 
information

• Accounting information

• I/O status information

L5TU,FVWGFIQI A��UC��UGFI

• New: the process is just being created

• Running: instructions are being executed by CPU

• Waiting: waiting for some event, I/O completion or a signal

• Ready: waiting to be assigned to CPU to run

• Terminated: it finished execution
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• Scheduling Queues:

– List of processes competing for the same resource.

• Queues is generally implemented as linked lists.

• Each item in the linked list is PCB of a process, we extend each
PCB to include a pointer to point to next PCB in the queue.

• Examples of scheduling queues:

– Ready Queue:  all processes waiting for CPU
– Device Queues: all processes waiting for a particular device; 

Each device has its own device queue.
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• The scheduler’s role
• Scheduler categories:

– Long-term Scheduler (Job scheduler):

• choose a job from job pool to load into memory to start.
• Control the degree of multiprogramming – number of 

process in memory.

• Select a good mix of I/O-bound processes and CPU-bound 
processes.

– Short-term scheduler (CPU scheduler)

• Select a process from ready queue to run once CPU is free.
• Executed very frequently (once every 100 millisecond).

• Must be fast for efficiency.

– Medium-term scheduler : SWAPPING

• Swap out / swap in.
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• Context Switch: switching the CPU from one process to another.

– Saving the state of old process to its PCB.

– CPU scheduling: select a new process.
– Loading the saved state in its PCB for the new process.

• The context of a process is represented by its PCB.

• Context-switch time is pure overhead of the system,  typically 
from 1–1000 microseconds, mainly depending on:

– Memory speed.

– Number of registers.
– Existence of special instruction.

– The more complex OS, the more to save.

• Context switch has become such a performance bottleneck in a 
large multi-programming system:

– New structure to reduce the overhead: THREAD.
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Figure 3.2  Snapshot of Example Execution (Figure 3.4)
at Instruction Cycle 13
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• Process creation.

• Process termination.

• Inter-process communication (IPC).

• Unix programming:

– Multiple-process programming.

– Cooperating process tasks.

L5TU,FVWGFIQI J T GFC�� /�,HD������
• A process can create some new processes via a create-

process system call :

– Parent process / children process.

• All process in Unix form a tree structure.
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• Resource Allocation of child process

– The child process get its resource from OS directly.

– Constrain to its parent’s resources.

• Parent status

– The parent continues to execute concurrently with its children.
– The parent waits until its children terminate.

• Initialization of child process address space

– Child process is a duplicate of its parent process.
– Child process has a program loaded into it.

• How to pass parameters (initialization data) from parent to child?
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• In UNIX, each process is identified by its process number (pid).

• In UNIX, fork() is used to create a new process.

• Creating a new process with fork():

– New child process is created by fork().

– Parent process’ address space is copied to new process’
space (initially identical address space).

– Both child and parent processes continue execution from the 
instruction after fork().

– Return code of fork() is different: in child process, return code 
is zero, in parent process, return code is nonzero (it is the 
process number of the new child process)

– If desirable, another system call execlp() can be used by one of 
these two processes to load a new program to replace its 
original memory space.

"�#%$%&('*),+%-�.�)�/�02143�351,6�798;:

#include <stdio.h>
void main(int argc, char *argv[ ])
{

int pid ;

/* fork another process */
pid = fork() ;

i f (pid < 0)  {  /* error occurred */
fprintf(stderr, “ Fork Failed!\n” ) ;
exit(-1) ;

}  else if (pid == 0)  { /* child process*/
execlp(“ /bin/ls” ,” ls” ,NULL) ;

}  else {  /* parent process */
/* parent will  wait for the child to complete */
wait(NULL) ;
printf (“ Child Complete\n” ) ;
exit(0) ;

}
}
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• Normal termination:

– Finishes executing its final instruction or call exit() system call.

• Abnormal termination:  make system call abort().

– The parent process can cause one of its child processes to 
terminate. 

• The child uses too much resources.
• The task assigned to the child is no longer needed.

• If the parent exits, all its children must be terminated in some
systems.

• Process termination:

– The process returns data (output) to its parent process.

• In UNIX, the terminated child process number is return by 
wait() in parent process. 

– All its resources are de-allocated by OS
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• Unix system calls for process control :
– getid(): get process ID (pid) of calling process.

– fork(): create a new process.

– exec(): load a new program to run.
• execl(char *pathname, char *arg0, …);

• execv(char *pathname, char* argv[ ]) ;

• execle(), execve(), execlp(), execvp()

– wait(), waitid(): wait child process to terminate.
– exit(), abort():  a process terminates.

� 1�1,$�0,6 )���&��9/��,6 1�'*0�.�.�0�.

• Concurrent processes executing in the operating system

– Independent: runs alone

– Cooperating: it can affect or be affected by other processes

• Why cooperating processes?

– Information sharing
– Computation speedup

– Modularity

– Convenience

• Need inter-process communication (IPC) mechanism for 
cooperating processes:

– Shared-memory
– Message-passing
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• IPC with message passing provides a mechanism to allow 
processes to communicate and to synchronize their actions 
without sharing the same address space.

• IPC based on message-passing system:
– Processes communication without sharing space.
– Communication is done through the passing of messages.
– At least two operations:

• send(message)
• receive(message)

– Message size: fixed vs. variable 
– Logical communication link:

• Direct vs. indirect communication
• Symmetric vs. asymmetric communication
• Automatic or explicit buffering

3�& 6 0�'*� � 1,���-	�� & '�)���& 1��

• Each process must explicitly name the recipient or sender of the
communication.

– send(P,message)

– Receive(Q,message)

• A link is established between each pair of processes

• A link is associated with exactly two processes
• Asymmetric direct communication: no need for recipient to name 

the sender

– send(P,message)
– receive(&id,message): id return the sender identity

• Disadvantage of direct communication:

– Limited modularity due to explicit process naming
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• The messages are sent to and received from mailbox.

• Mailbox is a logical unit where message can be placed or removed by 
processes. (each mailbox has a unique id)

– send(A,message): A is mailbox ID
– receive(A,message)

• A link is established in two processes which share mailbox.

• A link may be associated with more than two processes.

• A number of di fferent link may exist between each pair of processes.
• OS provides some operations on mailbox

– Create a new mailbox

– Send and receive message through the mailbox
– Delete a mailbox

� # �%'�� 6 1�� &���)���&(1 � & � ��0 .�.*)�/�0��$�)�.�. & �9/

• Message passing may be either blocking or non-blocking.
• Blocking is considered synchronous

• Non-blocking is considered asynchronous

• send() and receive() primitives may be either blocking or non-
blocking.

– Blocking send

– Non-blocking send
– Blocking receive

– Non-blocking receive

• When both the send and receive are blocking, we have a 
rendezvous between the sender and the receiver.
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• The buffering provided by the logical link:
– Zero capacity:  the sender must block until the recipient 

receives the message (no buffering).

– Bounded capacity: the buffer has finite length. The 
sender doesn’t block unless the buffer is full.

– Unbounded capacity: the sender never blocks.  

�
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• Signals

• Pipes

• Message queues

• Shared memory

• Sockets

• others
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• Signal is a technique to notify a process that some events have 
occurred.

• The process has three choices to deal with the signal:

– Ignore the signal
– Let the defaul t action occur.

– Provide a function that is called when the signals occurs.

• signal() function: change the action function for a signal

• kill() function: send a signal to another process

#include <signal.h>

void (*signal(int signo, void (*func) (int )   )  ; 

#include <sys/types.h>

#include <signal.h>

int kill (int pid, int signo) ;

*,+.-0/213-)45+�657�8



Prepared by Prof. Hui Jiang 
(COSC3221)

1/15/2008

Dept. of CS, York Univ. 7

� ( "�� ��� &���( � � � "�� � �$&�� ���

#include <signal.h>

static void sig_int(int) ;

int main() {

if(signal(SIGINT,sig_int)==SIG_ERR)
err_sys(“ signal error” ) ;

sleep(100) ;
}

void sig_int(int signo)
{

printf(” Interrupt\n” ) ;
} 

• Event SIGINT:  type the 
interrupt key (Ctrl+C) 

• The default action is to 
terminate the process.

• Now we change the defaul t 
action into printing a 
message to screen.

& ���)( � � � &

• Half-duplex; only between parent and child.

• Creating a pipe:

– Call pipe(); 

– Then call fork();

– Close some ends to be a half-duplex pipe. 

#i ncl ude <uni st d. h>

i nt  pi pe(  i nt  f i l edes[ 2]  )  ;

& � � ( � � �'&	��& ( "
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fd[0] fd[1]

pipe

kernel

parent

fd[0] fd[1]

child

fd[0] fd[1]

pipe

user process
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i nt  mai n( )  {

i nt  n,  f d[ 2]  ;
i nt   pi d ;
char   l i ne[ 200]  ;

i f (  pi pe( f d)  < 0 )    er r _sys( “ pi pe er r or ” )  ;

i f  (  ( pi d = f or k( ) )  < 0 )  er r _sys( “ f or k er r or ” )  ;
el se i f  (  pi d > 0 )   {   

c l ose( f d[ 0] )  ;  
wr i t e( f d[ 1] ,  “ hel l o wor d\ n” ,  12)  ;

}  el se  {
cl ose( f d[ 1] )  ;
n = r ead( f d[ 0] ,  l i ne,  200)  ;
wr i t e( STDOUT_FI LENO,  l i ne,  n)  ;

}
ex i t ( 0)  ;

}

� 0�.*.�)�/�0� 	�0�	�0�. &�� - � &��

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgget(key_t key, int flag) ;

int msgsnd(int msqid, const void *ptr, size_t nbytes, int flag) ;

int msgrcv(int msqid, void *ptr, size_t nbytes, int flag) ;

��.�/%/%0�� 8;: &�� -�� )��

int msgget(key_t key, int f lag) ;

• key � an integer to identify the message queue. Should

be unique in a system

• msgflg � 0 : access to an existing queue

IPC_CREAT bit set : create a queue

• return value

• -1 on error

• non-negative integer on success: message id
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int msgsnd (int msgid, const void *msgp, int msgsz, int msgflg) ;

• msgid � msg id returned by msgget()

•msgp � ptr to a structure 

struct msgStruct{

long mType ; //type of the message

char mText[MAX_LEN]; //actual data

};

•msgsz � size of data in msg

•msgflg � always 0 in our cases

•return value

• -1 on failure

• 0 on success

��.�/ 6 '�� 8;: &�� -���) �

int msgrcv(int msgid, const void *mshp, int msgsz, long msgtype, int 
msgflg) ;

• msgid � msg id returned by msgget()

•msgp � ptr to a msg structure (same as above) 

•msgsz � size of buffer in msg

•msgflg � always 0 in our cases

•msgtype � 0: get first message in the queue

>0 : get first message of type msgtype

<0 : beyond our consideration

•return value

• -1 on failure

• No. of bytes in the message on success
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#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define KEY  32894  /* your CS log in number */

int main() {
int msgid ;

msgid = msgget(KEY,0) ;

if( msgid < 0) {
msgid = msgget(KEY, IPC_CREAT|0666) ;
if(msgid < 0 ) 

printf("Error in creating message queue!\n"); 
}

}

� ( "�� ��� &	��( & ��� � � � "
� &�( ( " � &

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define KEY  32894  
#define MAX_LEN 100

typedef struct {
long mType ;
char mText[MAX_LEN] ;

} Message ;

int main() {
int  msgid ;
Message msg ;

strcpy(msg.mText, "Hello world !" ) ;
msg.mType = 1 ;

msgid = msgget(KEY,0) ;

if( msgid < 0) {
printf("Error in creating message queue!\n" ); 
return -1 ;
}

if(msgsnd(msgid, &msg,MAX_LEN,0) < 0 )
printf("Error in sending message\n") ;

else
printf("sent message successful ly\n" ) ;

}

� ( "�� � � &	� �!& #& ����� �3�
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#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define KEY  32894  
#define MAX_LEN 100

typedef struct {
long mType ;
char mText[MAX_LEN] ;

} Message ;

int main() {
int  msgid ;
Message msg ;

msgid = msgget(KEY,0) ;

if( msgid < 0) {
printf("Error in creating message queue!\n" ); 
return -1 ;
}

if(msgrcv(msgid, &msg,MAX_LEN,0,0) < 0 )
printf("Error in receiv ing message\n") ;
else
printf("Received message: %s\n" ,msg.mText) ;

if(msgctl(msgid,IPC_RMID,NULL)<0)     // Remove the message queue from system
printf(“ Error in removing message queue!\n” ) ;

else
printf(“ Removed message queue successfully!\n) ;

}

� $�" � & �	� &��  ��
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#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

void *shmat(int shmid, const void *shmaddr, int shmflg);

int shmdt(const void *shmaddr);

int shmctl(int shmid, int cmd, struct shmid_ds *buf);
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• Tables are constructed for each entity the operating system 
manages.

– Process table:  PCBs and process images.

– Memory table: Allocation of main memory to processes;
Protection attributes for access to shared memory regions.

– File table:  all opened files; location on hardware; Current 
Status.

– I/O table:  all I/O devices being used; status of I/O operations.
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Figure 3.11  General Structure of Operating System Control Tables
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• Non-process Kernel
– Execute kernel outside of any process
– Operating system code is executed as a separate entity that 

operates in priv ileged mode

• Execution Within User Processes
– Operating system software within context of a user process
– Process executes in priv ileged mode when executing 

operating system code

• Process-Based Operating System
– Implement operating system as a collection of system 

processes

– Useful in multi-processor or multi-computer environment
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(a) Separate  kernel
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(c) OS functions execute  as separate  processes

Figure 3.15  Relationship Between Operating
System and User Processes
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