
Prepared by Prof. Hui Jiang
(COSC3221)

1/15/2008

Dept. of CS, York Univ. 1

�����������	��
 ������������������������� ��!#"�$%��&%��!'�(���)�(* �

Prof. Hui Jiang
Dept of Computer Science and Engineering

York University

+-,/.)0

132547698;:9:

<-,>=@?�A#B;C5DCFEHGFIKJMLHNPOIQCFERG5S

• How CPU is used?

– Users run programs in CPU

• In a multiprogramming system, a CPU always has several jobs
running together.

• How to define a CPU job?

– The important concept:

PROCESS

LHTU,FVQGRIQI

• Process is a running program, a program in execution.
• Process is a basic unit of CPU activ ities, a process is a unit of

work in a multiprogramming system.

• Many different processes in a multiprogramming system:
– User processes executing user code

• Word processor, Web browser, email editor, etc.

– System processes executing operating system codes
• CPU scheduling

• Memory-management

• I/O operation

• Multiple processes concurrently run in a CPU.

L5TU,RVQGFIWIYXRI>.HLHTU,FE/TUC/BZJ[,F\HG

…

Mov AX, 0x10

Mov BX, CX

Push CX

Mov CX,DX

OUT 0x11,CX

POP CX

…

Program code

Memory

Code

PC CPU

Registers

Stack &
Heap

Process

]_^�`'a>bdcRc

• A Process includes:

– Text Section: memory segment including program
codes.

– Data Section: memory segment containing global
and static variables.

– Stack and Heap: memory segment to save temporary
data, such as local variable, function parameters,
return address, ...

– Program Counter (PC): the address of the
instruction to be executed next.

– All CPU’s Registers

e9fhg_i5jlk5knm�oqp3j_rsgtf�uqvxwzy

Figure 2.8 Typical Process Implementation

Context

Data

Program
(code)

Context

Data

i

Process index

PC

Base
Limit

O ther
registers

i

b
h

j

b

h
Process

B

Process
A

Main
Memory

Processor
Registers

Process
list

Program
(code)

Prepared by Prof. Hui Jiang
(COSC3221)

1/15/2008

Dept. of CS, York Univ. 2

e9f%g_iHj-kHkPm�oqp3j_r g9f u v wzwzy

Process Control Block

�'C��UC7A���T�OV���O/T G��U, TUG��HTUG>IWGD	�_C LHTU,FVQGzIQI�

L5TU,FVWGFIQI J[,5D���TU,�����,RV����%LFJ����

• Process state

• Program counter

• CPU registers

• CPU scheduling information

• Memory-management
information

• Accounting information

• I/O status information

L5TU,FVWGFIQI A��UC��UGFI

• New: the process is just being created

• Running: instructions are being executed by CPU

• Waiting: waiting for some event, I/O completion or a signal

• Ready: waiting to be assigned to CPU to run

• Terminated: it finished execution

� a��db������! !"$#&%'�db(�dbdc*)�+-,

• Scheduling Queues:

– List of processes competing for the same resource.

• Queues is generally implemented as linked lists.

• Each item in the linked list is PCB of a process, we extend each
PCB to include a pointer to point to next PCB in the queue.

• Examples of scheduling queues:

– Ready Queue: all processes waiting for CPU
– Device Queues: all processes waiting for a particular device;

Each device has its own device queue.

A5V-.HGF\HO�0/�DE21tORG5ORGFI3�5464�� 1tOHGHO�/)DHE7�(/�CFE/TUC/B

Prepared by Prof. Hui Jiang
(COSC3221)

1/15/2008

Dept. of CS, York Univ. 3

L5TU,RVQGFIWI AHV-.FGR\ O� / DRE�
HA5V-.RGF\/O� G5TUI
• The scheduler’s role
• Scheduler categories:

– Long-term Scheduler (Job scheduler):

• choose a job from job pool to load into memory to start.
• Control the degree of multiprogramming – number of

process in memory.

• Select a good mix of I/O-bound processes and CPU-bound
processes.

– Short-term scheduler (CPU scheduler)

• Select a process from ready queue to run once CPU is free.
• Executed very frequently (once every 100 millisecond).

• Must be fast for efficiency.

– Medium-term scheduler : SWAPPING

• Swap out / swap in.

J'L5N AF= / �UV-. � TU,/B �HTU,FVWGFIQI �U,2�5TU,RVQGFIWI�

.H,>= �U, OHIQG3LFJ��

� ` "��hb���� ��� ��ha��

• Context Switch: switching the CPU from one process to another.

– Saving the state of old process to its PCB.

– CPU scheduling: select a new process.
– Loading the saved state in its PCB for the new process.

• The context of a process is represented by its PCB.

• Context-switch time is pure overhead of the system, typically
from 1–1000 microseconds, mainly depending on:

– Memory speed.

– Number of registers.
– Existence of special instruction.

– The more complex OS, the more to save.

• Context switch has become such a performance bottleneck in a
large multi-programming system:

– New structure to reduce the overhead: THREAD.

	 g9o�
hj���
���qm�
�i����Mj���� r�����j
Main MemoryAddress

Dispatcher

Process A

Process B

Process C

Program Counter
0

100

5000

8000

8000

12000

Figure 3.2 Snapshot of Example Execution (Figure 3.4)
at Instruction Cycle 13

� f��liFj g�� e9f�g_i5jlk5kHj-k � f��-iFj g�� e9f g_iHj-kHkHj-k

Prepared by Prof. Hui Jiang
(COSC3221)

1/15/2008

Dept. of CS, York Univ. 4

e9f%g_iHj-kHk �
 ��
%j

waiting

��� b-^���� �`�"dc `�"]_^�`la>bdcFcRbdc
)��	� +�
��dc�(" b������ � ��b ,

• Process creation.

• Process termination.

• Inter-process communication (IPC).

• Unix programming:

– Multiple-process programming.

– Cooperating process tasks.

L5TU,FVWGFIQI J T GFC�� /�,HD������
• A process can create some new processes via a create-

process system call :

– Parent process / children process.

• All process in Unix form a tree structure.

LHTU,FVQGFIWI J T�GRC�� /�,5D �%0��

• Resource Allocation of child process

– The child process get its resource from OS directly.

– Constrain to its parent’s resources.

• Parent status

– The parent continues to execute concurrently with its children.
– The parent waits until its children terminate.

• Initialization of child process address space

– Child process is a duplicate of its parent process.
– Child process has a program loaded into it.

• How to pass parameters (initialization data) from parent to child?

N_+�4������HC[B ���G�
�������� ��!
• In UNIX, each process is identified by its process number (pid).

• In UNIX, fork() is used to create a new process.

• Creating a new process with fork():

– New child process is created by fork().

– Parent process’ address space is copied to new process’
space (initially identical address space).

– Both child and parent processes continue execution from the
instruction after fork().

– Return code of fork() is different: in child process, return code
is zero, in parent process, return code is nonzero (it is the
process number of the new child process)

– If desirable, another system call execlp() can be used by one of
these two processes to load a new program to replace its
original memory space.

"�#%$%&('*),+%-�.�)�/�02143�351,6�798;:

#include <stdio.h>
void main(int argc, char *argv[])
{

int pid ;

/* fork another process */
pid = fork() ;

i f (pid < 0) { /* error occurred */
fprintf(stderr, “ Fork Failed!\n”) ;
exit(-1) ;

} else if (pid == 0) { /* child process*/
execlp(“ /bin/ls” ,” ls” ,NULL) ;

} else { /* parent process */
/* parent will wait for the child to complete */
wait(NULL) ;
printf (“ Child Complete\n”) ;
exit(0) ;

}
}

Prepared by Prof. Hui Jiang
(COSC3221)

1/15/2008

Dept. of CS, York Univ. 5

�,6 1�'*0�.�. "%0,6�� &��9)���&(1��

• Normal termination:

– Finishes executing its final instruction or call exit() system call.

• Abnormal termination: make system call abort().

– The parent process can cause one of its child processes to
terminate.

• The child uses too much resources.
• The task assigned to the child is no longer needed.

• If the parent exits, all its children must be terminated in some
systems.

• Process termination:

– The process returns data (output) to its parent process.

• In UNIX, the terminated child process number is return by
wait() in parent process.

– All its resources are de-allocated by OS

�
	 +���& $%+ 0���,6 1�'*0�.�.��,6 1�/ 6)����2&��9/ &�� -��%&��

• Unix system calls for process control :
– getid(): get process ID (pid) of calling process.

– fork(): create a new process.

– exec(): load a new program to run.
• execl(char *pathname, char *arg0, …);

• execv(char *pathname, char* argv[]) ;

• execle(), execve(), execlp(), execvp()

– wait(), waitid(): wait child process to terminate.
– exit(), abort(): a process terminates.

� 1�1,$�0,6)���&��9/��,6 1�'*0�.�.�0�.

• Concurrent processes executing in the operating system

– Independent: runs alone

– Cooperating: it can affect or be affected by other processes

• Why cooperating processes?

– Information sharing
– Computation speedup

– Modularity

– Convenience

• Need inter-process communication (IPC) mechanism for
cooperating processes:

– Shared-memory
– Message-passing

�������������! �"�#%$'&�(

)*��� 0%6+��$%6 1�'�0 .�. � 1,���-	�� & '�)���& 1�� 8.)/� � :10
� 0�.*.�)�/�02��)�.�.�&��9/

• IPC with message passing provides a mechanism to allow
processes to communicate and to synchronize their actions
without sharing the same address space.

• IPC based on message-passing system:
– Processes communication without sharing space.
– Communication is done through the passing of messages.
– At least two operations:

• send(message)
• receive(message)

– Message size: fixed vs. variable
– Logical communication link:

• Direct vs. indirect communication
• Symmetric vs. asymmetric communication
• Automatic or explicit buffering

3�& 6 0�'*� � 1,���-	�� & '�)���& 1��

• Each process must explicitly name the recipient or sender of the
communication.

– send(P,message)

– Receive(Q,message)

• A link is established between each pair of processes

• A link is associated with exactly two processes
• Asymmetric direct communication: no need for recipient to name

the sender

– send(P,message)
– receive(&id,message): id return the sender identity

• Disadvantage of direct communication:

– Limited modularity due to explicit process naming

Prepared by Prof. Hui Jiang
(COSC3221)

1/15/2008

Dept. of CS, York Univ. 6

)1��� & 6 0�'*� � 1,���-	�� & '�) ��& 1��

• The messages are sent to and received from mailbox.

• Mailbox is a logical unit where message can be placed or removed by
processes. (each mailbox has a unique id)

– send(A,message): A is mailbox ID
– receive(A,message)

• A link is established in two processes which share mailbox.

• A link may be associated with more than two processes.

• A number of di fferent link may exist between each pair of processes.
• OS provides some operations on mailbox

– Create a new mailbox

– Send and receive message through the mailbox
– Delete a mailbox

� # �%'�� 6 1�� &���)���&(1 � & � ��0 .�.*)�/�0��$�)�.�. & �9/

• Message passing may be either blocking or non-blocking.
• Blocking is considered synchronous

• Non-blocking is considered asynchronous

• send() and receive() primitives may be either blocking or non-
blocking.

– Blocking send

– Non-blocking send
– Blocking receive

– Non-blocking receive

• When both the send and receive are blocking, we have a
rendezvous between the sender and the receiver.

�,	�3�350%6�&��9/ & � ��0�.�.�)�/%0��$)�.*. & �%/

• The buffering provided by the logical link:
– Zero capacity: the sender must block until the recipient

receives the message (no buffering).

– Bounded capacity: the buffer has finite length. The
sender doesn’t block unless the buffer is full.

– Unbounded capacity: the sender never blocks.

�
	�������������

• Signals

• Pipes

• Message queues

• Shared memory

• Sockets

• others

������� "��
�! � ##" � �$�%�$&'���)(

• Signal is a technique to notify a process that some events have
occurred.

• The process has three choices to deal with the signal:

– Ignore the signal
– Let the defaul t action occur.

– Provide a function that is called when the signals occurs.

• signal() function: change the action function for a signal

• kill() function: send a signal to another process

#include <signal.h>

void (*signal(int signo, void (*func) (int)) ;

#include <sys/types.h>

#include <signal.h>

int kill (int pid, int signo) ;

*,+.-0/213-)45+�657�8

Prepared by Prof. Hui Jiang
(COSC3221)

1/15/2008

Dept. of CS, York Univ. 7

� ("�� ��� &���(� � � "�� � �$&�� ���

#include <signal.h>

static void sig_int(int) ;

int main() {

if(signal(SIGINT,sig_int)==SIG_ERR)
err_sys(“ signal error”) ;

sleep(100) ;
}

void sig_int(int signo)
{

printf(” Interrupt\n”) ;
}

• Event SIGINT: type the
interrupt key (Ctrl+C)

• The default action is to
terminate the process.

• Now we change the defaul t
action into printing a
message to screen.

& ���)(� � � &

• Half-duplex; only between parent and child.

• Creating a pipe:

– Call pipe();

– Then call fork();

– Close some ends to be a half-duplex pipe.

#i ncl ude <uni st d. h>

i nt pi pe(i nt f i l edes[2]) ;

& � � (� � �'&	��& ("
� � ��&

fd[0] fd[1]

pipe

kernel

parent

fd[0] fd[1]

child

fd[0] fd[1]

pipe

user process

& � � (� � ��&	��& ("�� � � &

i nt mai n() {

i nt n, f d[2] ;
i nt pi d ;
char l i ne[200] ;

i f (pi pe(f d) < 0) er r _sys(“ pi pe er r or ”) ;

i f ((pi d = f or k()) < 0) er r _sys(“ f or k er r or ”) ;
el se i f (pi d > 0) {

c l ose(f d[0]) ;
wr i t e(f d[1] , “ hel l o wor d\ n” , 12) ;

} el se {
cl ose(f d[1]) ;
n = r ead(f d[0] , l i ne, 200) ;
wr i t e(STDOUT_FI LENO, l i ne, n) ;

}
ex i t (0) ;

}

� 0�.*.�)�/�0� 	�0�	�0�. &�� - � &��

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/msg.h>

int msgget(key_t key, int flag) ;

int msgsnd(int msqid, const void *ptr, size_t nbytes, int flag) ;

int msgrcv(int msqid, void *ptr, size_t nbytes, int flag) ;

��.�/%/%0�� 8;: &�� -��)��

int msgget(key_t key, int f lag) ;

• key � an integer to identify the message queue. Should

be unique in a system

• msgflg � 0 : access to an existing queue

IPC_CREAT bit set : create a queue

• return value

• -1 on error

• non-negative integer on success: message id

Prepared by Prof. Hui Jiang
(COSC3221)

1/15/2008

Dept. of CS, York Univ. 8

��.*/%. ��� 8;: &��-��)��

int msgsnd (int msgid, const void *msgp, int msgsz, int msgflg) ;

• msgid � msg id returned by msgget()

•msgp � ptr to a structure

struct msgStruct{

long mType ; //type of the message

char mText[MAX_LEN]; //actual data

};

•msgsz � size of data in msg

•msgflg � always 0 in our cases

•return value

• -1 on failure

• 0 on success

��.�/ 6 '�� 8;: &�� -���) �

int msgrcv(int msgid, const void *mshp, int msgsz, long msgtype, int
msgflg) ;

• msgid � msg id returned by msgget()

•msgp � ptr to a msg structure (same as above)

•msgsz � size of buffer in msg

•msgflg � always 0 in our cases

•msgtype � 0: get first message in the queue

>0 : get first message of type msgtype

<0 : beyond our consideration

•return value

• -1 on failure

• No. of bytes in the message on success

� ("�� ��� &	��#%� &�" " & " � � (��� '&� &

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define KEY 32894 /* your CS log in number */

int main() {
int msgid ;

msgid = msgget(KEY,0) ;

if(msgid < 0) {
msgid = msgget(KEY, IPC_CREAT|0666) ;
if(msgid < 0)

printf("Error in creating message queue!\n");
}

}

� ("�� ��� &	��(& ��� � � � "
� &�((" � &

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define KEY 32894
#define MAX_LEN 100

typedef struct {
long mType ;
char mText[MAX_LEN] ;

} Message ;

int main() {
int msgid ;
Message msg ;

strcpy(msg.mText, "Hello world !") ;
msg.mType = 1 ;

msgid = msgget(KEY,0) ;

if(msgid < 0) {
printf("Error in creating message queue!\n");
return -1 ;
}

if(msgsnd(msgid, &msg,MAX_LEN,0) < 0)
printf("Error in sending message\n") ;

else
printf("sent message successful ly\n") ;

}

� ("�� � � &	� �!& #& ����� �3�
" � &�((" � &

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/msg.h>

#define KEY 32894
#define MAX_LEN 100

typedef struct {
long mType ;
char mText[MAX_LEN] ;

} Message ;

int main() {
int msgid ;
Message msg ;

msgid = msgget(KEY,0) ;

if(msgid < 0) {
printf("Error in creating message queue!\n");
return -1 ;
}

if(msgrcv(msgid, &msg,MAX_LEN,0,0) < 0)
printf("Error in receiv ing message\n") ;
else
printf("Received message: %s\n" ,msg.mText) ;

if(msgctl(msgid,IPC_RMID,NULL)<0) // Remove the message queue from system
printf(“ Error in removing message queue!\n”) ;

else
printf(“ Removed message queue successfully!\n) ;

}

� $�" � & �	� &�� ��
 � �$& � � (

#include <sys/shm.h>

int shmget(key_t key, size_t size, int shmflg);

void *shmat(int shmid, const void *shmaddr, int shmflg);

int shmdt(const void *shmaddr);

int shmctl(int shmid, int cmd, struct shmid_ds *buf);

Prepared by Prof. Hui Jiang
(COSC3221)

1/15/2008

Dept. of CS, York Univ. 9

������� 6.7 7 � 1��
	5+�� � 	57 1�� ���� � ���� 8

• Tables are constructed for each entity the operating system
manages.

– Process table: PCBs and process images.

– Memory table: Allocation of main memory to processes;
Protection attributes for access to shared memory regions.

– File table: all opened files; location on hardware; Current
Status.

– I/O table: all I/O devices being used; status of I/O operations.

Memory

Devices

Files

Processes

Process 1

Memory Tables

Process
Image

Process
1

Process
Image

Process
n

I/O Tables

File Tables

Figure 3.11 General Structure of Operating System Control Tables

Primary Process Table

Process 2

Process 3

Process n

������� 6��!-�+
4 1
��8�� �
� �
	3+�� � 	37
1
� ���� � ���� 8

� (& # ." � � 3�����'& � " " � �3�$�
�("1&��

• Non-process Kernel
– Execute kernel outside of any process
– Operating system code is executed as a separate entity that

operates in priv ileged mode

• Execution Within User Processes
– Operating system software within context of a user process
– Process executes in priv ileged mode when executing

operating system code

• Process-Based Operating System
– Implement operating system as a collection of system

processes

– Useful in multi-processor or multi-computer environment

P1 P2 Pn

Kernel

(a) Separate kernel

P1 P2 Pn OS1 OSk

(c) OS functions execute as separate processes

Figure 3.15 Relationship Between Operating
System and User Processes

OS
Func-
tions

OS
Func-
tions

OS
Func-
tions

P1 P2 Pn

Process Switching Functions

Process Switching Functions

(b) OS functions execute within user processes

Mode switch

vs.

Process switch
(context switch)

