
Chapter 1

Implementing Utility Classes

1.1 Introduction

1.1.1 What are Utilities?

Recall that a class is an entity that has attributes and methods. Most classes cannot be used unless
they are instantiated first. The instantiation process creates copies of the class attributes, and this
allows different instances to have different attribute values, i.e. different states.

But what if a class has no attributes at all; i.e. its instances are stateless? Or, what if all
instances of a class have the same attribute values, i.e. the same state? In both cases, there is no
need to create instances because doing so would waste valuable resources. Such a class is called a
utility, and in it, the attributes are associated with the class itself, not with instances. Indeed, you
cannot instantiate a utility and you will not find a constructor section in its API.

In Java, you recognize a utility from its API by noting that all its features (both attributes and
methods) are static.

Since a utility cannot be instantiated, its client must access its public attributes and invoke its
public methods by using the class name. As an example, consider the Math utility whose API is
shown here and which is a simplified version of the one in the package java.lang. The following
fragment shows how a client can use this utility.

output.println("The value of PI is: " + Math.PI);

output.println("Enter two integers:");

int a = input.nextInt();

int b = input.nextInt();

output.println("The smaller of the two entries is: " + Math.min(a, b));

output.println("Enter a base and an exponent:");

int base = input.nextInt();

int exponent = input.nextInt();

output.println("The entered power is: " + Math.pow(base, exponent));

1

http://www.cse.yorku.ca/course/1030/notes/code/Math.api/Math.html

2 Franck van Breugel and Hamzeh Roumani

You can see the full example by following this link.

1.1.2 Why are Utilities Needed?

A utility is used in situations in which there is no need to have multiple copies of the class features;
i.e. a single copy suffices. For example, a class that does not hold any state (i.e. has no attributes)
is a good candidates for a utility. A class without attributes has no state so it cannot remember
anything about previous invocations, e.g. which method was invoked last, when was a method
invoked, or what arguments were passed before. A method in such a class has therefore nothing to
work with other than the arguments passed to it, and its return (if any) must depend only on the
values of these arguments. A second example of a class that is appropriate for a utility is one that
has a fixed state (i.e. all its attributes are static and final).

It should be noted that most, if not all, classes that make up a real-life application are not

utilities. We start with utilities because they are simpler than non-utilities. Moreover, the skills
you will acquire in implementing them apply as-is to non-utility classes.

1.1.3 Memory and UML Diagrams

The Unified Modeling Language (UML) allows us to represent utilities through diagrams. A minimal
UML class diagram consists of a rectangular box that contains the name of the class preceded by
the word utility between two guillemets, as shown in Figure 1.1. The class name can be fully
qualified, with its package and sub-package names, but with a double-colon (rather than a dot) as
the separator character.

〈〈 utility 〉〉
java::lang::Math

Figure 1.1: Simple UML class diagram of the Math utility.

If additional features need to be exposed then a second (and a third) box can be added to hold
the attributes (and methods) of the utility, as shown in Figure 1.2 and 1.3. The + sign appearing
before a feature indicates that the feature is public.

〈〈 utility 〉〉
java::lang::Math

+ E: double

+ PI: double

Figure 1.2: UML class diagram of the Math utility with attributes.

In addition to UML diagrams, we sometimes use memory diagrams to show how different classes
reside in memory. For example, the diagram in Figure 1.4 shows a client class named MathClient

residing in memory beginning at address 64 and the Math utility at address 800. The addresses
used in the figure are of course arbitrary.1

1In the next chapter we will introduce more abstract diagrams that do not expose low-level addresses.

http://www.cse.yorku.ca/course/1030/notes/code/MathClient.java

May 23, 2007 3

〈〈 utility 〉〉
java::lang::Math

+ E: double

+ PI: double

+ abs(int): int

+ abs(double): double

+ pow(int, int): int

Figure 1.3: UML class diagram of the Math utility with attributes and methods.

0
1
...
64 MathClient
...
800 Math
...

Figure 1.4: A memory diagram depicting a client app named MathClient that uses the Math utility.

1.1.4 Check your Understanding

Consider the following classes:

• Arrays in the java.util package,

• DocumentBuilderFactory in the javax.xml.parsers package,

• Collections in the java.util package and

• InputStream in the java.io package.

If you attempt to use the typical new keyword to instantiate any of these classes, you will find that
the attempt will fail. Does this mean that these classes are utilities? Argue that only two of them
are utilities.

1.2 How: The Class Definition of a Utility

1.2.1 Class Structure

Implementing a utility means writing its so-called class definition. Here is the general form:

// any needed import statements

public class SomeName

{

4 Franck van Breugel and Hamzeh Roumani

// the attribute section

// the constructor section

// the method section

}

The definition starts with import statements as is the case of client apps. The body of the class has
three sections, one for attributes, one for constructors, and one for methods, which is reminiscent
of the API structure. These three sections may appear in any order but, as a matter of style, we
will adhere to the above order. Moreover, we will usually order the definitions within each section
so that public definitions appear before private ones.

1.2.2 Declaring and Initializing Attributes

The state of a utility is held in its attributes. If a utility does not have state, the attribute section
is omitted. Otherwise, it contains one definition per attribute. The definition has one of the two
following general forms:

access static type name = value;

or

access static final type name = value;

It should not be surprising that the keyword static is present; after all, we are studying utilities in
this chapter and all features in a utility are static. Here is an explanation of each of the remaining
elements:

• access (also known as the access modifier) can be either public, which means this is a field, or
private, which means it is invisible to the client. 2 It is a key software engineering guideline
to keep all non-final attributes private. First of all, it forces the client to use a mutator and,
hence, prevents the client from assigning wrong values to them, e.g. assigning a negative value
to a field intended to hold the age of a person. Secondly, private attributes do not show up
in the API and, hence, declaring attributes private (rather than public) simplifies the API.
Finally, since private attributes do not show up in the API, their type and name can be
changed by the implementer without introducing any changes to the API.

• final (appearing in the second general form above) is used if this attribute is a constant.

• type specifies the type of this attribute. It can be primitive or non-primitive.

• value specifies the initial value of this attribute and should be compatible with its type; i.e.
this should be a valid assignment statement.

2The access modifier in Java can also be left blank. This makes the attribute visible only to classes in the same
package as this class (more on this later).

May 23, 2007 5

Here is an example:

public class Math

{

public static final double PI = 3.14159265;

...

}

When you define attributes in a utility, keep two things in mind:

• It is best to initialize attributes as you declare them. If you delay or forget their initialization,
the compiler will not issue a compile-time error; it will simply assign default values to them.
Relying on such defaults is not a good idea because they may change from one version of the
language to the next. Furthermore, explicit declaration mitigates assumption risks (scenarios
in which people make implicit assumptions and do not communicate them, thinking they are
obvious), which can lead to logic errors.

• The scope of an attribute is the entire class.

Finally, even though attributes have types and hold values, they are different from local variables.
3

1.2.3 The Constructor Section

The constructor section of a utility named SomeName consists of a single statement:

private SomeName(){}

It is not surprising that the constructor has the same name as the class but this code looks rather
odd: why is the constructor private and why is it empty? And if it is meant to be empty then why
is it included at all in the definition?

Recall that utilities are never instantiated, and hence, there should not be a constructor section
in their APIs. This implies that there should not be any public constructor in the class definition
of a utility. But when the Java compiler encounters a class without any constructor at all, it
automatically adds a public constructor to it. To prevent this from happening, we add the above
private constructor. Its body is empty because we really do not need a constructor; it is there only
to thwart the compiler’s attempt at adding a public one.

Based on this, the class definition of our example utility becomes:

public class Math

{

public static final double PI = 3.14159265;

3Local variables can appear only within the definition of a method or a constructor, and their scope is limited
to the definition in which they appear. In addition, local variables must be initialized before being used; i.e. the
compiler does not assign default values to them.

6 Franck van Breugel and Hamzeh Roumani

private Math(){}

...

}

1.2.4 Defining Methods

The method section of the class definition of a utility contains one definition per method. The
method header has the following general form:

access static type signature

As in the case of attributes, it should not be surprising that the keyword static is present. And
also as for attributes, the access modifier can be either public or private. 4 Recall that the type

is either void or the actual type of the return. Recall also that the method’s signature consists of
its name followed by its parameter list.

Let us look at some of the methods of the Math class. Consider min(int, int), which returns
the smaller of its two arguments. It is a public method with a return type of int. Hence, its
definition must have the following header:

public static int min(int a, int b)

When a client program invokes this method by writing something like Math.min(3, 5), control
is transferred to the method with a initialized to 3 and b initialized to 5. The body of the method
does the real work. It should figure out which parameter (a or b) is smaller and return it to the
client. Returning the result to the client is expressed by means of the return statement. This
statement consists of the keyword return followed by an expression. The type of the expression
should be compatible with the return type of the method. The execution of the return statement
results in the value of the expression being returned to the client. Here is a possible implementation
of the min method:

if (a <= b)

{

return a;

}

else

{

return b;

}

In fact, you can implement this functionality in one statement:

public static int min(int a, int b)

{

4The access modifier in Java can also be left blank. This makes the method visible only to classes in the same
package as this class (more on this later).

May 23, 2007 7

return (a <= b) ? a : b;

}

Next, let us look at the pow method. It is a public method that takes two int arguments and
return an int (being the first argument raised to the second). Hence, its definition must have this
layout:

public static int pow(int a, int b)

{

...

}

In the body of this method we must compute and return ab, i.e.

a× a× · · · × a
︸ ︷︷ ︸

b times

To do this, we need to set up a loop. And since we know how many times the loop should iterate,
we use a for loop:

int pow = ?

for (int i = 0; i < ?; i++)

{

pow = pow * a;

}

return pow;

Next, we need to determine the initial value of the local variable pow and the number of iterations of
the loop. A loop invariant can help us do this. Recall that a loop invariant is a boolean expression
that holds at the beginning of every iteration. It usually tells us something about the variables
that play a key role in the loop. In the above loop, the variables pow and i play a key role. They
are related as follows: pow = ai. We will take this as our loop invariant. Now we can determine
the initial value of pow. Since the loop invariant has to hold at the beginning of the first iteration
of the loop and since i is initialized to 0, we can conclude that we have to initialize pow to 1

since a0 = 1. The loop invariant also tells us when to exit the loop. We want to end the loop
if pow = ab. So when we reach an iteration at which i = b, the loop condition should evaluate
to false. Therefore, as long as i != b (or i < b) we should continue the loop. You can see the
complete implementation of our Math utility by following this link.

1.2.5 Testing a Utility

In order to test a utility you need to write a client class, i.e. an app, that invokes every method in it
and verifies that it behaves according to its specification. In the lingo of the software development

process such a test is known as a unit test as opposed to an integration test, which is performed
after all classes in the application have been built.

http://www.cse.yorku.ca/course/1030/notes/code/Math.java

8 Franck van Breugel and Hamzeh Roumani

Testing a method in a utility involves generating a test vector (a collection of test cases that meet
the precondition of the method) and then invoking the method for each test case. The method’s
return is then checked against an oracle to ensure that the method’s postcondition is met.5

As an example, let us write a unit test for our Math class and let us focus only on its min(int,
int) method. Since any int is a valid argument for this method, we will use the nextInt() method
of the java.util.Random class to generate random arguments that are uniformly distributed over
the entire int range. The following fragment demonstrates this step:

Random random = new Random();

int a = random.nextInt();

int b = random.nextInt();

int min = Math.min(a, b);

Our test vector will thus consist of several, say 100, of such (a,b) pairs.
The next step involves determining if the method satisfies its postcondition; i.e. if min is indeed

the smaller of a and b. We will choose direct verification as our oracle:

if (a < min || b < min || (a != min && b != min))

{

output.print("The method failed the test case: ");

output.println("a = " + a + ", b = " + b);

}

The above process is repeated for each of the remaining test cases in our test vector. You can see
the full tester by following this link.

1.2.6 Check your Understanding

Write a utility that contains the method:

public static long factorial(int n)

The method computes and returns the factorial of the given integer. The return is a long (rather
than an int) because the factorial function grows rapidly and quickly exceeds the int range. You
can safely assume that the passed integer is not negative (we will see later in this chapter how to
better handle this condition). Test your implementation using the integers [0,20] as test vector
and your calculator as oracle.

1.3 Arguments versus Parameters

1.3.1 Passing Arguments By Value

Object-oriented programming aims at creating a layer of separation between the client’s code and
the implementer’s code in order to reduce their complexities. The client’s code and the imple-
menter’s code cannot operate in total isolation, however, because they need to cooperate through

5In general, one must also ensure that the values of all fields remain consistent with the class invariant. But since
most utilities do not have non-constant fields, we will ignore this part of the test.

http://www.cse.yorku.ca/course/1030/notes/code/MathTester.java

May 23, 2007 9

method invocation. Hence, a mechanism needs to be in place to facilitate such cooperation without
allowing either party to modify the variables of the other party without their explicit knowledge.
This mechanism is known as pass-by-value. We examine it from the client’s view in this section
and look at its impact on the implementer in the next section.

Consider the following fragment of client code that invokes that abs(int) method of the Math

class:

int x = -1;

int y = 0;

y = Math.abs(x);

What were the values of the client variables x and y before the invocation and what are their
values afterwards? The value of y was 0 and it has become 1. Hence, the invocation did result in
a change in the client’s data but this change did not take place implicitly or secretively; the client
asked for it (through an assignment statement) and was fully aware of its consequence (through the
method’s postcondition). As for x, its value was −1 prior to the invocation. If this value were to
change afterwards then this would be an implicit change that would take place without the client’s
knowledge. Fortunately, the pass-by-value mechanism prevents that; i.e. the value of x remains −1
after the invocation regardless of how abs is implemented.

In general, the comma-separated entities that appear between two parentheses after the method
name in an invocation statement are known as arguments. Hence, x in the above invocation is an
argument. The mechanism derives its name from the fact that when an invocation is encountered,
the values of the arguments are passed to the implementer, not their memory locations. This
guarantees that the arguments remain in tact no matter what the implementer does.

It is important to know that the pass-by-value mechanism remains in force even if the argument
is an object reference. In other words, an object reference argument is guaranteed not to change
after an invocation (but the object to which it refers might). Let us look at an example that
illustrates this point: assume that there is a utility called Doubler with the method:

public static void twice(Rectangle x)

The method takes a reference to a Rectangle object and doubles the sizes of the rectangle’s width
and height. The API of the Rectangle class can be found following this link. Here is a fragment
of a client app that creates a Rectangle with width 3 and height 4 and then invokes the above
method:

Rectangle r = new Rectangle(3, 4);

Doubler.twice(r);

In this example, the client passes the argument r to the method. Based on our understanding of the
pass-by-value mechanism, the method cannot change r but it can change (mutate) the Rectangle

to which r points.

The memory diagram in Figure 1.5 assumes that the Rectangle object resides in a memory
block that starts at address 100. The diagram shows that the value of r was 100 before the
invocation and remained 100 after it, as expected. The object itself was mutated as evidenced by

http://www.cse.yorku.ca/course/1030/notes/code/Rectangle.api/Rectangle.html

10 Franck van Breugel and Hamzeh Roumani

0
1
...
64 Client’s app

r → 100
...
100 Rectangle object
width → 3

height → 4
...

0
1
...
64 Client’s app

r → 100
...
100 Rectangle object
width → 6

height → 8
...

Figure 1.5: These diagrams depict memory before (left) and after (right) the invocation of the
twice method.

the doubling of its sides. The fact that the object was changed does not contradict the pass-by-value
mechanism because the object itself is not an argument; its reference is. 6

1.3.2 Initializing Parameters

We saw in the previous section that the pass-by-value mechanism allows the client to establish a
one-way communication channel with the implementer. The client uses this channel to pass the
values of the arguments to the implementer knowing that these values cannot change upon return.
We now look at this mechanism from the implementer’s side.

The implementer uses the term parameters to refer to the variables that appear between paren-
theses in the method header. For example, the header of the twice method that was introduced
in the previous section contains one parameter named x:

public static void twice(Rectangle x)

We see that parameters are declared in the header but how are they initialized? The pass-by-value
mechanism states that parameters are initialized to the passed values of the arguments. Hence, the
parameter x in the above header will have 100 as its initial value (see memory diagram) because
this is the value of the argument passed by the client. We can see how the one-way channel is
implemented: since the client and the implementer are using two distinct sets of variables linked
only through initialization, it is clear that the implementer cannot possibly modify any of the
client’s arguments.

Let us now implement the twice method. We need to determine the sides of the passed
Rectangle and double them. Here is the implementation:

public static void twice(Rectangle x)

{

x.setWidth(2 * x.getWidth());

6Recall that an object is a cluster in memory that belongs to neither the client nor the implementer. Programs
can own object references, and they can make the references point at an object, but they do not own objects.

May 23, 2007 11

x.setHeight(2 * x.getHeight());

}

Note that the method receives the value of the object reference (i.e. the address of the object in
memory) and then mutates the object (i.e. changes its state in place); it does not change the address
of the object in memory.

As a second example of the impact of pass-by-value on the implementer, suppose a client writes
a main method containing the following code snippet.

int x = 1;

int y = 2;

Util.swap(x, y); // swaps the values of x and y

The implementer is asked to write the method swap that allows its client to swap two int values:

public static void swap(int a, int b)

{

?

}

The pass-by-value mechanism makes implementing this method impossible! No matter how the
values of the two parameters a and b are interchanged, the arguments will not be affected.

1.3.3 Attribute Shadowing

We saw in the previous section that parameters are declared in the header of the method and are
initialized using the passed values of the arguments. Hence, they behave like local variables and
have a scope that extends from the very beginning of the method (its opening brace) to its end
(its closing brace). Recall that attributes are declared outside all methods and that their scope
encompasses the entire class. This raises a question: what if one of the parameters of a method in
a class happens to have the same name as an attribute of that class? For example, a utility Util

may have an attribute named count and the method:

public static void increment(int count)

{

count = count + count;

...

}

Which count is being referenced here, the attribute or the parameter? Java in this case gives the
priority to the parameter; i.e. the parameter shadows the attribute (hides it). The above method
will therefore double the value of its parameter, not the attribute. This situation is clearly confusing
and can lead to logic errors. Because of this, we will, as a matter of style, always use the utility
name when we refer to its attributes. Hence, if the above method were meant to increment the
class attribute by the value of the parameter, its code should have been written as follows:

public static void increment(int count)

12 Franck van Breugel and Hamzeh Roumani

{

Util.count = Util.count + count;

...

}

1.3.4 Method Overloading and Binding

The argument-parameter mapping dictates how the compiler should bind an invocation to a method.
Given an invocation of the form C.m(arguments), the compiler starts by ensuring that class C is
available and does have a method named m. Next, the compiler examines the method’s signature
to ensure that the values of the arguments can indeed be assigned to the method’s parameters.
This requires that the number of arguments is equal to the number of parameters and that the
arguments are compatible with their corresponding parameter types.

When a method is overloaded and binding can be made with more than one variant of the
method, the compiler tries to limit the possibilities by using the most specific policy: select the
method that requires the least amount of promotion. If that fails, the compiler issues an ambiguous

invocation error.

1.3.5 Check your Understanding

Consider the utility PassByValue whose source code is shown here. This utility is used by the
following client:

import java.util.*;

import java.io.PrintStream;

public class PassByValueClient

{

public static void main(String[] args)

{

PrintStream output = System.out;

int a = 1;

PassByValue.add(a);

output.println(a);

Set<String> b = new HashSet<String>();

PassByValue.add(b);

output.println(b.size());

List<Integer> c = new ArrayList<Integer>();

PassByValue.add(c);

output.println(c.size());

}

}

http://www.cse.yorku.ca/course/1030/notes/code/PassByValue.java

May 23, 2007 13

Predict the output of this client. You can check the correctness of your prediction by saving the
above client to a file and then compiling it and running it.

1.4 Preconditions versus Validation

1.4.1 Preconditions and the Client

Before invoking a method, a client must ensure that its precondition is met. Failing to do so can
lead to unpredictable results. Consider, for example, the following method which computes and
returns the factorial of its argument:

public static long factorial(int x)

If the contract of this method specifies the precondition “x >= 0”, then it is the client’s responsi-
bility to ensure that x is not negative.

What happens if we invoke this method and pass −1? The result is unpredictable: the imple-
menter may have used an algorithm that crashes if x is negative, and in that case an exception will
occur. It is also possible that the implementer may have started by computing the absolute value
of x, and in that case the wrong result, 1, is returned, and this will likely lead to a logic error in the
client’s program. What is worse, the result is not guaranteed to be the same every time because the
implementer can change the algorithm (in a future release or dynamically for web services) without
informing the client (recall that it would break the encapsulation if the implementer informed the
client). In conclusion, the client cannot rely on any particular outcome (an exception or a special
return) if a method is invoked when its precondition does not hold.

It is clear from the above that the precondition is 100% in the client’s concern. The implementer
can assume that the precondition is met and should not be concerned with the possibility that it
is not.

1.4.2 Validation and the Implementer

If the contract of a method does not specify a precondition, the client can invoke it without
any validation. Consider, for example, the following method in the java.lang.Math class which
computes and returns the positive (real) square root of its argument:

public static double sqrt(double x)

The contract (i.e. the API) does not specify a precondition; i.e. the precondition is true. Hence,
a client can invoke it and pass any double value. In particular, the client can pass a negative
value for x and still expect the method to behave in a predictable manner. Indeed, the API of
this method specifies (as part of the postcondition) that if x is less than zero then the return is
NaN, the special double that indicates an out-of-range value. Hence, detecting a negative value (i.e.
validating the parameters) in the absence of a precondition is 100% in the implementer’s concern.
The implementation of the above method must therefore have the following structure:

public static double sqrt(double x)

{

14 Franck van Breugel and Hamzeh Roumani

double result;

if (x < 0)

{

result = NaN;

}

else

{

// compute the square root and set result to it.

}

return result;

}

In summary, the onus is on the implementer if no precondition is specified. The implementer
must plan for special conditions, determine what to do when they occur,7 and document the taken
action as part of the postcondition.

1.4.3 Check your Understanding

The utility PreVal has the API shown here. As you can see from the API, it has three methods:
loadFactor, markup, and deviation. loadFactor works by invoking markup, and markup works
by invoking deviation. In other words, loadFactor is a client of markup, and markup is a client
of deviation.

Assume that deviation is already implemented (for the issue at hand, it does not really matter
what it computes and returns). How would you implement loadFactor and markup? Make sure
you properly assume the responsibilities of client and/or implementer when you handle pre- and
postconditions.

Compare your implementation with the one shown here.

1.5 Documenting a Utility Class

1.5.1 API Generation through javadoc

Utilities (and, in fact, all non-app classes) have two types of documentation: internal and external.
Internal documentation appears in the form of one-line comments (prefixed by //) or multi-line
comments (surrounded by /* and */). Its objective is to explain to implementers how the class
works. In contrast, external documentation explains to clients what the class does; i.e. its usage.
The external documentation of a class is also known as its contract or API.

It may seem natural to separate the class definition from its external documentation; i.e. store
the former in one file (e.g. Math.java) and the latter in another (e.g. Math.html). After all, these

7The implementer can take one of two actions when validation fails: return a special value or throw an exception.
As a matter of good style, one should leave exceptions to exceptional situations. Hence, if the problem is plausible
and likely to occur under normal conditions then a special return is preferable (e.g. adding a duplicate element to a
Set). On the other hand if the problem is unpredictable (i.e. exceptional) then it is preferable to throw an exception
(e.g. connecting to a remote URL while the network is down). No matter what action you choose, make sure it is
documented in the postcondition either under Returns or Throws.

http://www.cse.yorku.ca/course/1030/notes/code/PreVal.api/PreVal.html
http://www.cse.yorku.ca/course/1030/notes/code/PreVal.java

May 23, 2007 15

two files have different formats: general text versus HTML. Such separation, however, does not
work well because, in real life, one finds that the API changes as the class is being implemented. The
person maintaining the API may make changes to it and forget to inform the person maintaining
the source file, and vice versa. Such loss of synchronization leads to an API that describes a certain
behaviour while the actual class has a different behaviour.

The ideal solution is to keep the external documentation embedded in the source file and to
have a utility that extracts it and formats it as HTML. This way, the HTML file would be for
output-only and no one would attempt to edit it (because it is overwritten every time the utility is
executed). This is the approach adopted by Java.

The API text appears within the class definition as multi-line comments surrounded by /**

(two asterisks instead of one) and */. These comments are placed immediately before every public
attribute, constructor, and method in the class 8. In addition, such comments are needed before the
class header to document the class as a whole; what it encapsulates, its invariants, who implemented
it, etc.

As an example, let us document one of the min methods of the Math class:

/**

Returns the smaller of two int values.

@param a An argument.

@param b Another argument.

@return The smaller of a and b.

*/

public static int min(int a, int b)

{

...

}

The first sentence gives an overall description of what the method does. When you write external
documentation keep in mind that all text will be converted to HTML. Hence, line breaks, tabs,
and other whitespace characters are all treated as a single space. If you feel the need to format the
output, use HTML tags, e.g. <CODE>,
, , etc. The API extraction utility will place the
first sentence of your documentation (up to the first period) in the Method Summary section. The
Method Detail section will contain this first sentence plus any following sentences.

Embedded in the documentation are special tags identified by the @ prefix. In the above example,
the @param is used to document every parameter of the method. The @return tag describes what
the method returns. The generated API is given in Figure 1.6. If a method does not take any
parameters then no @param tag should be used. Similarly, there should not be a @return tag if the
method is void.

Here is an example for an attribute:

/**

The double value that is closer than any other to pi, the ratio of the

8It is a good habit to also document private features in addition to public ones. Even though such documentation
is not visible to the client, it will prove invaluable to the implementer who is maintaining the class.

16 Franck van Breugel and Hamzeh Roumani

min

public static int min(int a,

 int b)

Returns the smaller of two int values.

Parameters:

a - An argument.
b - Another argument.

Returns:

The smaller of a and b.

Figure 1.6: API of min method.

circumference of a circle to its diameter.

*/

public static final double PI = 3.14159265;

No special tags are normally needed for attributes.
Finally, here is an example for the documentation of the class as a whole (to appear at the top

of the API):

/**

The class Math contains some methods for performing basic numeric operations

and some basic constants. The implementations of the methods have been

simplified and may not handle special cases correctly.

@author cbc

@see java.lang.Math

*/

public class Math

The @see tag allows you to cross reference a second class (or feature) that is related to the current
one.

Once a class is documented, you can extract the API by using the following command:

javadoc -d dir Math.java

The d switch allows you to specify a directory dir in which the generated API should be stored.
The javadoc utility has many other switches and options. If you find you need to exercise more
control on how the API is generated, read the javadoc page at java.sun.com/javadoc.

1.5.2 Documenting Preconditions and Exceptions

Consider the following method in our Math class:

http://java.sun.com/javadoc

May 23, 2007 17

/**

Returns the value of the first argument raised to the second argument.

@param base The base.

@param exponent The exponent.

@return base^{exponent}.

*/

public static int pow(int base, int exponent)

It is clear from the return type that the class designer is not interested in cases in which exponent

is negative. Ensuring this can be either left to the client, by making it a precondition, or to the
implementer, by addressing it in the postcondition. Either way, the API must reflect and document
the choice, and that is what we focus on in this section.

Documenting a Precondition

If the designer opts for a precondition, we add a tag to specify it. Since Javadoc does not currently
have such a tag, we add a custom one and name it pre. (as a matter of style, we put a period at
the end of user-defined tags to distiguish them from built-in ones). The documentation becomes:

/**

Returns the value of the first argument raised to the second argument.

@param base The base.

@param exponent The exponent.

@pre. exponent >= 0.

@return base^{exponent}.

*/

public static int pow(int base, int exponent)

In order to recognize the new tag and place it in between the parameters and the return in the
generated API, a few switches need to be used in the javadoc command:

javadoc -tag param -tag pre.:a:"Precondition: " -tag return -d dir Math.java

The resulting API is given in Figure 1.7.

Documenting an Exception

If the designer opts for throwing an exception, we used the built-in tag throws to document this
action. Assuming that IllegalArgumentException is to be thrown, the documentation becomes:

/**

Returns the value of the first argument raised to the second argument.

18 Franck van Breugel and Hamzeh Roumani

pow

public static int pow(int base,

 int exponent)

Returns the value of the first argument raised to the power of the second argument.

Parameters:
base - The base.
exponent - The exponent.

Precondition:
exponent >= 0.

Returns:

baseexponent.

Figure 1.7: API of pow method.

@param base The base.

@param exponent The exponent.

@return base^{exponent}.

@throws IllegalArgumentException if exponent < 0.

*/

public static int pow(int base, int exponent)

The resulting API is shown in Figure 1.8.

pow

public static int pow(int base,

 int exponent)

Returns the value of the first argument raised to the power of the second argument.

Parameters:
base - The base.
exponent - The exponent.

Returns:

baseexponent.
Throws:

IllegalArgumentException if exponent < 0.

Figure 1.8: API of pow method.

May 23, 2007 19

1.5.3 Implementation Notes and Breaking the Encapsulation

Consider the following method in our Math class:

/**

Returns the value of the first argument raised to the second argument.

@param base The base.

@param exponent The exponent.

@pre. exponent >= 0.

@return base^{exponent}.

*/

public static int pow(int base, int exponent)

As an implementer, you can compute the indicated power in more than one way and, hence, the
running time of your method, for a given set of arguments, will depend on the algorithm you choose.
For example, you may decide to set up a loop that multiplies base by itself exponent times. This
would lead to a runtime complexity of O(exponent) because you will be performing exponent

multiplications. On the other hand, you may opt for a smarter algorithm that reduces the number
of multiplications by noting that, for example, base30 can be computed by multiplying base15 by
itself. Hence, if someone somehow computed base15, it will take us just one more multiplication
to compute base30. We will see later that such a recursive algorithm can do the job in only
O(log(exponent)); i.e. the number of needed multiplications is about the logarithm of exponent in
base 2. For example, if exponent is one million, then the first algorithm needs about one million
multiplications while the second needs about twenty. Such an enormous difference between the
two approaches gives rise to two questions: should the client be informed about it, and if yes, how
should it be documented in the API?

Recall that the API is meant to explain the client how to use a class, not how the class works
internally. Hence, exposing the algorithm used by a method amounts to breaking the encapsulation
and thus should be avoided. There are few situations, however, in which clients may need to be
aware of a certain implementation detail that is critical for their programs (even though such detail
is completely irrelevant for most other clients). In those situations, we add the special custom tag
@impl. and convey the needed implementation notes through it. For example, to indicate the
complexity of the above method, the above documentation becomes:

/**

Returns the value of the first argument raised to the second argument.

@param base The base.

@param exponent The exponent.

@pre. exponent >= 0.

@return base^{exponent}.

@impl. The method complexity is O(exponent).

*/

public static int pow(int base, int exponent)

20 Franck van Breugel and Hamzeh Roumani

In order to recognize the new tag, the javadoc command should be issued like this (all on one
line):

javadoc -tag param

-tag pre.:a:"Precondition: "

-tag return

-tag impl.:a:"Implementation notes: "

Math.java

The resulting API is shown in Figure 1.9.

pow

public static int pow(int base,

 int exponent)

Returns the value of the first argument raised to the power of the second argument.

Parameters:
base - The base.
exponent - The exponent.

Precondition:
exponent >= 0.

Returns:

baseexponent.
Implementation notes:

The method complexity is O(exponent).

Figure 1.9: API of pow method.

The new tag should be used sparingly since it does break the encapsulation. The usage should
be restricted to cases in which it is essential for the client to learn something about how the
implementation was done. We will see another example of this later on.

1.5.4 Check your Understanding

You implemented a utility in Section 1.2 that included the following factorial method:

public static long factorial(int n)

Recall that the return is a long (rather than an int) because the factorial function grows rapidly and
quickly exceeds the int range. Enhance your implementation by including the following features:

• Proper treatment of n ≥ 0 as a precondition.

• Full javadoc documentation of the class.

• Generation of the API.

May 23, 2007 21

1.6 Beyond the Basics

1.6.1 Implementing a Utilization Counter

Suppose you have a utility class YouTube, which contains a method download, and assume you
need to keep track of the number of times the method is invoked. This could be for accounting
purposes (e.g. if invoking the method involves a fee), for profiling purposes (e.g. to monitor resource
utilization), or for statistical purposes (e.g. if the method is part of a web service and you need to
compute the hit rate).

We obviously need to declare a counter, say downloadCount, that stores the number of times
download has been invoked. This variable cannot be declared in the body of download because
such a local variable would exist only during the method invocation; i.e. it will be created and then
destroyed each time the method is invoked. What we need is a variable that persists in between
invocations and remains in memory from the time the class is first referenced to the end of the
entire application (i.e. until the virtual machine shuts down). This calls for an attribute, and since
we only need a single counter, it is a static attribute. We therefore need the following attribute
declaration and initialization at the top of the class definition:

private static int downloadCount = 0;

Now that we have a counter variable, all that remains is to increment it each time download is
invoked. This can be accomplished by adding the following statement to the body of m:

YouTube.downloadCount++;

The attribute has been made private in accordance with the essence of encapsulation (the client
needs not know the type or name of the implementer’s variables). We do need, however, to see the
value of this variable. To that end, we add an accessor (a getter method) to the utility:

public static int getDownloadCount()

{

return YouTube.downloadCount;

}

1.6.2 Using an Interface to Declare Parameters

Suppose that you are asked to implement a utility that includes the following method:

public static int getFrequency(ArrayList<Integer> list, int x)

The method counts and returns the number of times the integer x appears in the passed ArrayList.
The return is 0 if x is not present in list. How would you implement this method? Think about
it and then write the code and test it.

Suppose that you were later asked to add a second method to your utility, one with the following
header:

public static int getFrequency(LinkedList<Integer> list, int x)

22 Franck van Breugel and Hamzeh Roumani

This method behaves exactly the same as the earlier one except it takes a LinkedList rather than
an ArrayList. You could add this method to your utility (as an overloaded version of the earlier
one) but that would be a clear violation of a key software engineering principle that calls for avoiding
code duplication. If you think about the algorithm needed for either method, you will quickly realize
that they both use the same logic. Indeed, the needed methods (e.g. list.size(), list.get(int),
or list.iterator()) are all present in the List interface. Hence, you could combine the above
two methods into just one by declaring the list parameter through its interface rather than its
class:

public static int getFrequency(List<Integer> list, int x)

Note that even though we focused on interfaces, the observation of this subsection applies as well
to abstract and concrete superclasses. For example, before implementing a method, say setTime,
that takes a parameter of type Time that extends Date, ask yourself: does the method’s logic
depends on the features of Time or on those of its superclass Date? If it depends on those of Date
then declare its parameter as a Date type. This way, the method can be invoked with an argument
of either type and still function correctly.

Generally speaking, using the “highest” possible interface, class, or abstract class to declare
parameters, makes your methods more versatile because their parameters would be able to accom-
modate a larger set of arguments.

1.6.3 Using Generics for Parameters and Returns

We saw that using an interface rather than a class to declare parameters allows us to consolidate

public static int getFrequency(ArrayList<Integer> list, int x)

and

public static int getFrequency(LinkedList<Integer> list, int x)

into one method

public static int getFrequency(List<Integer> list, int x)

In this section we pursue a similar consolidation but in an orthogonal dimension: the type of the
elements in the list.

Let us start with a simple case in which we seek to support short in addition to int. Can
a client of the above method invoke it by passing a List<Short> and a short? The answer is
no because List<Short> is not a subclass of List<Integer>. In general, there is no inheritance
relation between List<A> and List even if A is a subclass of B.9 Hence, even if we changed the
header of our method to

public static int getFrequency(List<Object> list, Object x)

9The technical name for this behaviour is that generics are not covariant.

May 23, 2007 23

the client would still not be able to invoke it by passing a List<Short> and a short for the same
reason.

The solution is to use generics in our implementation. Rather than use Integer or Short to
refer to the type, let us use the type parameter T:

public static <T> int getFrequency(List<T> list, T x)

The token <T> before the return type declares that this is a generic method. You implement the
body of the method as if T were a concrete type. Here is a possible implementation:

public static <T> int getFrequency(List<T> list, T x)

{

int result = 0;

for (T e : list)

{

if (e.equals(x))

{

result++;

}

}

return result;

}

Generally speaking, using generics where appropriate to declare parameters makes your methods
more versatile without sacrificing type safety.10

1.6.4 Check your Understanding

We like to write the utility IntegerArrayListAverage that contains the following method:

public static double getAverage(ArrayList<Integer> list)

The precondition is that list.size() > 0 and the postcondition is that the return is the average
(i.e. arithmetic mean) of the passed collection of integers. Implement the utility, test it, and make
sure it behaves as specified.

We now seek to go beyond the basics by generalizing this method in two orthogonal ways. We
will do this in stages:

• Copy IntegerArrayListAverage.java to IntegerCollectionAverage.java and refactor
the method in IntegerCollectionAverage so that its argument can be of type ArrayList<Integer>,
LinkedList<Integer>, TreeSet<Integer>, or HashSet<Integer>. Compile and test the
new utility and make sure it behaves as specified.

10You may be thinking that using <Object> for parameter declaration can achieve the same versatility as using
generics. Doing so, however, sacrifices type safety because it thwarts the type checking done by the compiler and
invariably leads to crashes due to illegal type casts.

24 Franck van Breugel and Hamzeh Roumani

• Copy IntegerArrayListAverage.java to NumberArrayListAverage.java and refactor the
method in NumberArrayListAverage so that its argument is an ArrayList of any numeric
type, e.g. ArrayList<Integer>, ArrayList<Long>, ArrayList<Short>, ArrayList<Double>,
etc. Compile and test the new utility and make sure it behaves as specified. Recall that all
numeric types extend Number. Note, however, that generics are not covariant, and hence,
you cannot simply use ArrayList<Number> because even though Integer is a Number,
ArrayList<Double> is not an ArrayList<Number>.

• Create the NumberListAverage utility so that its getAverage method combines the above
two generalizations; i.e. it accepts any collection of any numeric type.

1.6.5 Generics with Wildcards

Given a list list of Date objects, we seek to write a utility class with a method named smaller

that determines if all elements of a given list are smaller than a given Date object x. We are not
concerned here with the details of the implementation of the method, just with its signature. Only
the fact that the method smaller will use the method compareTo to compare the elements of list
with x will play a role in our discussion below. One suggestion for the signature of smaller would
be to use:

public static boolean smaller(List<Date> list, Date x)

This signature, however, restricts the usability of the method to the Date type. We like to
come up with a signature that makes the method usable for any list of comparable objects and
any object x that can be compared with the list elements. For example, the list could be of type
List<Time> and x could be of type Date which is the superclass of Time and can be compared with
it.

Next, we discuss five different proposals for a more versatile signature and briefly critique of
each proposal by commenting on its type safety and versatility.

public static boolean smaller(List list, Object x)

This proposal is clearly not typesafe because it does guarantee that the list elements are comparable
with x. The implementer will not be able to invoke compareTo on x without casting it first, and
such a cast may lead to a runtime error.

public static <T> boolean smaller(List<T> list, T x)

Also this proposal is not typesafe because it does guarantee that T implements the Comparable

interface. This signature can thus lead to the same problems as the first one.

public static <T extends Comparable<T>> boolean smaller(List<T> list, T x)

In this case, the type parameter T is restricted: only a class like Date that implements the interface
Comparable<Date> can be used. Note that the class Time that implements Comparable<Date>

cannot be used. Hence, its applicability is limited to lists of objects that can be compared with an
object of the same type.

May 23, 2007 25

public static <T extends Comparable<? super T>> boolean smaller(List<T> list,

T x)

Also in this case, the type parameter T is restricted. This case is less restrictive than the previous
one. The ? is called a wildcard. The pattern ? super T is matched by any super class of T or T

itself. The class Date matches the pattern <T extends Comparable<? super T>> since the class
Date implements the interface Comparable<Date>. Also the class Time matches this pattern since
the class Time implements the interface Comparable<Date>. However, the method cannot be used
for a List<Time> object and a Date object, since T would have to match Date but List<Time> is
not compatible with List<Date>.

public static <T> boolean smaller(List<? extends Comparable<? super T>> list,

T x)

To also capture the combination of a List<Time> object and a Date object we add another wildcard.
If T is matched by Date, then List<Time> matches List<? extends Comparable<? super T>>

since the Time class implements the Comparable<Date> interface.

	Implementing Utility Classes
	Introduction
	What are Utilities?
	Why are Utilities Needed?
	Memory and UML Diagrams
	Check your Understanding

	How: The Class Definition of a Utility
	Class Structure
	Declaring and Initializing Attributes
	The Constructor Section
	Defining Methods
	Testing a Utility
	Check your Understanding

	Arguments versus Parameters
	Passing Arguments By Value
	Initializing Parameters
	Attribute Shadowing
	Method Overloading and Binding
	Check your Understanding

	Preconditions versus Validation
	Preconditions and the Client
	Validation and the Implementer
	Check your Understanding

	Documenting a Utility Class
	API Generation through javadoc
	Documenting Preconditions and Exceptions
	Implementation Notes and Breaking the Encapsulation
	Check your Understanding

	Beyond the Basics
	Implementing a Utilization Counter
	Using an Interface to Declare Parameters
	Using Generics for Parameters and Returns
	Check your Understanding
	Generics with Wildcards

