
The Power Method

Franck van Breugel

November 16, 2007

Consider the following recursive method.

public class Math
{

/**
* Returns the base raised to the power exponent.
*
* @param base the base.
* @param exponent the exponent.
* @pre. exponent >= 0
* @impl. performs O(exponent) multiplications
*/
public int pow(int base, int exponent)
{

if (exponent == 0)
{

return 1;
}
else
{

return base * Math.pow(base, exponent - 1);
}

}

Let us first convince ourselves that the above recursive method returns the desired result. In
the base case, when exponent is 0, the method returns 1 which is correct since base0 = 1. For
the recursive case, assume that the recursive call is correct, that is, assume that Math.pow(base,
exponent - 1) returns baseexponent−1. In this case, the method returns base * baseexponent−1

which equals baseexponent. Hence, the method returns the correct result in this case as well.
Next, let us check that the above recursive method always terminates. We define the “size”

of the problem solved by Math.pow(base, exponent) as exponent. Clearly, exponent is a non-
negative integer. Since the recursive call solves a problem of smaller size (obviously, exponent−1 <
exponent), we can conclude that the method terminates.

Finally, let us analyze how many multiplications are performed by Math.pow(base, exponent).
Let count be a function that for a given exponent returns the number of multiplications performed

1

by Math.pow(base, exponent). By inspecting the code of the above method we can conclude that

count(exponent) =

{
0 if exponent = 0
1 + count(exponent− 1) otherwise

Next, we prove by induction on exponent that count(exponent) = exponent for all exponent ≥ 0.
In the base case, when exponent = 0, the property is vacuously true. Assume that exponent > 0
and suppose that count(exponent− 1) = exponent− 1 (induction hypothesis). Then

count(exponent) = 1 + count(exponent− 1)
= 1 + (exponent− 1) [induction hypothesis]
= exponent.

To conclude that count ∈ O(exponent), we pick the “minimal size” M to be 0 and the “factor” F
to be 1. Then it remains to show that

∀exponent ≥ 0 count(exponent) ≤ exponent

which is obviously true.
Consider the following recursive method.

public class Math
{

/**
* Returns the base raised to the power exponent.
*
* @param base the base.
* @param exponent the exponent.
* @pre. exponent >= 0
* @impl. performs O(log(exponent)) multiplications
*/
public int pow(int base, int exponent)
{

if (exponent == 0)
{

return 1;
}
else
{

if (exponent % 2 == 0)
{
int temp = Math.pow(base, exponent / 2);
return temp * temp;

}
else
{

return base * Math.pow(base, exponent - 1);

2

}
}

}
}

Again, first we convince ourselves that the above recursive method returns the desired result.
The base case is the same as before. For this method, there are two recursive cases. Let us first
consider the case that exponent is even. Assume that Math.pow(base, exponent / 2) returns
baseexponent/2. In this case, the method returns baseexponent/2 × baseexponent/2 which equals
baseexponent. The case that exponent is odd is the same as before.

Next, let us check that the above recursive method always terminates. We define the “size” of the
problem solved by Math.pow(base, exponent) as exponent. Clearly, exponent is a non-negative
integer. Since the recursive call solves a problem of smaller size (obviously, exponent/2 < exponent
and exponent− 1 < exponent), we can conclude that the method terminates.

Finally, let us analyze how many multiplications are performed by Math.pow(base, exponent).
Let count be a function that for a given exponent returns the number of multiplications performed
by Math.pow(base, exponent). By inspecting the code of the above method we can conclude that

count(exponent) =

0 if exponent = 0
1 + count(exponent/2) if exponent is even
1 + count(exponent− 1) if exponent is odd

If exponent is odd then

count(exponent) = 1 + count(exponent− 1)
= 2 + count((exponent− 1)/2) [exponent - 1 is even]

Next, we prove by induction on exponent that count(exponent) ≤ 1 + 2 log2(exponent) for all
exponent ≥ 1. In the base case, when exponent = 1, we have that

count(1) = 1
= 1 + 2 log2(1)

and, hence, the property holds in this case. Next we consider that exponent > 1. Assume that
count(e) ≤ 1 + 2 log2(e) for all e < exponent (induction hypothesis). We distinguish between the
cases that exponent is even and odd. Assume that exponent is even. Then

count(exponent) = 1 + count(exponent/2)
≤ 1 + 1 + 2 log2(exponent/2) [induction hypothesis]
= 2 + 2(log2(exponent)− 1)
= 2 log2(exponent)
≤ 1 + 2 log2(exponent).

Assume that exponent is odd. Then

count(exponent) = 2 + count((exponent− 1)/2)
≤ 2 + 1 + 2 log2((exponent− 1)/2) [induction hypothesis]

3

= 2 + 1 + 2(log2(exponent− 1)− 1)
= 1 + 2 log2(exponent− 1)
≤ 1 + 2 log2(exponent).

To conclude that count ∈ O(log2(exponent)), we pick the “minimal size” M to be 2 and the
“factor” F to be 3. Then it remains to show that

∀exponent ≥ 2 count(exponent) ≤ 3 log2(exponent)

which follows from the observation that for all exponent ≥ 2,

count(exponent) ≤ 1 + 2 log2(exponent)
≤ log2(exponent) + 2 log2(exponent) [exponent ≥ 2 and hence log2(exponent) ≥ 1]
= 3 log2(exponent).

One may wonder whether the local variable temp in the above method is needed. That is, one
may wonder if there is any change in the number of multiplications if

int temp = Math.pow(base, exponent / 2);
return temp * temp;

is replaced with

return Math.pow(base, exponent / 2) * Math.pow(base, exponent / 2);

In this case, we get
count(exponent) = 2count(exponent/2)

if exponent > 0 and exponent is even. As a consequence, count(exponent) = exponent and
count ∈ O(exponent). We leave the proofs of these facts to the reader. From the above we can
conclude that the local variable temp is essential for the efficiency of the pow method.

4

