
Memory Diagrams for Arrays

Franck van Breugel and Hamzeh Roumani

October 8, 2007

Abstract

In his book “Java by abstraction,” Roumani introduces memory diagrams. These diagrams
provide a model of the memory used by a Java application. In this note, we extend the diagrams
so that they also reflect arrays.

1 Introduction

We assume that the reader is already familiar with the memory diagrams as introduced by Roumani
in [1]. Such a memory diagram provides a pictorial abstraction of a snapshot of the memory used
by a Java application at some point during its execution. In a memory diagram we can depict the
following:

• classes loaded in memory;

• objects stored in memory;

• method invocations;

• constructors, attributes and methods of a class loaded in memory;

• non-static attributes and methods of an object stored in memory;

• values of static attributes of a class loaded in memory;

• values of non-static attributes of an object stored in memory.

Consider, for example, the following (meaningless) application.

1 public class Example
2 {
3 public static void main(String[] args)
4 {
5 int i = 5;
6 String s = "five";
7 }
8 }

1



When the execution of the application has reached the end of line 6, the memory used by the
application can be modelled by the following memory diagram.

42 Example.main invocation
i→ 5
s→ 328

212 String class

328 String object
content→ "five"

The above diagram reflects the following.

• The Example.main method has been invoked and its variables been loaded into memory at
the (fictitious) address 42. The String class has been loaded into memory at address 212.

• A String object, with literal "five", is stored at address 328.

• The variable i has the value 5 and the variable s refers to the object stored at address 328.

For more details about memory diagrams, we refer the reader to [1]. In the rest of this note,
we will discuss how arrays can be reflected in these diagrams.

2 Arrays

By means of two simple examples, we will show how arrays can be reflected in memory diagrams.
Consider the following application.

1 public class Example
2 {
3 public static void main(String[] args)
4 {
5 final int NUMBER = 33;
6 int[] score;
7 score = new int[NUMBER];

2



8 for (int i = 0; i < score.length; i++)
9 {

10 score[i] = 1;
11 }
12 }
13 }

When the execution of the application has reached the end of line 6, the memory used by the
application can be modelled by the following memory diagram.

12 Example.main invocation
NUMBER→ 33
score→

The above memory diagram reflects that the method Example.main has been invoked. Furthermore,
the diagram tells us that variable NUMBER has value 33 and variable score has no value yet.

3



Once the execution of the application has reached the end of line 7, the above diagram would
be extended as follows.

12 Example.main invocation
NUMBER→ 33
score→ 512

512 int[] object
length→ 33

0
0
...

0
0

At this point, the variable score refers to the int[] object stored at address 512. This object
contains 33 cells (not all are depicted) and the attribute length. At creation, all cells of an array
contain default values. Since the base type of the array score is int, all cells contain 0.

4



Once the execution of the application has reached the end of line 11, the above diagram would
be extended as follows.

12 Example.main invocation
NUMBER→ 33
score→ 512

512 int[] object
length→ 33

1
1
...

1
1

Note that all cells now contain 1.
In the second example, we consider an array the base type of which is a reference type. Consider

the following application.

1 public class Example
2 {
3 public static void main(String[] args)
4 {
5 String[] name;
6 name = new String[3];
7 name[0] = "John Doe";
8 name[1] = "Jane Doe";
9 name[2] = "Baby Doe";

10 }
11 }

5



When the execution of the application has reached the end of line 5, the memory used by the
application can be modelled by the following memory diagram.

12 Example.main invocation
name→

220 String class

The above memory diagram reflects that the method Example.main has been invoked. Furthermore,
the diagram tells us that variable name has no value yet.

6



Once the execution of the application has reached the end of line 6, the above diagram would
be extended as follows.

12 Example.main invocation
name→ 512

220 String class

512 String[] object
length→ 3

null
null
null

At this point, the variable name refers to the String[] object stored at address 512. This object
contains 3 cells and the attribute length. At creation, all cells of an array contain default values.
Since the base type of the array name is String, all cells contain null.

7



Once the execution of the application has reached the end of line 9, the above diagram would
be extended as follows.

12 Example.main invocation
name→ 512

220 String class

512 String[] object
length→ 3

660
840
1010

660 String object
content→ "John Doe"

840 String object
content→ "Jane Doe"

1010 String object
content→ "Baby Doe"

Note that the array cells contain the addresses of the String objects.

8



3 Higher-dimensional arrays

By means of a simple example, we will show how two-dimensional arrays can be reflected in memory
diagrams. Consider the following application.

1 public class Example
2 {
3 public static void main(String[] args)
4 {
5 final int ROW = 3;
6 final int COLUMN = 2;
7 boolean braille[][];
8 braille = new boolean[ROW][COLUMN];
9 braille[0][0] = true;

10 }
11 }

When the execution of the application has reached the end of line 7, the memory used by the
application can be modelled by the following memory diagram.

12 Example.main invocation
ROW→ 3

COLUMN→ 2
braille→

The above memory diagram reflects that the method Example.main has been invoked. Further-
more, the diagram tells us that variables ROW and COLUMN have values 3 and 2, respectively, and
variable braille has no value yet.

9



Once the execution of the application has reached the end of line 8, the above diagram would
be extended as follows.

12 Example.main invocation
ROW→ 3

COLUMN→ 2
braille→ 512

512 boolean[][] object
length→ 3

784
912
944

784 boolean[] object
length→ 2

false
false

912 boolean[] object
length→ 2

false
false

944 boolean[] object
length→ 2

false
false

10



At this point, the variable braille refers to the boolean[][] object stored at address 512. This
object contains 3 cells and the attribute length. The cells contain the addresses of boolean[]
objects. These boolean[] objects contain 2 cells and the attribute length. These cells contain the
default value for boolean, that is false.

11



Once the execution of the application has reached the end of line 9, the above diagram would
be extended as follows.

12 Example.main invocation
ROW→ 3

COLUMN→ 2
braille→ 512

512 boolean[][] object
length→ 3

784
912
944

784 boolean[] object
length→ 2

true
false

912 boolean[] object
length→ 2

false
false

944 boolean[] object
length→ 2

false
false

12



The only difference with the previous diagram is the first cell of the boolean[] object at address 784
now contains true.

References

[1] Hamzeh Roumani. Java by abstraction: a client-view approach. Pearson Addison Wesley,
Toronto, Canada, first edition, 2006.

13


	Introduction
	Arrays
	Higher-dimensional arrays

