
Graphs, Part II

February 4, 2011

Graphs, Part II



What Is a Graph?

Set of nodes (or vertices)

Set of edges between pairs of nodes

Graphs, Part II



Types of Graphs

DirectedUndirected

Graphs, Part II



Types of Graphs

Unweighted

6

2

3

4

1
2 3

5

Weighted

Graphs, Part II



Types of Graphs

Q

Unlabelled Labelled

A

C

Q
R

Z

Y

Q

Graphs, Part II



Adjacency List Representation (Directed Graph)

Assume nodes are numbered 1 to n.

Use an array of lists, list[1..n].

For each node u, list[u] contains nodes v for which there is an
edge u → v .

2

31

5
4

list[1] = {2, 5}
list[2] = {3, 5}
list[3] = {4}
list[4] = {2}
list[5] = {1, 4}

Graphs, Part II



Adjacency List Representation (Undirected Graph)

1

2

3

4
5

list[1] = {2, 5}
list[2] = {1, 3, 4, 5}
list[3] = {2, 4}
list[4] = {2, 3, 5}
list[5] = {1, 2, 4}

Graphs, Part II



Adjacency Matrix vs Adjacency Lists

Adjacency matrix is simpler.

Adjacency matrix is good for dense graphs (i.e., more than
half of the edges present). Note: 1000 vertices ⇒ 1 MB of
memory.

Adjacency lists are good for sparse graphs (i.e., fewer than
half of the edges present).

Graphs, Part II



Adjacency Lists in Java

Instead of using an array of linked lists, use Java’s built-in
data structures that can access elements faster.

For unlabelled graph, use array of TreeSet.

For labelled or weighted graph, use array of TreeMap.

Graphs, Part II



Example: Unlabelled Directed Graph

Assume nodes are numbered 1 to n.

Create the data structure:

Set<Integer>[] list = new TreeSet[n+1];
for (int i=1; i<=n; i++)

list[i] = new TreeSet<Integer>();

Add an edge u → v:

list[u].add(v);

Check if there is an edge u → v:

boolean isEdge = list[u].contains(v);

Iterate across all nodes v for which there is an edge u → v:

for (int v : list[u]) {...}

Graphs, Part II



Example: Labelled Directed Graph

Use TreeMap instead of TreeSet.
Key of entry is the destination, value of entry is the label.

Create the data structure:

Map<Integer,String>[] list = new TreeMap[n+1];
for (int i=1; i<=n; i++)

list[i] = new TreeMap<Integer,String>();

Add a labelled edge u → v:

list[u].put(v,label);

Check if there is an edge u → v:

boolean isEdge = list[u].containsKey(v);

Get label associated with edge u → v:

String label = list[u].get(v);

Iterate across all nodes v for which there is an edge u → v:

for (int v : list[u].keySet()) {...}

Graphs, Part II



More Graph Terminology: Connectivity

A subgraph of a graph G is a graph whose vertices and edges
are all in G .

An undirected graph is connected if there is a path from each
node to each other node.

A connected component of an undirected graph G is a
maximal connected subgraph of G .

Graphs, Part II



More Graph Terminology: Connectivity

A directed graph is strongly connected if there is a path from
each node to each other node.

A strongly connected component of a directed graph G is a
maximal connected subgraph of G .

Graphs, Part II



More Graph Terminology: Connectivity

A directed graph is strongly connected if there is a path from
each node to each other node.

A strongly connected component of a directed graph G is a
maximal connected subgraph of G .

Graphs, Part II


