Graphs, Part II

February 4, 2011
What Is a Graph?

- Set of nodes (or vertices)
- Set of edges between pairs of nodes
Types of Graphs

Undirected

Directed
Types of Graphs

Unweighted

Weighted
Types of Graphs

Unlabelled

Labelled
Adjacency List Representation (Directed Graph)

- Assume nodes are numbered 1 to \(n \).
- Use an array of lists, \(list[1..n] \).
- For each node \(u \), \(list[u] \) contains nodes \(v \) for which there is an edge \(u \rightarrow v \).

```
list[1] = {2, 5}
list[2] = {3, 5}
list[3] = {4}
list[4] = {2}
list[5] = {1, 4}
```
Adjacency List Representation (Undirected Graph)

Graphs, Part II

\[
\begin{align*}
list[1] &= \{2, 5\} \\
list[2] &= \{1, 3, 4, 5\} \\
list[3] &= \{2, 4\} \\
list[4] &= \{2, 3, 5\} \\
list[5] &= \{1, 2, 4\}
\end{align*}
\]
Adjacency matrix vs Adjacency Lists

- Adjacency matrix is simpler.
- Adjacency matrix is good for dense graphs (i.e., more than half of the edges present). Note: 1000 vertices \Rightarrow 1 MB of memory.
- Adjacency lists are good for sparse graphs (i.e., fewer than half of the edges present).
Instead of using an array of linked lists, use Java’s built-in data structures that can access elements faster.

For unlabelled graph, use array of TreeSet.

For labelled or weighted graph, use array of TreeMap.
Assume nodes are numbered 1 to n.

- Create the data structure:
  ```java
  Set<Integer>[] list = new TreeSet[n+1];
  for (int i=1; i<=n; i++)
    list[i] = new TreeSet<Integer>();
  ```

- Add an edge \(u \rightarrow v \):
  ```java
  list[u].add(v);
  ```

- Check if there is an edge \(u \rightarrow v \):
  ```java
  boolean isEdge = list[u].contains(v);
  ```

- Iterate across all nodes \(v \) for which there is an edge \(u \rightarrow v \):
  ```java
  for (int v : list[u]) {...}
  ```
Use TreeMap instead of TreeSet.
Key of entry is the destination, value of entry is the label.

- **Create the data structure:**

 \[
 \text{Map}\langle\text{Integer, String}\rangle[] \text{ list} = \text{new TreeMap}[n+1];
 \]

 \[
 \text{for (int } i=1; i<=n; i++)
 \]

 \[
 \quad \text{list}[i] = \text{new TreeMap}\langle\text{Integer, String}\rangle();
 \]

- **Add a labelled edge** \(u \to v \):

 \[
 \text{list}[u].\text{put}(v, \text{label});
 \]

- **Check if there is an edge** \(u \to v \):

 \[
 \text{boolean isEdge} = \text{list}[u].\text{containsKey}(v);
 \]

- **Get label associated with edge** \(u \to v \):

 \[
 \text{String label} = \text{list}[u].\text{get}(v);
 \]

- **Iterate across all nodes** \(v \) **for which there is an edge** \(u \to v \):

 \[
 \text{for (int } v : \text{list}[u].\text{keySet()} \} \{ \ldots \}
 \]
A *subgraph* of a graph G is a graph whose vertices and edges are all in G.

An undirected graph is *connected* if there is a path from each node to each other node.

A *connected component* of an undirected graph G is a maximal connected subgraph of G.
A directed graph is *strongly connected* if there is a path from each node to each other node.

A *strongly connected component* of a directed graph G is a maximal connected subgraph of G.
A directed graph is *strongly connected* if there is a path from each node to each other node.

A *strongly connected component* of a directed graph G is a maximal connected subgraph of G.

![Graph Diagram](image-url)