Graphs, Part Il

February 4, 2011

Graphs, Part Il



What Is a Graph?

@ Set of nodes (or vertices)

@ Set of edges between pairs of nodes

Graphs, Part Il



Types of Graphs

Undirected Directed

o/\
N

Graphs, Part Il



Types of Graphs

Unweighted Weighted

Graphs, Part Il



Types of Graphs

Unlabelled Labelled

N

Graphs, Part Il




Adjacency List Representation (Directed Graph)

@ Assume nodes are numbered 1 to n.
@ Use an array of lists, list[1..n].

@ For each node v, list[u] contains nodes v for which there is an
edge u — v.

/ \ list[l] = {2,5}
3) list2] = {3,5}

list[3] = {4}

i listld] = {2}
(4) list[s] = {1,4}

Graphs, Part Il



Adjacency List Representation (Undirected Graph)

listll] = {2,5}
list[2] = {1,3,4,5}
list[3] = {2,4}
list[d] = {2,3,5}
listls] = {1,2,4}

Graphs, Part Il



Adjacency Matrix vs Adjacency Lists

@ Adjacency matrix is simpler.

@ Adjacency matrix is good for dense graphs (i.e., more than
half of the edges present). Note: 1000 vertices = 1 MB of
memory.

@ Adjacency lists are good for sparse graphs (i.e., fewer than
half of the edges present).

Graphs, Part Il



Adjacency Lists in Java

@ Instead of using an array of linked lists, use Java's built-in
data structures that can access elements faster.

@ For unlabelled graph, use array of TreeSet.

@ For labelled or weighted graph, use array of TreeMap.

Graphs, Part Il



Example: Unlabelled Directed Graph

Assume nodes are numbered 1 to n.

o Create the data structure:
Set<Integer>[] list = new TreeSet[n+1];
for (int i=1; i<=n; i++)

list[i] = new TreeSet<Integer>();

@ Add an edge u — v:
list[u] .add(v);

@ Check if there is an edge u — v:
boolean isEdge = list[u].contains(v);

@ lterate across all nodes v for which there is an edge u — v:
for (int v : list[ul) {...}

Graphs, Part Il



Example: Labelled Directed Graph

Use TreeMap instead of TreeSet.
Key of entry is the destination, value of entry is the label.
o Create the data structure:
Map<Integer,String>[] list = new TreeMap[n+1];
for (int i=1; i<=n; i++)
list[i] = new TreeMap<Integer,String>();
@ Add a labelled edge u — v:
list[u] .put(v,label);
@ Check if there is an edge u — v:
boolean isEdge = list[ul].containsKey(v);
@ Get label associated with edge u — v:
String label = list[u].get(v);
@ lterate across all nodes v for which there is an edge u — v:
for (int v : list[u].keySet()) {...}

Graphs, Part Il



More Graph Terminology: Connectivity

o A subgraph of a graph G is a graph whose vertices and edges
are all in G.

@ An undirected graph is connected if there is a path from each
node to each other node.

@ A connected component of an undirected graph G is a
maximal connected subgraph of G.

Graphs, Part Il



More Graph Terminology: Connectivity

@ A directed graph is strongly connected if there is a path from
each node to each other node.

o A strongly connected component of a directed graph G is a
maximal connected subgraph of G.

A

Graphs, Part Il



More Graph Terminology: Connectivity

@ A directed graph is strongly connected if there is a path from
each node to each other node.

o A strongly connected component of a directed graph G is a
maximal connected subgraph of G.

AN

Graphs, Part Il



