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What Is a Graph?

Set of nodes (or vertices)

Set of edges between pairs of nodes
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Types of Graphs

DirectedUndirected
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Types of Graphs

Unweighted
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Types of Graphs
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Adjacency List Representation (Directed Graph)

Assume nodes are numbered 1 to n.

Use an array of lists, list[1..n].

For each node u, list[u] contains nodes v for which there is an
edge u → v .
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list[1] = {2, 5}
list[2] = {3, 5}
list[3] = {4}
list[4] = {2}
list[5] = {1, 4}
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Adjacency List Representation (Undirected Graph)
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list[1] = {2, 5}
list[2] = {1, 3, 4, 5}
list[3] = {2, 4}
list[4] = {2, 3, 5}
list[5] = {1, 2, 4}
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Adjacency Matrix vs Adjacency Lists

Adjacency matrix is simpler.

Adjacency matrix is good for dense graphs (i.e., more than
half of the edges present). Note: 1000 vertices ⇒ 1 MB of
memory.

Adjacency lists are good for sparse graphs (i.e., fewer than
half of the edges present).
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Adjacency Lists in Java

Instead of using an array of linked lists, use Java’s built-in
data structures that can access elements faster.

For unlabelled graph, use array of TreeSet.

For labelled or weighted graph, use array of TreeMap.
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Example: Unlabelled Directed Graph

Assume nodes are numbered 1 to n.

Create the data structure:

Set<Integer>[] list = new TreeSet[n+1];
for (int i=1; i<=n; i++)

list[i] = new TreeSet<Integer>();

Add an edge u → v:

list[u].add(v);

Check if there is an edge u → v:

boolean isEdge = list[u].contains(v);

Iterate across all nodes v for which there is an edge u → v:

for (int v : list[u]) {...}
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Example: Labelled Directed Graph

Use TreeMap instead of TreeSet.
Key of entry is the destination, value of entry is the label.

Create the data structure:

Map<Integer,String>[] list = new TreeMap[n+1];
for (int i=1; i<=n; i++)

list[i] = new TreeMap<Integer,String>();

Add a labelled edge u → v:

list[u].put(v,label);

Check if there is an edge u → v:

boolean isEdge = list[u].containsKey(v);

Get label associated with edge u → v:

String label = list[u].get(v);

Iterate across all nodes v for which there is an edge u → v:

for (int v : list[u].keySet()) {...}

Graphs, Part II



More Graph Terminology: Connectivity

A subgraph of a graph G is a graph whose vertices and edges
are all in G .

An undirected graph is connected if there is a path from each
node to each other node.

A connected component of an undirected graph G is a
maximal connected subgraph of G .
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More Graph Terminology: Connectivity

A directed graph is strongly connected if there is a path from
each node to each other node.

A strongly connected component of a directed graph G is a
maximal connected subgraph of G .
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