
Graphs, Part I

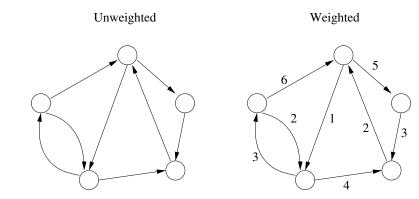
January 28, 2011

Graphs, Part I

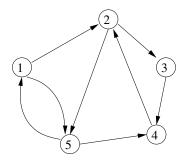
What Is a Graph?

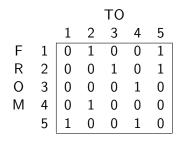
P


- Set of nodes (or vertices)
- Set of edges between pairs of nodes


LOTS of situations can be viewed as graphs.

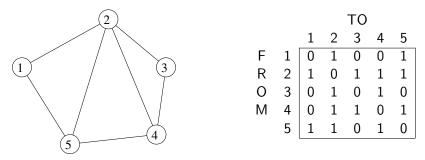
 \rightarrow Any situation that involves relationships between pairs of things.


Examples:


Problem	Nodes	Edges
Message routing in network	computers	wires
Transportation	cities	highways
Social relationships	people	friendships
Exam scheduling	exams	shared student
Planning courses to take	courses	prerequisites
Chess	board configurations	moves

A graph can be represented in a computer as an *adjacency matrix* of boolean values.

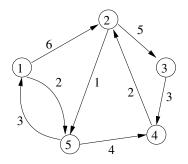
(1 = true and 0 = false.)

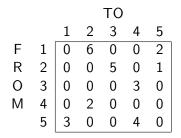

```
Create an n \times n two-dimensional array of booleans:
boolean A[][] = new boolean[n][n]
```

To access an entry representing the edge from node *i* to node *j*, use A[i][j].

Remember that array indices will be 0..n - 1.

If you want to number the nodes from 1 to *n*, create an $(n+1) \times (n+1)$ array and just don't use index 0.

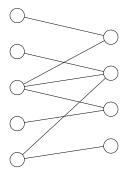

A graph can be represented in a computer as an *adjacency matrix* of boolean values.



(We treat each edge as if it goes in both directions.)

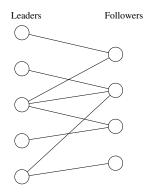
Adjacency Matrix Representation (Weighted Graph)

A *weighted* graph can be represented in a computer as an adjacency matrix of *weights*.

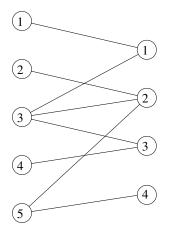


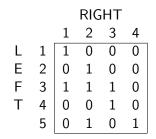
Most of the edges are present in the graph.

If graph has fewer edges, use adjacency lists (next week).

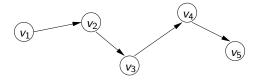

Note: If graph has 1000 nodes, adjacency matrix uses about 1 MB of memory.

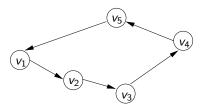
Another flavour of graph is the bipartite graph.


Useful for situations where there are two *types* of things. Relationships are between things of opposite types.


When two people dance together, one leads and the other follows. At a dance, there are 5 leaders and 4 followers. The graph indicates which pairs of people are willing to dance with each other.

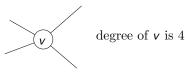
Bipartite Graph as Adjacency Matrix


Bipartite graphs can also be represented as an adjacency matrix.



Some Basic Graph Terminology

Path: sequence of nodes v₁, v₂,..., v_k where v_i → v_{i+1} is an edge for all *i*.



• Cycle: Path that starts and ends at the same node.

Some Basic Graph Terminology

• Degree of a node v: number of undirected edges that connect v to other nodes.

- In-degree of a node v: number of directed edges that point to v.
- Out-degree of a node v: number of directed edges that point out of v.

in-degree of v is 2 out-degree of v is 3