
Graphs: Breadth-First Search

February 11, 2011

Graphs: Breadth-First Search



An Example Graph

Recall what a graph looks like.
This one is undirected and unweighted.

C

D

E

F

A

B

Graphs: Breadth-First Search



What is Breadth-First Search?

Breadth-first search (BFS) is an algorithm for systematically
visiting all nodes of a graph that are reachable from a given
“source” node s.

It also computes the minimum number of steps needed to get from
s to each other node.

Applications:

Determine if there a path from node s to node t.

Find the portion of the graph reachable from s.
(Computing connected components.)

Find the shortest path from s to t (in an unweighted graph).

Find a spanning tree of an undirected graph.

And more...

Graphs: Breadth-First Search



What is Breadth-First Search?

Breadth-first search (BFS) is an algorithm for systematically
visiting all nodes of a graph that are reachable from a given
“source” node s.

It also computes the minimum number of steps needed to get from
s to each other node.

Applications:

Determine if there a path from node s to node t.

Find the portion of the graph reachable from s.
(Computing connected components.)

Find the shortest path from s to t (in an unweighted graph).

Find a spanning tree of an undirected graph.

And more...

Graphs: Breadth-First Search



What is Breadth-First Search?

Breadth-first search (BFS) is an algorithm for systematically
visiting all nodes of a graph that are reachable from a given
“source” node s.

It also computes the minimum number of steps needed to get from
s to each other node.

Applications:

Determine if there a path from node s to node t.

Find the portion of the graph reachable from s.
(Computing connected components.)

Find the shortest path from s to t (in an unweighted graph).

Find a spanning tree of an undirected graph.

And more...

Graphs: Breadth-First Search



What is Breadth-First Search?

Breadth-first search (BFS) is an algorithm for systematically
visiting all nodes of a graph that are reachable from a given
“source” node s.

It also computes the minimum number of steps needed to get from
s to each other node.

Applications:

Determine if there a path from node s to node t.

Find the portion of the graph reachable from s.
(Computing connected components.)

Find the shortest path from s to t (in an unweighted graph).

Find a spanning tree of an undirected graph.

And more...

Graphs: Breadth-First Search



What is Breadth-First Search?

Breadth-first search (BFS) is an algorithm for systematically
visiting all nodes of a graph that are reachable from a given
“source” node s.

It also computes the minimum number of steps needed to get from
s to each other node.

Applications:

Determine if there a path from node s to node t.

Find the portion of the graph reachable from s.
(Computing connected components.)

Find the shortest path from s to t (in an unweighted graph).

Find a spanning tree of an undirected graph.

And more...

Graphs: Breadth-First Search



What is Breadth-First Search?

Breadth-first search (BFS) is an algorithm for systematically
visiting all nodes of a graph that are reachable from a given
“source” node s.

It also computes the minimum number of steps needed to get from
s to each other node.

Applications:

Determine if there a path from node s to node t.

Find the portion of the graph reachable from s.
(Computing connected components.)

Find the shortest path from s to t (in an unweighted graph).

Find a spanning tree of an undirected graph.

And more...

Graphs: Breadth-First Search



Search Algorithms: The Main Idea

Maintain two sets of nodes:

T stores nodes that have already been visited, and

Q stores nodes that we would like to visit in the future.

Initially, T = {} and Q = {s}.

Repeatedly choose a node u from Q to visit next. Move u to T .

When we visit u, add u’s unvisited neighbours to Q.

Graphs: Breadth-First Search



Pseudocode for Search

Q = {s}
T = {}
while Q is not empty

remove a node u from Q
add u to T
for each edge u → v in the graph

if v is not already in T , add v to Q
end for

end while

If we implement Q as a FIFO queue, then this algorithm is
breadth-first search.

Graphs: Breadth-First Search



Pseudocode for Search

Q = {s}
T = {}
while Q is not empty

remove a node u from Q
add u to T
for each edge u → v in the graph

if v is not already in T , add v to Q
end for

end while

If we implement Q as a FIFO queue, then this algorithm is
breadth-first search.

Graphs: Breadth-First Search



Example

E

F

A

B
C

D

T = {}

Q = {A}

Graphs: Breadth-First Search



Example

F

A

B
C

D

E

T = {A}

Q = {B, C}

Graphs: Breadth-First Search



Example

F

A

B
C

D

E

T = {A, B}

Q = {C , D, E}

Graphs: Breadth-First Search



Example

F

A

B
C

D

E

T = {A, B, C}

Q = {D, E , F}

Graphs: Breadth-First Search



Example

F

A

B
C

D

E

T = {A, B, C , D}

Q = {E , F}

Graphs: Breadth-First Search



Example

F

A

B
C

D

E

T = {A, B, C , D, E}

Q = {F}

Graphs: Breadth-First Search



Example

F

A

B
C

D

E

T = {A, B, C , D, E , F}

Q = {}

Graphs: Breadth-First Search



Shortest Path Tree

E

F

A

B
C

D

When a node v is added to
Q because of edge u → v ,
v stores pointer to u.

This forms a tree of
shortest paths towards the
source of the BFS.

This also makes it easy to
compute distances from
source to every other node.

Graphs: Breadth-First Search



Shortest Path Tree

E

F

A

B
C

D

When a node v is added to
Q because of edge u → v ,
v stores pointer to u.

This forms a tree of
shortest paths towards the
source of the BFS.

This also makes it easy to
compute distances from
source to every other node.

Graphs: Breadth-First Search



Java implementation

list[i ] is adjacency list of node i .
distance[i ] is computed distance from s to i (initially −1).
parent[i ] is parent of i in shortest path tree (initially −1).

Queue<Integer> Q = new LinkedList<Integer>();
distance[s]=0;
Q.add(s);
while (!Q.isEmpty()) {

int u = Q.remove();
for (int v : list[u]) { // for each edge u -> v

if (distance[v] == -1) { // v not in Q or T
distance[v] = distance[u] + 1;
Q.add(v);
parent[v] = u;

}
}

}

Graphs: Breadth-First Search



Remarks on implementation

See last week’s slides for how adjacency lists are created.

Note that T is not represented explicitly.

The add and remove operations of the LinkedList class
implement a FIFO queue.

Exactly the same code works for directed and undirected
graphs.

Graphs: Breadth-First Search



Printing Shortest Paths

BFS can be used for computing the shortest paths from s to other
nodes.

Two ways to print the shortest path from s to t (if it exists):

Follow parent pointers from t to s and then reverse the path
computed.

Use recursion:

printPathTo(t)
if t 6= s then printPathTo(parent(t))
print t

Graphs: Breadth-First Search


