Converting Leutonian Numbers to Decimal

Instead of binary or decimal, the Kingdom of Leutonia uses an unusual system to represent numbers, based on the Fibonacci sequence. The Fibonacci sequence $F_{0}, F_{1}, F_{2}, \ldots$ is defined recursively as follows.

$$
\begin{aligned}
& F_{0}=1 \\
& F_{1}=1 \\
& F_{n}=F_{n-1}+F_{n-2} \text { for } n \geq 2
\end{aligned}
$$

A Leutonian number is a string of 0's and 1's that begins with a 1 and never has two consecutive 1's. If $s=s_{\ell} s_{\ell-1} \ldots s_{1}$ is such a string of length ℓ, where each s_{i} is in $\{0,1\}$, the number represented by s is is $\sum_{i=1}^{\ell} s_{i} \cdot F_{i}$.

For example, the number represented by 1000101 is $F_{7}+F_{3}+F_{1}=21+3+1=$ 25.

Input

The input sequence will be a list of Leutonian numbers, one per line. Each Leutonian number will be at most 25 characters long. The last line (which should not be processed) will contain a single 0 instead of a Leutonian number.

Output

For each Leutonian number given in the input, output the standard decimal representation of the number. Each output should appear on a separate line.

Sample Input

10
1000101
0

Sample Output

2
25

