
Nordic Collegiate Programming Contest 2005

Solution sketches

Problem A: Crashing Robots
(Author: Børge Nordli)

This is a straightforward problem, using no advanced algorithms. You need a matrix rep-
resenting the warehouse, where the robots positions are marked. You also need an array
giving the current rotation (and possibly position) of all robots. If you do not store the robot
positions, it is still possible to scan through the matrix to find the appropriate robot.

For each instruction, if it is a rotation, rotate the robot accordingly. If it is a move, you
check whether there is a robot or a wall in its path, and check which crash will occur first.

Remember to read the remainder of the test case when a crash occurs!
(It is possible to solve it without the warehouse matrix, by only checking the robots array,

but neither space nor time is an issue in this problem.)

Problem B: Funny Games
(Author: Øyvind Grotmol)

As with all turn-based, two-player, finite, deterministic games, the goal is to categorize the
positions as winning or losing (a position is losing if no winning position can be reached
from it). Dynamic programming or memoization is often used to achieve sufficient speed, as
such a technique normally reduces the amount of work per game position to near constant.

In this case a game position would be the size of the planet. The trouble is that the num-
ber of reachable positions is really large, being exponential in the parameter X. The crucial
observation is that one can calculate with winning and losing size intervals, instead of sin-
gular values. The key is identifying the points that separate winning from losing intervals.
This can be done bottom-up, starting with the value 1. Given that v is a separation point,
the values v

F1
, v

F2
, ..., v

Fk
must be checked to see if they are separation points. Once all candi-

date separation points below X have been investigated, the winning and losing intervals are
determined and one only has to see which interval X belongs to.

Problem C: Nullary Computer
(Author: Erling Alf Ellingsen)

This is one of the harder problems in the set, but might seem a bit harder than it is. The
Nullary Computer could be programmed to calculate anything, but you are to make it do
something fairly simple. Since there only are 26 registers, and you must sort 24 numbers, you
have two scratch registers. First, you need to build your basic tool: As a part of sorting, you
often need to compare two numbers, and if the “left” one is larger than the “right” one, you
swap them. Since your computer has limited memory, this swap-min-max routine should
be as small as possible. Here is an example of code that swaps A and B if A is larger:

a(Yb(Z)a)z(Az)y(By)

a(... a) While there are more elements in A...
Y ... increment Y (in effect copying A there), and ...
b(Z) ... move one element from B to Z.

At this point, Y = A0, Z = min(A0, B0), A = 0, and B = B0 − Z
z(Az) Move Z to A
y(By) Add Y to B

Now, B = A0 + B0 + min(A0, B0) = max(A0, B0)

Now you must use this function as a comparator in a sorting network. The simplest
sorting network is bubble-sort. If your comparator is as short as this one, 19 symbols, bubble-
sort would be 19 · n · (n− 1)/2 = 19 · 24 · 23/2 = 5244 symbols long, which is below the limit
of 5432. If your swap-min-max routine is longer than 19 symbols, you would need a smaller
sorting network than bubble-sort.

Problem D: The Embarrassed Cryptographer
(Author: Nils Grimsmo)

You are are given a very large number K ≤ 10100, which you must check if has a factor below
a certain limit L ≤ 106. The number K does not fit into a computer word, so you must make
a representation of this number yourself, or use f.ex. java.math.BigInteger .

You do not have time to factorise this number completely, so you can only check factors
up to the given limit. To be efficient, you should only check prime factors ≤ L. The fastest
simple way to find prime numbers, is to run through the natural numbers bottom up, and
each time you find a prime number, store it in an array. To determine if a number p is prime,
try to divide it by every prime ≤ √p, which you have already found.

The running time is O
(

L
√

L
)

. When generating your prime numbers, you cannot use
BigInteger to represent the already found primes. Then the constant factor becomes very
high. Instead, you should generate the primes represented as normal integers.

Problem E: Electrical Outlets
(Author: Mats Petter Pettersson)

This was by far the easiest problem in the set. Given the number of outlets in each power
strip, O1, O2, . . . , OK the problem is solved the moment you realise it does not matter how
you couple the power strips: Start with the wall outlet, and begin adding power strips.
Each time you add a new power strip, it “contributes” the number of outlets it has, and
“consumes” one outlet (either from the wall, or from another strip). The explicit formula is
then

1 + (O1 − 1) + (O2 − 1) + . . . + (OK − 1) = 1 + (
K

∑
i=1

Oi)− K.

Problem F: Worst Weather Ever
(Author: Per Austrin)

2

We have a set of years, y1 < y2 < . . . < yn, and the rain during those years, r1, r2, . . . , rn.
A useful data structure to build from this information is an array prev , where prev[i]
contains the last j < i such that it rained at least as much during year yj as it did during year
yi. This data structure can be built in O(n) time.

To answer a query Y < X, we first try to find i and j such that yj = Y and yi = X. Using
binary search, this takes O(log n) time. We then get four cases:

Case 1: both i and j exist In this case, if prev[i] 6= j, the answer is false (this covers both
the case that it rained less during year Y than during year X, and the case that there
was a very rainy year Z between Y and X). Otherwise, if all years between X and Y are
known (i.e. if X −Y = i− j), the answer is true , otherwise the answer is maybe.

Case 2: only i exists In this case, if prev[i] > j, the answer is false (since there is a year
Z between Y and X, during which it did not rain less than during year X), otherwise
the answer is maybe.

Case 3: only j exists For this case, it is handy to augment the data structure by also con-
structing a next array which is the converse of the prev array. Then this case can be
handled analogously to case 2.

Case 4: neither i nor j exists In this case, the answer is always maybe.

All in all, the total time complexity to handle a test case becomes O(n + m log n). There are
also several other data structures with which you can achieve the same time complexity.

Problem G: Kingdom
(Author: Øyvind Grotmol)

This was expected to be the hardest problem in the set, and there weren’t even any sub-
missions during the contest. One way of solving the problem involves shortest distance,
binary searching, and maxflow. While each step is relatively standard, it is the combination
of several techniques that makes the problem difficult.

First the shortest distance from each town to each city must be determined, using ei-
ther Dijkstra or Floyd-Warshall. Then a binary search for the optimal mobilizing time is
performed.

The trickiest part is to test within the binary search if it is possible to obtain a certain
mobilizing time T. This is done using maxflow. Let all the locations not reachable within T
from 95050 be sources, and let similarly all the locations not reachable within T from 104729
be sinks. It is possible to control the goat cheese traffic with M soldiers and mobilizing
time T if and only if the maximum flow in this graph is at most M. This follows from the
concept of min-cut; the maximum flow is equal to the minimum number of edges that must
be removed to separate the sources from the sinks.

An alternative to binary searching, is to use incremental max flow calculations. Start by
running maxflow on the entire graph. Then sort the edges in decreasing order of mobilizing
time. For each edge, let its capacity be unbounded and try to increase the flow using Ford-
Fulkerson. When the flow exceeds M, the optimal mobilizing time is the mobilizing time
from that last edge, since some soldier must be positioned on it.

3

Problem H: Necklace Decomposition
(Author: Andreas Björklund)

There are many ways of solving this problem. You can use the following greedy strategy: To
find the leftmost necklace in the string S, you first check if S0...n−1 is a necklace, then if S0...n−2
is a neklace, and so on. If you find that S0...i is a necklace, you report this. This would be
longest necklace starting at the leftmost position in S. Then try to find the leftmost necklace
in Si+1...n−1 by the same procedure, and so on, until you have found a necklace Sj...n−1 for
some j.

Another way of solving it is by first finding all necklaces 0*1* . Then, as long as there
exist two adjacent necklaces S and T such that ST is a necklace, you merge S and T.

To check if a string is a necklace, you do a string comparison with all rotations of the
string.

Problem I: Playground
(Author: Øyvind Grotmol)

At first sight, this problem looks very intimidating. What has to be realized is that the prob-
lem simply asks whether it is possible to construct a polygon using some (or all) of the given
lengths. This is possible if and only if there exists a length aj such that the sum sj = ∑ai≤aj

ai

of all lengths that are shorter than aj is at least aj, i.e. if sj ≥ aj. This condition is very easy
to check. Just sort the lengths, traverse the list calculating partial sums, and compare the
partial sum to the length that is about to be added.

4

