
Problem A

Pizza delivery

source: pizza.*

Your Irish pizza and kebab restaurant is doing very well. Not only is
the restaurant full almost every night, but there is also an ever increasing
number of deliveries to be made, all over town. To meet this demand, you
realize that it will be necessary to separate the delivery service from the
restaurant. A new large kitchen, only for baking pizzas and being a base
for deliveries, has to be established somewhere in town.

The main cost in the delivery service is not the making of the pizza
itself, but the time it takes to deliver it. To minimize this, you need to
carefully plan the location of the new kitchen. To your help you have a
database of all last year’s deliveries. For each block in the city, you know
how many deliveries were made there last year. The kitchen location will
be chosen based on the assumption that the pattern of demand will be the
same in the future.

Your city has a typical suburban layot – an orthogonal grid of equal-
size square blocks. All places of interest (delivery points and the kitchen)
are considered to be located at street crossings. The distance between
two street crossings is the Manhattan distance, i.e., the number of blocks
you have to drive vertically, plus the number of blocks you have to drive
horizontally. The total cost for a delivery point is its Manhattan distance
from the kitchen, times the number of deliveries to the point. Note that
we are only counting the distance from the kitchen to the delivery point.
Even though we always drive directly back to the kitchen after a delivery
is made, this (equal) distance is not included in the cost measure.

Input specifications

On the first line, there is a number, 1 ≤ n ≤ 20, indicating the number of
test cases. Each test case begins with a line with two integers, 1 ≤ x ≤ 100,
1 ≤ y ≤ 100, indicating the size of the two-dimenstional street grid. Then
follow y lines, each with x integers, 0 ≤ d ≤ 1000, indicating the number
of deliveries made to each street crossing last year.

1

Output specifications
For each test case, output the least possible total delivery cost (the sum
of all delivery costs last year), assuming that the kitchen was located
optimally. There should be one line for each test case, with an integer
indicating the cost, followed by a single space and the word ’blocks’.

Sample input
2

4 4

0 8 2 0

1 4 5 0

0 1 0 1

3 9 2 0

6 7

0 0 0 0 0 0

0 1 0 3 0 1

2 9 1 2 1 2

8 7 1 3 4 3

1 0 2 2 7 7

0 1 0 0 1 0

0 0 0 0 0 0

Output for sample input
55 blocks

162 blocks

2

Problem B

Ball bearings

source: ballbearings.*

The Swedish company SKF makes ball bearings. As explained by
Britannica Online, a ball bearing is

“one of the two types of rolling, or anti friction, bearings (the other is the
roller bearing).

Its function is to connect two machine members that move relative to
one another so that the frictional resistance to motion is minimal. In many
applications, one of the members is a rotating shaft and the other a fixed
housing. Each ball bearing has three main parts: two grooved, ring like
races and a number of balls. The balls fill the space between the two races
and roll with negligible friction in the grooves. The balls may be loosely
restrained and separated by means of a retainer or cage.”

Presumably, the more balls you have inside the outer ring, the
smoother the ride will be, but how many can you fit within the outer ring?
You will be given the inner diameter of the outer ring, the diameter of the
balls, and the minimum distance between neighboring balls. Your task is
to compute the maximum number of balls that will fit on the inside of the
outer ring (all balls must touch the outer ring).

D

s

d

3

Input specifications
The first line of input contains a positive integer n that indicates the
number of test cases. Then follow n lines, each describing a test case. Each
test case consists of three positive floating point numbers, D, d, s, where
D is the inner diameter of the outer ring, d is the diameter of a ball, and
s is the minimum distance between balls. All parameters are in the range
[0.0001, 500.0].

Output specifications
For each test case output a single integer m on a line by itself, where m
is the maximum number of balls that can fit in the ball bearing, given the
above constraints. There will always be room for at least three balls.

Sample input
2

20 1 0.1

100.0 13.0 0.2

Output for sample input
54

20

4

Problem C

S-Nim

source: nim.*

Arthur and his sister Caroll have been playing a game called Nim for some
time now. Nim is played as follows:

• The starting position has a number of heaps, all containing some, not
necessarily equal, number of beads.

• The players take turns chosing a heap and removing a positive
number of beads from it.

• The first player not able to make a move, loses.

Arthur and Caroll really enjoyed playing this simple game until they
recently learned an easy way to always be able to find the best move:

• Xor the number of beads in the heaps in the current position (i.e. if
we have 2, 4 and 7 the xor-sum will be 1 as 2 xor 4 xor 7 = 1).

• If the xor-sum is 0, too bad, you will lose.

• Otherwise, move such that the xor-sum becomes 0. This is always
possible.

It is quite easy to convince oneself that this works. Consider these facts:

• The player that takes the last bead wins.

• After the winning player’s last move the xor-sum will be 0.

• The xor-sum will change after every move.

Which means that if you make sure that the xor-sum always is 0 when
you have made your move, your opponent will never be able to win, and,
thus, you will win.

Understandibly it is no fun to play a game when both players know
how to play perfectly (ignorance is bliss). Fourtunately, Arthur and Caroll
soon came up with a similar game, S-Nim, that seemed to solve this
problem. Each player is now only allowed to remove a number of beads
in some predefined set S, e.g. if we have S = {2, 5} each player is only

5

allowed to remove 2 or 5 beads. Now it is not always possible to make the
xor-sum 0 and, thus, the strategy above is useless. Or is it?

Your job is to write a program that determines if a position of S-Nim
is a losing or a winning position. A position is a winning position if there
is at least one move to a losing position. A position is a losing position if
there are no moves to a losing position. This means, as expected, that a
position with no legal moves is a losing position.

Input specifications
Input consists of a number of test cases.

For each test case: The first line contains a number k (0 < k ≤ 100)
describing the size of S, followed by k numbers si (0 < si ≤ 10000)
describing S. The second line contains a number m (0 < m ≤ 100)
describing the number of positions to evaluate. The next m lines each
contain a number l (0 < l ≤ 100) describing the number of heaps and
l numbers hi (0 ≤ hi ≤ 10000) describing the number of beads in the
heaps.

The last test case is followed by a 0 on a line of its own.

Output specifications
For each position:

• If the described position is a winning position print a ’W’.

• If the described position is a losing position print an ’L’.

Print a newline after each test case.

Sample input
2 2 5

3

2 5 12

3 2 4 7

4 2 3 7 12

5 1 2 3 4 5

3

2 5 12

3 2 4 7

4 2 3 7 12

0

Output for sample input
LWW

WWL

6

Problem D

Sylvester construction

source: sylvester.*

A Hadamard matrix of order n is an n × n matrix containing only 1s
and -1s, called Hn, such that HnHT

n = nIn where In is the n × n identity
matrix. An interesting property of Hadamard matrices is that they have
the maximum possible determinant of any n × n matrix with elements
in the range [−1, 1]. Hadamard matrices have applications in error-
correcting codes and weighing design problems.

The Sylvester construction is a way to create a Hadamard matrix of size
2n given Hn. H2n can be constructed as:

H2n =

(

Hn Hn
Hn −Hn

)

For example:

H1 = (1)

H2 =

(

1 1
1 −1

)

and so on.
In this problem you are required to print a part of a Hadamard matrix

constructed in the way described above.

Input specifications

The first number in the input is the number of test cases to follow. For
each test case there are five integers: n, x, y, w and h. n will be between
1 and 262 (inclusive) and will be a power of 2. x and y specify the upper
left corner of the sub matrix to be printed, w and h specify the width and
height respectively. Coordinates are zero based, so 0 ≤ x,y < n. You can
assume that the sub matrix will fit entirely inside the whole matrix and
that 0 < w,h ≤ 20. There will be no more than 1000 test cases.

7

Output specifications
For each test case print the sub matrix followed by an empty line.

Sample input
3

2 0 0 2 2

4 1 1 3 3

268435456 12345 67890 11 12

Output for sample input
1 1

1 -1

-1 1 -1

1 -1 -1

-1 -1 1

1 -1 -1 1 1 -1 -1 1 1 -1 -1

-1 -1 1 1 -1 -1 1 1 -1 -1 1

1 1 1 -1 -1 -1 -1 1 1 1 1

-1 1 -1 -1 1 -1 1 1 -1 1 -1

1 -1 -1 -1 -1 1 1 1 1 -1 -1

-1 -1 1 -1 1 1 -1 1 -1 -1 1

-1 -1 -1 -1 -1 -1 -1 1 1 1 1

1 -1 1 -1 1 -1 1 1 -1 1 -1

-1 1 1 -1 -1 1 1 1 1 -1 -1

1 1 -1 -1 1 1 -1 1 -1 -1 1

-1 -1 -1 1 1 1 1 1 1 1 1

1 -1 1 1 -1 1 -1 1 -1 1 -1

8

Problem E

Who owns the Amiga?

source: amiga.*

In a corridor in a student dormitory, there are five rooms numbered 1, 2,
3, 4 and 5; room number 1 is the left-most room. The rooms have doors in
different colours: blue, green, red, white and yellow, but not necessarily
in that order.

1 2 3 4 5

In these rooms live five students Anna, Bernhard, Chris, David and Ellen
of five different nationalities Danish, Finnish, Icelandic, Norwegian and
Swedish. (Both the names and the nationalities are given in alphabetical
order, so it does not follow automatically that Anna is Danish.)

These students have one computer each, and these computers are of
different kinds: Amiga, Atari, Linux, Mac and Windows (given here in
alphabetical order). They each have their own favourite programming
language: C, C++, Java, Pascal and Perl (also listed in alphabetical order).

You want to find out who owns the Amiga computer based on some
facts about the students.

Input specifications
The input consists of several scenarios. The first input line contains a
number 1–1000 indicating how many scenarios there are.

Each scenario starts with a line with a number 1–2000 telling how many
fact lines there are for that scenario. Then follow the fact lines which each
contains three words separated by one or more spaces:

• The first and third word is one of these names:

1 2 3 4 5
blue green red white yellow
anna bernhard chris david ellen

9

danish finnish icelandic norwegian swedish
amiga atari linux mac windows
c c++ java pascal perl

(Note that no uppercase letters are used.)

• The second word specifies a relationship; it is one of

same-as left-of right-of next-to

same-as tells that the first and third fact words apply to the same
room; for instance

blue same-as bernhard
tells that Bernhard lives in the room with a blue door.

left-of tells that the first fact word applies to the room immediately
to the left of the one to which the third fact word applies. For
example,

chris left-of perl
means that Chris lives in the room immediately to the left of the
Perl programmer.

right-of tells that the first fact word applies to the room immediately
to the right of the one to which the third fact word applies.

next-to tells that the two fact words apply to rooms next to each
other. For example,

swedish next-to linux
means that the Swedish student lives in the next room (either to
the left or the right) of the owner of the Linux computer.

You may assume that there are no inconsistencies in the input data. In
other words, there will in every scenario be at least one person who may
own the Amiga without violating the constraints.

Output specifications
For each scenario, you should print a line starting with

scenario #n :

where n is the scenario number. If you can determine who (i.e., Anna,
Bernhard, Chris, David or Ellen) owns the Amiga, you continue the line
with

xxxx owns the amiga.

or, if you cannot name the Amiga owner, you print

cannot identify the amiga owner.

10

Sample input
2

8

red same-as 1

danish same-as 1

perl same-as 5

atari same-as 2

linux same-as 3

mac same-as 4

windows same-as 5

anna same-as 1

8

chris left-of amiga

chris left-of 4

c same-as 1

danish same-as 1

red same-as 1

linux same-as red

windows next-to linux

mac left-of swedish

Output for sample input
scenario #1: anna owns the amiga.

scenario #2: cannot identify the amiga owner.

11

This page is intentionally left blank.

12

Problem F

Lazy Evaluation

source: lazy.*

Most of the programming languages used in practice perform strict-
evaluation. When a function is called, the expressions passed in the
function arguments (for instance a + b in f (a + b, 3)) are evaluated first,
and the resulting values are passed to the function.

However, this is not the only way how expressions can be evaluated,
and in fact, even such a mainstream language as C++ is sometimes
performing lazy evaluation: the operators && and || evaluate only those
arguments that are needed to determine the value of the expression.

Pål Christian is now working on a comparative study of the perfor-
mance of the lazy and strict evaluation. Pål wants to evaluate in both
ways a set of expressions that follow this simplified syntax:

• an expression is either a constant, a name, or a function call
• a constant is a signed 32-bit integer; for example, 3, 0, -2, 123 are

constants;
• a name is a name of a built-in or user-defined function, for example,

f , or add are names; names are words containing up to 32 lowercase
letters from the English alphabet;

• function call has the form: (f unction arg1 . . . argN), where f unction
is an expression that evaluates to some function of N arguments, and
arg1 . . . argN are expressions that evaluate to arguments passed to the
function. For example, (f 3 5) , or (add 2 (add 1 2)) are valid
function calls.

Expressions are evaluated according to the following simple rules:
• constants evaluate to themselves
• names evaluate to the functions they denote
• function calls:

in lazy evaluation: the first expression is evaluated first to obtain a
function, whose function body, with formal parameters substituted
for the expressions provided as the arguments, is evaluated; how-
ever, whenever some argument gets evaluated while evaluating the
function body, the resulting value will replace all occurences of the
same parameter in that function body. In other words, the expression
passed in the argument is never evaluated more than once.

13

in strict evaluation: all expressions are evaluated first: the first
expression should evaluate to a function, the remaining to values
that are used as function arguments; the result is the result of
evaluating the corresponding function body, where all occurences of
formal parameters are replaced by the values obtained by evaluating
the arguments.

The following built-in functions are available: add x y - sum of the
constants x and y, sub x y - returns the value x − y, mult x y - product
of x and y, div x y - integer division, and rem x y - remainder (same
semantics as ’/’ and ’%’ in C, C++ or Java), true x y - always returns x,
f alse x y - always returns y , eq x y - returns true if x and y is the same
constant, otherwise returns f alse, gt x y - returns true if x is greater than
y, otherwise returns f alse.

User-defined functions are defined using the following syntax:
f unction name arg1 . . . argN = body, where arg1 . . . argN are distinct
words (up to 32 English lowercase letters), denoting the formal parame-
ters of the function, and the body is an expression. The formal parameters
can occur in the body of the function in place of constants or names. The
function name and the formal parameters are separated by a single space.
There is one space on both sides of the “=”. Functions with zero (no) ar-
guments are legal. Note that the formal parameters can overshadow the
function names (i.e. op in definition of not in sample input overshadows
the function name op), but each function must have a unique name.

Input specifications

The first part of the input contains (less than 1000) lines with one function
definition each, followed by a single empty line. Forward references (that
is, referring to functions defined later in the input) and recursion are legal.

The second part of the input contains less than 1000 test expressions.
Each test expression is an expresion occupying a single line. Function
names and the arguments are always separated by a single space, but
there are no extra spaces around parentheses (see sample input). There
is an empty line after the last expression. Expressions are to be evaluated
by both the lazy and the strict evaluation.

You can assume that all function definitions and expressions are
syntactically correct, and that the arithmetic built-in functions (add, sub,
mult, div, rem, eq, gt) will always be called with integers only, and no
division by 0 occurs. Overflows outside the 32-bit integer range are legal
and do not require any special treatment (just use the value produced by
C, C++, or Java operators +, -, *, /, or %). In strict evaluation, built-in
functions evaluate all their arguments too. In lazy evaluation, arithmetic
built-in functions always evaluate all their arguments. All lines on the
input contain no more than 255 characters including spaces.

14

Output specifications
The program should produce a table in exactly the following format:

operator lazy evaluation strict evaluation
add addlazy addstrict
sub sublazy substrict
mult multlazy multstrict
div divlazy divstrict
rem remlazy remstrict

where each oplazy is an integer - how many times op has been executed in
lazy evaluation of all expressions, and opstrict is the number of evaluations
of op in strict evaluation. Spaces can occur arbitrarily. If the evaluation of a
test expression does not terminate after a total of 2345 function evaluations,
you can assume that it is in an infinite loop, the program should skip that
expression, and do not count it into the totals (omit counting operations
both in lazy and strict evaluation of this expression).

Sample input
if cond truepart elsepart = (cond truepart elsepart)

fact x = (facta x 1)

facta x a = (if (eq x 0) a (facta (sub x 1) (mult a x)))

and x y = (x y false)

ident x = x

two = 2

op op x = ((if (eq op 1) add sub) op x)

not op = (op false true)

sum n = (suma n 0)

suma n a = (((gt n 1) suma false) (sub n 1) (add a n))

(true (add 1 2) (mult 1 2))

5

true

(and (gt (op (sub 2 1) 1) 5) (eq (two) (op 1 1)))

(false (sub 1 2) (sum 4))

((eq (true 1 2) (false 2 1)) (add 1 2) (sub 1 2))

(fact 3)

Output for sample input
operator lazy_evaluation strict_evaluation

add 7 8

sub 4 7

mult 0 1

div 0 0

rem 0 0

15

This page is intentionally left blank.

16

Problem G

Easter holidays

source: holidays.*

Scandinavians often make vacation during the Easter holidays in the
largest ski resort Åre. Åre provides fantastic ski conditions, many ski lifts
and slopes of various difficulty profiles. However, some lifts go faster than
others, and some are so popular that a queue forms at the bottom.

Per is a beginner skier and he is afraid of lifts, even though he wants
to ski as much as possible. Now he sees that he can take several different
lifts and then many different slopes or some other lifts, and this freedom
of choice is starting to be too puzzling...

He would like to make a ski journey that:

• starts at the bottom of some lift and ends at that same spot
• has only two phases: in the first phase, he takes one or more lifts up,

in the second phase, he will ski all the way down back to where he
started

• is least scary, that is the ratio of the time spent on the slopes to the
time spent on the lifts or waiting for the lifts is the largest possible.

Can you help Per find the least scary ski journey?
A ski resort contains n places, m slopes, and k lifts (2 ≤ n ≤ 1000,

1 ≤ m ≤ 1000, 1 ≤ k ≤ 1000). The slopes and lifts always lead from some
place to another place: the slopes lead from places with higher altitude
to places with lower altitude and lifts vice versa (lifts cannot be taken
downwards).

Input specifications
The first line of the input contains the number of cases – the number of
ski resorts to process. Each ski resort is described as follows: the first
line contains three integers n, m, and k. The following m lines describe
the slopes: each line contains three integers – top and bottom place of the
slope (the places are numbered 1 to n), and the time it takes to go down
the slope (max. 10000). The final k lines describe the lifts by three integers
– the bottom and top place of the lift, and the time it takes to wait for the
lift in the queue and be brought to its top station (max. 10000). You can
assume that no two places are connected by more than one lift or by more
than one slope.

17

Output specifications
For each input case, the program should print two lines. The first line
should contain a space-separated list of places in the order they will be
visited – the first place should be the same as the last place. The second
line should contain the ratio of the time spent in the slopes to the time
spent on the lifts or wating for the lifts. The ratio should be rounded to the
closest 1/1000th. If there are two possibilities, then the rounding is away
from zero (e.g., 1.9812 and 1.9806 become 1.981, 3.1335 becomes 3.134, and
3.1345 becomes 3.135). If there are multiple journeys that prior to rounding
are equally scary, print an arbitrary one.

Sample input
1

5 4 3

1 3 12

2 3 6

3 4 9

5 4 9

4 5 12

5 1 12

4 2 18

Output for sample input
4 5 1 3 4

0.875

18

Problem H

Tourist

source: tourist.*

A lazy tourist wants to visit as many interesting locations in a city as
possible without going one step further than necessary. Starting from his
hotel, located in the north-west corner of city, he intends to take a walk to
the south-east corner of the city and then walk back. When walking to the
south-east corner, he will only walk east or south, and when walking back
to the north-west corner, he will only walk north or west. After studying
the city map he realizes that the task is not so simple because some areas
are blocked. Therefore he has kindly asked you to write a program to solve
his problem.

Given the city map (a 2D grid) where the interesting locations and
blocked areas are marked, determine the maximum number of interesting
locations he can visit. Locations visited twice are only counted once.

Input specifications
The first line in the input contains the number of test cases (at most 20).
Then follow the cases. Each case starts with a line containing two integers,
W and H (2 ≤ W, H ≤ 100), the width and the height of the city map.
Then follow H lines, each containing a string with W characters with the
following meaning:

’.’ Walkable area
’*’ Interesting location (also walkable area)
’#’ Blocked area

You may assume that the upper-left corner (start and end point) and
lower-right corner (turning point) are walkable, and that a walkable path
of length H + W − 2 exists between them.

Output specifications
For each test case, output a line containing a single integer: the maximum
number of interesting locations the lazy tourist can visit.

19

Sample input
2

9 7

*........

.....**#.

..**...#*

..####*#.

.*.#*.*#.

...#**...

*........

5 5

.*.*.

*###.

..*

.###*

.*.*.

Output for sample input
7

8

20

