All-pairs shortest paths

Suprakash Datta

March 11, 2011

Single source shortest paths:

Shortest paths from a given node to all nodes.

Dijkstra’s algorithm:
o Complexity (using heaps): O((V + E)log V).
o Complexity (using Fibonacci heaps): O(V log V + E).
@ Cannot handle negative edges

Single-source shortest paths with negative edges:
Bellman-Ford Algorithm

@ may be covered later, covered in CSE3101
o Complexity: ©(VE)

All pairs shortest paths

Compute shortest paths between all pairs of nodes.

Possible approaches:

© Run Dijkstra from each node

o Complexity (using heaps): O((V?+ VE)log V)
Complexity (using Fibonacci heaps): O(V2log V + VE).

e Cannot handle negative edges

@ Run Bellman-Ford from each node
o Complexity: O(V2E) — recall that E may be ©(V?)
e Simple code, works with negative edges

© Floyd-Warshall algorithm
o Complexity: O(V?3)
e Simple code, works with negative edges

Specifications/Assumptions

INPUT: a directed graph G = (V, E).
@ Nodes are numbered 1...n.
o Each edge (i,) has a real-valued weight w;; !

@ Assume that all cycles have non-negative cost.

OUTPUT: A matrix D = [dj], djj = the (cost of the) shortest path
from j to j

Yormally w : E — R.

The Floyd Warshall algorithm - Intuition

Definition
clg-k): the cost of the shortest path from i to j, with the
intermediate nodes being restricted to the set {1,2,..., k}.

@ Therefore

©0) e
¢’ = 0ifi=j (1)
= w;if i #jand (i,j) € E, (2)
= oo otherwise (3)
°
() _

= m|n[c (k= 1), c,-(kkfl) + c,(gl.(*l)]

@ The (cost of the) shortest path from i to j is dj; = CIS.").

The Floyd Warshall algorithm - Intuition

(k) _
c; = min[c;

(k1) Ci(kk—l) n Cgf_n]

Figure: Two possibilities for node k

The Floyd Warshall algorithm - questions

In the expression c,.(kk_l) + c,(gl.(_l), there is nothing that says the
(k—1) (k—1)

intermediate nodes in ¢;
What if there is overlap?

are disjoint from those in Chj

Figure: Scenario 1

The Floyd Warshall algorithm - questions

(k1) , (k1)

In the expression c;, +c¢,; . there is nothing that says the
intermediate nodes in cl.(k_l) are disjoint from those in c,(glf_l).

What if there is overlap?

Figure: Scenario 2

The Floyd Warshall algorithm - steps

Input: W = [wy]
Output: D = [djj]
FLOYD-WARSHALL(W)
1 n< rows(W)
DO — w
for k —1ton
do D) — p(k=1)

for i< 1ton

do for j<— 1ton

do if DK[i j] > DK-D[i k] + DDk,]
then D[j] — DKD[i k] + D[k,]

return D(")

© 00 NO OB WiN

(k)

k—1 k-1 k—1
((1) (1) ()

=min[c;; 7, ¢y

Compare with: ¢ i

The Floyd Warshall algorithm - simplified

FLoyD-WARSHALL(W)

1 n<« rows(W)

2 D—W

3 fork—1ton

4 dofori<—1lton

5 do for j — 1ton

6 do if DJ[i,j] > DJi, k] + D[k,]

7 then DI[i,j] < DI[i, k] + D[k, J]

8 return D

Notes

o recall: w;j =0, if i = j, weight of edge (i,) if it exists,
otherwise co

@ the pseudocode assumes the use of co — use a suitable guard
in your code. For today, all edges are non-negative; so -1 can
be a guard value.

The Floyd Warshall algorithm - computing paths

Maintain a matrix called via
FLOYD-WARSHALL(W)

1 n<« rows(W)
D—W
via < nil //initialize all entries
for k —1ton
do for i — 1 ton
do for j— 1ton
do if D[i,j] > DIi, k] + D[k,]
then D[i,j] < D[i, k] + D[k, j]
viali, j] — k

O OO ~NOOL P~ WN

[ay

return D, via

The Floyd Warshall algorithm - printing paths

PRINTFWPATH(/, §)

1 if via[i,j] = nil

2 then print(i,j)

3 else PRINTFWPATH(/, via[i, j])
4 PRINTEWPATH(via[i, j],)

If you want to

store the path (instead of print) insert into a queue instead.

The Floyd Warshall algorithm - notes

@ Example of dynamic programming
© When applicable, often provides very efficient solutions to
optimization problems
@ Many contest problems require this technique
© covered in detail in CSE 3101 (Design and Analysis of
Algorithms).
@ The efficiency arises from the clever formulation — the more
obvious dynamic programming formulation yields a
O(V*)-time algorithm.

@ Proofs of correctness are skipped here

