
All-pairs shortest paths

Suprakash Datta

March 11, 2011



Last week

Single source shortest paths:

Shortest paths from a given node to all nodes.
Dijkstra’s algorithm:

Complexity (using heaps): O((V + E ) log V ).

Complexity (using Fibonacci heaps): O(V log V + E ).

Cannot handle negative edges

Single-source shortest paths with negative edges:
Bellman-Ford Algorithm

may be covered later, covered in CSE3101

Complexity: Θ(VE )



All pairs shortest paths

Compute shortest paths between all pairs of nodes.

Possible approaches:
1 Run Dijkstra from each node

Complexity (using heaps): O((V 2 + VE ) log V )
Complexity (using Fibonacci heaps): O(V 2 log V + VE ).
Cannot handle negative edges

2 Run Bellman-Ford from each node

Complexity: O(V 2E ) – recall that E may be Θ(V 2)
Simple code, works with negative edges

3 Floyd-Warshall algorithm

Complexity: O(V 3)
Simple code, works with negative edges



Specifications/Assumptions

INPUT: a directed graph G = (V , E ).

Nodes are numbered 1 . . . n.

Each edge 〈i , j〉 has a real-valued weight wij
1

Assume that all cycles have non-negative cost.

OUTPUT: A matrix D = [dij ], dij = the (cost of the) shortest path
from i to j

1formally w : E → R.



The Floyd Warshall algorithm - Intuition

Definition

c
(k)
ij : the cost of the shortest path from i to j , with the

intermediate nodes being restricted to the set {1, 2, . . . , k}.

Therefore

c
(0)
ij = 0 if i = j (1)

= wij if i 6= j and (i , j) ∈ E , (2)

= ∞ otherwise (3)

c
(k)
ij = min[c

(k−1)
ij , c

(k−1)
ik + c

(k−1)
kj ]

The (cost of the) shortest path from i to j is dij = c
(n)
ij .



The Floyd Warshall algorithm - Intuition

c
(k)
ij = min[c

(k−1)
ij , c

(k−1)
ik + c

(k−1)
kj ]

Figure: Two possibilities for node k



The Floyd Warshall algorithm - questions

In the expression c
(k−1)
ik + c

(k−1)
kj , there is nothing that says the

intermediate nodes in c
(k−1)
ik are disjoint from those in c

(k−1)
kj .

What if there is overlap?

Figure: Scenario 1



The Floyd Warshall algorithm - questions

In the expression c
(k−1)
ik + c

(k−1)
kj , there is nothing that says the

intermediate nodes in c
(k−1)
ik are disjoint from those in c

(k−1)
kj .

What if there is overlap?

Figure: Scenario 2



The Floyd Warshall algorithm - steps

Input: W = [wij ]
Output: D = [dij ]
Floyd-Warshall(W )
1 n← rows(W )
2 D(0) ←W
3 for k ← 1 to n
4 do D(k) ← D(k−1)

5 for i ← 1 to n
6 do for j ← 1 to n
7 do if D(k)[i , j ] > D(k−1)[i , k] + D(k−1)[k , j ]
8 then D(k)[i , j ]← D(k−1)[i , k] + D(k−1)[k , j ]
9 return D(n)

Compare with: c
(k)
ij = min[c

(k−1)
ij , c

(k−1)
ik + c

(k−1)
kj ].



The Floyd Warshall algorithm - simplified

Floyd-Warshall(W )
1 n← rows(W )
2 D ←W
3 for k ← 1 to n
4 do for i ← 1 to n
5 do for j ← 1 to n
6 do if D[i , j ] > D[i , k] + D[k, j ]
7 then D[i , j ]← D[i , k] + D[k , j ]
8 return D
Notes

recall: wij = 0, if i = j , weight of edge 〈i , j〉 if it exists,
otherwise ∞
the pseudocode assumes the use of ∞ – use a suitable guard
in your code. For today, all edges are non-negative; so -1 can
be a guard value.



The Floyd Warshall algorithm - computing paths

Maintain a matrix called via
Floyd-Warshall(W )

1 n← rows(W )
2 D ←W
3 via← nil //initialize all entries
4 for k ← 1 to n
5 do for i ← 1 to n
6 do for j ← 1 to n
7 do if D[i , j ] > D[i , k] + D[k , j ]
8 then D[i , j ]← D[i , k] + D[k , j ]
9 via[i , j ]← k

10 return D, via



The Floyd Warshall algorithm - printing paths

PrintFWPath(i , j)
1 if via[i , j ] = nil
2 then print(i , j)
3 else PrintFWPath(i , via[i , j ])
4 PrintFWPath(via[i , j ], j)

If you want to

store the path (instead of print) insert into a queue instead.



The Floyd Warshall algorithm - notes

Example of dynamic programming
1 When applicable, often provides very efficient solutions to

optimization problems
2 Many contest problems require this technique
3 covered in detail in CSE 3101 (Design and Analysis of

Algorithms).

The efficiency arises from the clever formulation – the more
obvious dynamic programming formulation yields a
Θ(V 4)-time algorithm.

Proofs of correctness are skipped here


