All-pairs shortest paths

Suprakash Datta

March 11, 2011

Last week

Single source shortest paths:

Shortest paths from a given node to all nodes. Dijkstra's algorithm:

- Complexity (using heaps): $O((V + E) \log V)$.
- Complexity (using Fibonacci heaps): $O(V \log V + E)$.
- Cannot handle negative edges

Single-source shortest paths with negative edges: Bellman-Ford Algorithm

- may be covered later, covered in CSE3101
- Complexity: $\Theta(VE)$

All pairs shortest paths

Compute shortest paths between all pairs of nodes.

Possible approaches:

- Run Dijkstra from each node
 - Complexity (using heaps): O((V² + VE) log V)
 Complexity (using Fibonacci heaps): O(V² log V + VE).
 - Cannot handle negative edges
- Run Bellman-Ford from each node
 - Complexity: $O(V^2E)$ recall that E may be $\Theta(V^2)$
 - Simple code, works with negative edges
- I Floyd-Warshall algorithm
 - Complexity: $O(V^3)$
 - Simple code, works with negative edges

Specifications/Assumptions

INPUT: a directed graph G = (V, E).

- Nodes are numbered 1...n.
- Each edge $\langle i, j \rangle$ has a real-valued weight w_{ij} ¹
- Assume that all cycles have non-negative cost.

OUTPUT: A matrix $D = [d_{ij}]$, $d_{ij} =$ the (cost of the) shortest path from *i* to *j*

The Floyd Warshall algorithm - Intuition

Definition

٠

 $c_{ij}^{(k)}$: the cost of the shortest path from *i* to *j*, with the intermediate nodes being restricted to the set $\{1, 2, ..., k\}$.

• Therefore

$$c_{ij}^{(0)} = 0 \text{ if } i = j$$
(1)
= $w_{ij} \text{ if } i \neq j \text{ and } (i,j) \in E,$ (2)
= $\infty \text{ otherwise}$ (3)

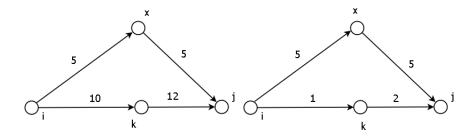
$$c_{ij}^{(k)} = \min[c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)}]$$

• The (cost of the) shortest path from *i* to *j* is $d_{ij} = c_{ij}^{(n)}$.

The Floyd Warshall algorithm - Intuition

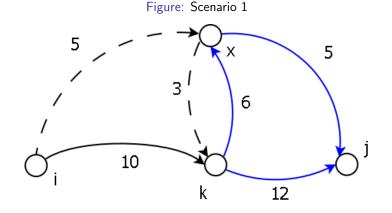
$$c_{ij}^{(k)} = \min[c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)}]$$

Figure: Two possibilities for node k



The Floyd Warshall algorithm - questions

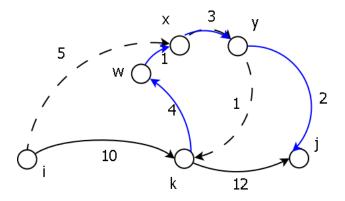
In the expression $c_{ik}^{(k-1)} + c_{kj}^{(k-1)}$, there is nothing that says the intermediate nodes in $c_{ik}^{(k-1)}$ are disjoint from those in $c_{kj}^{(k-1)}$. What if there is overlap?



The Floyd Warshall algorithm - questions

In the expression $c_{ik}^{(k-1)} + c_{kj}^{(k-1)}$, there is nothing that says the intermediate nodes in $c_{ik}^{(k-1)}$ are disjoint from those in $c_{kj}^{(k-1)}$. What if there is overlap?

Figure: Scenario 2



The Floyd Warshall algorithm - steps

nput:
$$W = [w_{ij}]$$

Dutput: $D = [d_{ij}]$
FLOYD-WARSHALL(W)
1 $n \leftarrow rows(W)$
2 $D^{(0)} \leftarrow W$
3 for $k \leftarrow 1$ to n
4 do $D^{(k)} \leftarrow D^{(k-1)}$
5 for $i \leftarrow 1$ to n
6 do for $j \leftarrow 1$ to n
7 do if $D^{(k)}[i,j] > D^{(k-1)}[i,k] + D^{(k-1)}[k,j]$
8 then $D^{(k)}[i,j] \leftarrow D^{(k-1)}[i,k] + D^{(k-1)}[k,j]$
9 return $D^{(n)}$

Compare with:
$$c_{ij}^{(k)} = \min[c_{ij}^{(k-1)}, c_{ik}^{(k-1)} + c_{kj}^{(k-1)}].$$

The Floyd Warshall algorithm - simplified

```
FLOYD-WARSHALL(W)

1 n \leftarrow rows(W)

2 D \leftarrow W

3 for k \leftarrow 1 to n

4 do for i \leftarrow 1 to n

5 do for j \leftarrow 1 to n

6 do if D[i,j] > D[i,k] + D[k,j]

7 then D[i,j] \leftarrow D[i,k] + D[k,j]

8 return D
```

Notes

- recall: $w_{ij} = 0$, if i = j, weight of edge $\langle i, j \rangle$ if it exists, otherwise ∞
- the pseudocode assumes the use of ∞ use a suitable guard in your code. For today, all edges are non-negative; so -1 can be a guard value.

```
Maintain a matrix called via
FLOYD-WARSHALL(W)
  1
    n \leftarrow rows(W)
  2 D \leftarrow W
  3 via \leftarrow nil //initialize all entries
  4 for k \leftarrow 1 to n
  5 do for i \leftarrow 1 to n
  6
          do for i \leftarrow 1 to n
  7
               do if D[i, j] > D[i, k] + D[k, j]
                      then D[i, j] \leftarrow D[i, k] + D[k, j]
  8
  9
                             via[i, i] \leftarrow k
 10
      return D, via
```

The Floyd Warshall algorithm - printing paths

PRINTFWPATH(i, j)1 if via[i, j] = nil2 then print(i, j)3 else PRINTFWPATH(i, via[i, j])4 PRINTFWPATH(via[i, j], j)If you want to

store the path (instead of print) insert into a queue instead.

The Floyd Warshall algorithm - notes

• Example of dynamic programming

- When applicable, often provides very efficient solutions to optimization problems
- 2 Many contest problems require this technique
- Overed in detail in CSE 3101 (Design and Analysis of Algorithms).
- The efficiency arises from the clever formulation the more obvious dynamic programming formulation yields a Θ(V⁴)-time algorithm.
- Proofs of correctness are skipped here