
Depth First Search

Suprakash Datta

March 18, 2011



Graph algorithms - continued

Last week: All-pairs shortest paths.

This week: Depth-first search

Similar to breadth-first search

Also used to explore graphs

Can often use either; sometimes one is more useful than the
other

Same running time Θ(V + E ), very similar implementation



The Depth-First Search algorithm

1 Start from some node s.

2 Instead of exploring all children on s before moving on (as in
BFS), explore a unexplored child t of s, then to an unexplored
child w of t and so on.

3 When no unexplored children exist, backtrack.

4 Initially all nodes are black, and time is zero. Thereafter time
increments by 1 at each step.

5 Each node gets 2 timestamps one for when they enter the
queue (turn red) and one for when they leave it (turn blue).

6 Edges can be classified by DFS – e.g. back edges go from red
nodes to red nodes.

7 The above steps create a DFS tree.



DFS notes

1 Only back edges today – back edges go from red nodes to red
nodes, and indicate presence of a cycle

2 Will not use start times today

3 Might need mutiple DFS trees to completely a directed graph.



An example graph



An example graph



An example graph



An example graph



An example graph

Back edge found (graph is cyclic)



An example graph



An example graph



An example graph



An example graph



An example graph



An example graph



An example graph



An example graph



Java implementation

//Do a DFS starting from node s, 1 <= s <= n.

//list[i] - adjacency list of node i

// visited[], finish []: color , finish times of nodes

Stack <Integer > stack = new Stack <Integer >();

boolean [] visited = new boolean[n + 1];

stack.push(s); // make s red

while (!stack.isEmpty ())

{

int u = stack.pop(); // make u blue

finish[u] = ++time;

if (! visited[u]) // u is black

{

visited[u] = true;

// make black neighbours of u red

stack.addAll(list[u]);

}

}



Directed Acyclic Graphs

Directed graph with no directed cycles



Topological Sort

Fact: A directed acyclic graph can be sorted topologically – i.e. nodes
can be numbered so that all edges go from lower numbered nodes to
higher number nodes.

Fact: Nodes sorted by decreasing finish times of DFS are in topologically
sorted order

Fact: DFS detects cycles (presence of back edges).



An example graph



An example graph


