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Graph algorithms - continued

Last week: All-pairs shortest paths.

This week: Depth-first search

Similar to breadth-first search

Also used to explore graphs

Can often use either; sometimes one is more useful than the
other

Same running time Θ(V + E ), very similar implementation



The Depth-First Search algorithm

1 Start from some node s.

2 Instead of exploring all children on s before moving on (as in
BFS), explore a unexplored child t of s, then to an unexplored
child w of t and so on.

3 When no unexplored children exist, backtrack.

4 Initially all nodes are black, and time is zero. Thereafter time
increments by 1 at each step.

5 Each node gets 2 timestamps one for when they enter the
queue (turn red) and one for when they leave it (turn blue).

6 Edges can be classified by DFS – e.g. back edges go from red
nodes to red nodes.

7 The above steps create a DFS tree.



DFS notes

1 Only back edges today – back edges go from red nodes to red
nodes, and indicate presence of a cycle

2 Will not use start times today

3 Might need mutiple DFS trees to completely a directed graph.
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Back edge found (graph is cyclic)
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Java implementation

//Do a DFS starting from node s, 1 <= s <= n.

//list[i] - adjacency list of node i

// visited[], finish []: color , finish times of nodes

Stack <Integer > stack = new Stack <Integer >();

boolean [] visited = new boolean[n + 1];

stack.push(s); // make s red

while (!stack.isEmpty ())

{

int u = stack.pop(); // make u blue

finish[u] = ++time;

if (! visited[u]) // u is black

{

visited[u] = true;

// make black neighbours of u red

stack.addAll(list[u]);

}

}



Directed Acyclic Graphs

Directed graph with no directed cycles



Topological Sort

Fact: A directed acyclic graph can be sorted topologically – i.e. nodes
can be numbered so that all edges go from lower numbered nodes to
higher number nodes.

Fact: Nodes sorted by decreasing finish times of DFS are in topologically
sorted order

Fact: DFS detects cycles (presence of back edges).
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