Depth First Search

Suprakash Datta

March 18, 2011



Graph algorithms - continued

Last week: All-pairs shortest paths.

This week: Depth-first search
@ Similar to breadth-first search
@ Also used to explore graphs

@ Can often use either; sometimes one is more useful than the
other

@ Same running time ©(V + E), very similar implementation



The Depth-First Search algorithm

@ Start from some node s.

@ Instead of exploring all children on s before moving on (as in
BFS), explore a unexplored child t of s, then to an unexplored
child w of t and so on.

© When no unexplored children exist, backtrack.

Q |Initially all nodes are black, and time is zero. Thereafter time
increments by 1 at each step.

© Each node gets 2 timestamps one for when they enter the
queue (turn red) and one for when they leave it (turn blue).

@ Edges can be classified by DFS — e.g. back edges go from red
nodes to red nodes.

@ The above steps create a DFS tree.



@ Only back edges today — back edges go from red nodes to red
nodes, and indicate presence of a cycle

@ Will not use start times today

© Might need mutiple DFS trees to completely a directed graph.
1/6

Tree 2

Tree 3



An example graph

n



An example graph




An example graph




An example graph




An example graph

Back edge found (graph is cyclic)



An example graph




An example graph

A
Q
' N
s
N
C
Z/B - AN
4/
N -Q
N - \
AN - F
/ \// P
| PN D
D - < E // 5/



An example graph

A
L
- N
re
B e toc
2/ R
AN e
-
P - \
N P F
S O
D / rd ~



An example graph

A
Q
- N
-
N
C
2/ B g AN .
& Qe
N ~
| N - \ F
! \// \
pad O 58
D r ~ ~



An example graph

A
L2
4 N
e
B e e
2 A4
o8 -Q
\ /
I - Nk
| AN - A
~
t P POX:
D 7 N E //



An example graph

A
L
// h
B e - C
o o~ 4/9
-
\ 7~
| o // \\ E
! N
PN D 5,
o - .



An example graph

A
L2
- AN
s
B Ve N C
2f11 gp ______ Q 4f9
\ -
N rd
f - \
N - \ F
! N 5/8
PN /C)



An example graph

1/12
A
L
< N
Ve
B e N N C
2~ 4/9
f -Q
\ rd
| N e \ F
! N d A
| PN /O 38
D 7 N E P ~



Java implementation

//Do a DFS starting from node s, 1 <= s <= n.
//1list[i] - adjacency list of node i

//visited[], finish[]: color, finish times of nodes
Stack<Integer> stack = new Stack<Integer>();
boolean[] visited = new boolean[n + 1];
stack.push(s); // make s red

while (!stack.isEmpty ())

{
int u = stack.pop(); // make u blue
finish[u] = ++time;
if (!'visited[u]) // u is black
{
visited[u] = true;

// make black neighbours of u red
stack.addAll(list [ul);



Directed Acyclic Graphs

Directed graph with no directed cycles
A




Topological Sort

Fact: A directed acyclic graph can be sorted topologically — i.e. nodes
can be numbered so that all edges go from lower numbered nodes to
higher number nodes.

Fact: Nodes sorted by decreasing finish times of DFS are in topologically
sorted order

Fact: DFS detects cycles (presence of back edges).



An example graph




An example graph

/6
/ A
B C
2f5 7/10
F

D 8/9

3/4
11/12

Topologically sorted order

E-C-F-A-B-D



