Last week: All-pairs shortest paths.

This week: Depth-first search

- Similar to breadth-first search
- Also used to explore graphs
- Can often use either; sometimes one is more useful than the other
- Same running time $\Theta(V + E)$, very similar implementation
The Depth-First Search algorithm

1. Start from some node s.
2. Instead of exploring all children on s before moving on (as in BFS), explore a unexplored child t of s, then to an unexplored child w of t and so on.
3. When no unexplored children exist, backtrack.
4. Initially all nodes are black, and time is zero. Thereafter time increments by 1 at each step.
5. Each node gets 2 timestamps one for when they enter the queue (turn red) and one for when they leave it (turn blue).
6. Edges can be classified by DFS – e.g. back edges go from red nodes to red nodes.
7. The above steps create a DFS tree.
1. Only back edges today – back edges go from red nodes to red nodes, and indicate presence of a cycle.
2. Will not use start times today.
3. Might need multiple DFS trees to completely a directed graph.
An example graph
An example graph
An example graph

Diagram:
- Nodes: A, B, C, D, E, F
- Connections:
 - A to B
 - A to C
 - B to D
 - B to E
 - C to F
 - D to E
 - E to F
An example graph

1/ A
2/ B
3/ D

A - B - C - E - F
An example graph

Back edge found (graph is cyclic)
An example graph

- A
- B
- C
- D
- E
- F

Nodes with labels:
- A: 1/1
- B: 2/11
- C: 4/9
- D: 3/10
- E: 6/7
- F: 5/8
An example graph

Diagram:
- Nodes: A, B, C, D, E, F
- Edges and weights:
 - A to B: 1/12
 - B to D: 2/11
 - A to C: 4/9
 - C to E: 6/7
 - E to F: 5/8
 - D to E: 3/10

Graph structure:
- A is connected to B and C
- B is connected to D
- C is connected to E
- E is connected to F
- D is connected to E
// Do a DFS starting from node s, 1 <= s <= n.
// list[i] - adjacency list of node i
// visited[], finish[]: color, finish times of nodes
Stack<Integer> stack = new Stack<Integer>();
boolean[] visited = new boolean[n + 1];
stack.push(s); // make s red
while (!stack.isEmpty())
{
 int u = stack.pop(); // make u blue
 finish[u] = ++time;
 if (!visited[u]) // u is black
 {
 visited[u] = true;
 // make black neighbours of u red
 stack.addAll(list[u]);
 }
}
Directed Acyclic Graphs

Directed graph with no directed cycles
Fact: A directed acyclic graph can be sorted topologically – i.e. nodes can be numbered so that all edges go from lower numbered nodes to higher number nodes.

Fact: Nodes sorted by decreasing finish times of DFS are in topologically sorted order

Fact: DFS detects cycles (presence of back edges).
An example graph
An example graph

Topologically sorted order

E - C - F - A - B - D