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Abstract. The Web Services Business Process Execution Language (BPEL
for short) is a recently developed language that is used to specify com-
positions of web services. In the last few years, a considerable amount
of work has been done on modelling (parts of) BPEL and developing
verification techniques and tools for BPEL. In this paper, we provide
an overview of the different models of BPEL that have been proposed.
Furthermore, we discuss the verification techniques for BPEL that have
been put forward and the verification tools for BPEL that have been
developed.

Introduction

The Business Process Execution Language for Web Services (BPEL4WS or
BPEL for short) was proposed by BEA, IBM and Microsoft. In July 2002, the
first version of BPEL was published [27]. Subsequently, SAP and Siebel joined
the effort. The second version of BPEL [7] was published in May 2003. That same
month, BEA, IBM, Microsoft, SAP and Siebel submitted BPEL to the Orga-
nization for the Advancement of Structured Information Standards (OASIS for
short) for standardization purposes and the Web Services Business Process Ex-
ecution Language Technical Committee (WSBPEL TC, for short) was formed.
Since then, many major vendors have joined the WSBPEL TC, including Adobe,
Hewlett-Packard, NEC, Oracle and Sun. The language has been renamed to the
Web Services Business Process Execution Language (WS-BPEL or BPEL for
short). The latest version of BPEL can be found in [10].

BPEL represents a convergence of two languages: the Web Services Flow
Language (WSFL) [72] of IBM and XLANG [111] of Microsoft. WFSL, XLANG
and BPEL are languages to compose web services. Numerous introductions to
BPEL can be found on the web and in the literature, including, for example,
[28]. Even the first books about BPEL have already appeared (see, for example,
[66]). For a detailed comparison of the languages BPEL, WSFL and XLANG we
refer the reader to, for example, [4].
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Like most languages, (the semantics of) BPEL is defined in English prose
(see [7, 10, 27]). Such descriptions, although often masterpieces of apparent clar-
ity, usually suffer from inconsistency, ambiguity and incompleteness. Also the
(initial) definition of BPEL suffered from inconsistencies (see, for example, [26,
Issue 39]), ambiguities (see, for example, [26, Issue 111]) and incompleteness
(see, for example, [26, Issue 32]). The WSBPEL TC recognized the need for a
formalism to define (the semantics of) BPEL (see [26, Issue 42]). Formalizing
the definition of BPEL eliminates inconsistencies and ambiguities and provides a
complete description of the language. Such a formal definition may prove fruitful
when implementing BPEL, when developing BPEL processes and when reason-
ing about those processes. For a detailed discussion of the merits of formally
defined models we refer the reader to, for example, [96]. Different formalisms
have been exploited to formally define (the semantics of) BPEL. In this paper,
we will present an overview of the various models that have been developed for
BPEL.

Due to the presence of concurrency and intricate features like compensa-
tion handling, correlation and death-path-elimination, BPEL processes are error-
prone. In addition, BPEL processes may use valuable resources in the form of
invocations of web services. Therefore, there is a need to ensure that BPEL pro-
cesses behave correctly. Testing is an effective way to detect incorrect behaviour.
Often it is beneficial to also exploit verification techniques and tools to detect
incorrect behaviour. For a detailed discussion of the benefits of verification we
refer the reader to, for example, [13]. The need for verification of business pro-
cesses, like those expressed in BPEL, is argued in, for example, [69]. Different
verification techniques and tools have been developed for BPEL. In this paper,
we will present an overview of these techniques and tools.

Research on modelling and verifying BPEL processes has been published in
the proceedings of numerous conferences and workshops and in several journals.
In particular, the International Conference on Business Process Management
(BPM) [6, 29, 5], the International Conference on Web Services (ICWS) [124, 1,
2] and the Workshop on Web Services and Formal Methods (WS-FM) [19, 18]
are popular venues to present this type of research. There are a few papers that
present an overview of this research area (see, for example, [63, 64]). However,
these overviews are not as focused and extensive as the one we present here. In
the rest of this paper, we will discuss almost 90 papers on models and verification
of BPEL.
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1 Petri Nets

Petri nets are a formal model for concurrency. A Petri net is a directed, con-
nected, and bipartite graph in which each node is either a place or a transition.
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Tokens occupy places. When there is at least one token in every place connected
to a transition, the transition is enabled. Any enabled transition may fire remov-
ing one token from every input place, and depositing one token in each output
place. For an introduction to Petri nets refer the reader to, for example, [102].

Petri nets have been extensively used to model and verify business processes.
For an overview, we refer the reader to, for example, [3].

Since the semantics of Petri nets is formally defined, by mapping each BPEL
process to a Petri net a formal model of BPEL can be obtained. Not only does
this approach provide a model. It also allows the verification techniques and
tools developed for Petri nets to be exploited in the context of BPEL processes.
This approach has been taken by several research groups.

1.1 The German School

In [109], Schmidt and Stahl discuss a mapping from BPEL to Petri nets by giving
several examples. Each BPEL construct is mapped into a Petri net pattern. The
complete transformation from BPEL to Petri nets is given by Stahl in [110].
Hinz, Schmidt and Stahl [61] describe the tool BPEL2PN that implements the
transformation when abstracting from data. The details of this tool are presented
by Hinz in [60]. As shown in [61], the resulting Petri net can be verified using
the tool LoLA [108]. LoLA, which stands for a Low Level Analyzer, supports the
verification of standard properties of Petri nets, like, for example, determining
if a Petri net contains a deadlock, and the verification of properties expressed in
the logic CTL.

In most of his work [75–82], Martens focuses on Petri nets rather than BPEL
processes. However, since there is a mapping from BPEL processes to Petri nets,
all his results are directly applicable to BPEL. Martens introduces several criteria
for business processes and their compositions. Next, we will roughly capture
them in terms of BPEL. A BPEL process is called usable (or controllable) if
there exists an environment with which the process can interact such that the
process terminates properly. Two BPEL processes are called compatible if their
composition is usable. A BPEL is said to simulate another BPEL process if
each environment that makes the latter usable makes the former usable as well.
Two BPEL processes are called equivalent (or consistent) if the one simulates
the other and vice versa. Martens also presents algorithms to check if BPEL
processes satisfy these criteria. These algorithms have been implemented in the
tool WOMBAT [83, 84].

In [107], Schlingloff, Martens and Schmidt also consider the usability prob-
lem. They show that usability can be expressed in alternating-time temporal
logic. As a consequence, model checking algorithms for this logic can be exploited
to check for usability. Reisig, Schmidt and Stahl [104] and Lohmann, Massuthe,
Stahl and Weinberg [73] also consider the usability (or controllability) problem.

In [103], Reisig proposes to model BPEL by means of a special type of Petri
nets called business process nets.
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1.2 The Business Process Management Center

In [113], Verbeek and van der Aalst focus on the structured activities of BPEL.
They present a mapping of these structured activities to a class of Petri nets
called workflow nets. For this class of Petri nets, a verification tool named Wol-
fan [114] has been developed. This tool can verify properties like, for example,
termination of a workflow net and detection of nodes that can never be acti-
vated. In their mapping from BPEL to workflow nets, they also consider links,
join conditions and dead-path-elimination.

In [95], Ouyang, van der Aalst, Breutel, Dumas, ter Hofstede and Verbeek
provide a mapping of all control-flow constructs of BPEL into Petri nets. As
a consequence, the authors provide a formal semantics of BPEL. In [94, 95],
Ouyang et al. describe two tools that, if used in combination, allow for automated
verification of BPEL processes. The BPEL2PNML tool is used to perform a
translation from BPEL into the Petri Net Modeling Language (PNML). The
resulting model is used as input for the WofBPEL tool. The latter tool has been
built using the earlier mentioned Woflan tool. The following three analyses have
been implemented in WofBPEL: detection of unreachable activities, detection
of multiple simultaneously enabled activities that may consume the same type
of message, and determination, for each possible state of a process execution,
which types of messages may be consumed in the rest of the execution.

1.3 Coloured Petri Nets

Yang, Tan, Xiao, Yu and Liu [117–121] consider coloured Petri nets. They use
coloured Petri nets as these provide a more compact way to model business
processes than ordinary Petri nets. Yang et al. show how to map most of the basic
and structured activities of BPEL and the Web Service Choreography Interface
(WSCI), another language to describe web service composition, to coloured Petri
nets.

Also Yi and Kochut [122, 123] focus on coloured Petri nets. They sketch how
to verify BPEL processes. Furthermore, they show how the skeleton of a BPEL
process can be generated from a coloured Petri net.

2 SPIN

SPIN is a tool to verify software systems. It accepts programs written in the
process meta language (Promela) and properties specified in linear temporal
logic (LTL) as input. Provided that the Promela program is bounded, SPIN can
check if the program satisfies the LTL property. For more details about SPIN,
we refer the reader to, for example, [62].

A wide variety of software systems have been expressed in Promela and
many interesting properties can be captured in LTL. In order to exploit SPIN
to verify BPEL processes, one has to translate BPEL into Promela. A number
of researchers have developed translations of (a part of) BPEL into Promela.
Below, we will discuss their work.
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Since Promela has a formally defined semantics (see, for example, [62, Chap-
ter 7]), a map from BPEL to Promela provides us with a formal model of BPEL.

2.1 The Santa Barbara Group

Fu, Bultan and Su [51, 54] present a framework to verify properties of a web
service composition consisting of multiple BPEL processes that communicate
asynchronously. Each BPEL process is translated to a guarded automaton. Sub-
sequently, these guarded automata are mapped to Promela. The combination
of these translations provide a map from (a part of) BPEL to Promela. Such
a two step approach allows for the support of other languages than BPEL and
Promela in the future. Furthermore, Fu et al. put forward sufficient conditions
so that asynchronous communication can be replaced with synchronous commu-
nication without changing the semantics. This replacement simplifies the verifi-
cation problem.

To handle XML data and XPath expressions, Fu et al. [52] show how these
can be expressed in Promela. The Model Schema Language (MSL) is a formal
model of XML Schema. MSL is mapped to Promela. Also XPath expressions are
translated into Promela. In this way, also data manipulation in BPEL processes
can be mapped to Promela and, hence, can be verified in SPIN.

In [53], Fu et al. present the Web Service Analysis Tool (WSAT). This tool
contains, for example, a translator of BPEL processes to guarded automata. [20,
21] provide overviews of the work described in this section. For more details, we
refer the reader to the thesis of Fu [50].

2.2 Nakajima

In [89, 90], Nakajima presents a translation of the WSFL activities—WSFL is a
predecessor of BPEL—into Promela and, hence, a formal model of the WSFL
activities. Furthermore, Nakajima shows how SPIN can be exploited to verify
web service compositions expressed in WSFL. Nakajima considers BPEL in [92,
93]. The translation of BPEL activities into Promela is split into two parts. First,
a BPEL activity is mapped to an extended finite automaton. This provides
a formal model for BPEL activities. Second, the automaton is represented in
Promela. In the translation abstraction techniques are exploited. This allows for
more precise results.

In order to study information leakage in web service compositions, Nakajima
[91] proposes to decorate BPEL processes with security labels. Such a decorated
BPEL activity can be translated into Promela. Also the environment with which
the activity interacts is represented in Promela. Nakajima shows how SPIN can
be exploited to detect information leakage.

2.3 Other Approaches

Arias-Fisteus, Fernández and Kloos [8, 9] introduced a tool called VERBUS,
standing for verification for business processes. This tool has been developed
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in a modular way so that it can support multiple languages to compose web
services and so that it can exploit multiple model checkers. Currently, VERBUS
supports BPEL and the model checkers SPIN, SMV [86] and NuSMV [23]. The
tool implements a translation of most BPEL activities to finite state machines.
These finite state machines are subsequently mapped onto Promela and the input
language for SMV and NuSMV.

3 Process Algebras

A process algebra is a rather small concurrent language that abstracts from
many details and focuses on particular features. Numerous process algebras have
been introduced including, for example, the Calculus of Communicating Systems
(CCS) [87], LOTOS [15] and the π-calculus [88]. Process algebras are usually
modelled by means of labelled transition systems. The transition relation of the
labelled transition system is generally defined by a collection of axioms and
rules. Many different equivalence relations on the set of states of the labelled
transition system have been introduced. These behavioural equivalences capture
which states behave the same. For an overview of the work on process algebra,
we refer the reader to, for example, [14].

Bordeaux and Salaün present an overview of the applicability of process
algebras in the context of web services in [16].

Existing process algebras and also new process algebras have been used to
model BPEL. Below, we give an overview of this work.

3.1 Labelled Transition System Analyzer

In [74], Kramer and Magee present a process algebra named FSP (Finite State
Process). Each FSP represents a finite labelled transition system. The formal
model for FSP can be found in [74, Appendix C]. Kramer and Magee also present
a tool for FSP named Labelled Transition System Analyzer (LTSA). This tool
takes as input an FSP and translates it into a labelled transition system. Sub-
sequently, this labelled transition is analyzed. LTSA can check for safety and
progress properties as well as properties expressed in the logic LTL.

Foster, Uchitel, Magee, and Kramer have developed an extension of LTSA to
verify BPEL processes. This tool is named LTSA-WS. A key component of the
tool is the translation of the activities of BPEL into FSPs. A detailed description
of this translation can be found in [42, Appendix C]. Since FSP has a formal
semantics, this translation provides a formal model for part of BPEL.

In [44], Foster et al. show how LTSA can be exploited to check if a web
service composition implemented in BPEL satisfies a web service composition
specification captured by Message Sequence Charts (MSCs). Both the BPEL
process and the MSC are translated into FSPs. In [43], Foster et al. use LTSA
to check compatibility of web service compositions in BPEL. A case study by
Foster, Uchitel, Magee, Kramer and Hu is presented in [49].
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Foster, Uchitel, Magee, and Kramer [46] extended their earlier work to model
and verify multiple interacting BPEL processes. The tool LTSA-WS was reim-
plemented as an Eclipse plug-in [45]. An overview of this work can be found in
[41, 47].

In [48], Foster et al. extend their framework by also considering the Web
Service Choreography Description Language (WS-CDL). In this language one
can describe how web services should interact. Foster et al. present a translation
between WS-CDL and FSP. Given multiple BPEL processes and a WS-CDL
specification, the extension of the LTSA-WS tool translates all into FSPs and
checks if the BPEL processes and the WS-CDL specification are consistent.

3.2 Concurrency Workbench

Salaün, Bordeaux and Schaerf [105] advocate to use existing process algebras to
model web service compositions like those expressed in BPEL. In particular, they
show how the process algebra CCS can be exploited. The Concurrency Work-
bench (CWB) tool [24] can subsequently be used to check if the resulting CCS
processes are behaviourally equivalent or if a CCS process satisfies a property
expressed in a logic like CTL∗.

The authors [70, 71] introduce a process algebra named the BPE-calculus to
model most activities of BPEL. The focus is on links and dead-path-elimination.
Given the syntax of the BPE-calculus, in terms of a grammar, and the semantics
of the BPE-calculus, in terms of a collection of axioms and rules, the Process
Algebra Compiler [25] generates a module. This module can be incorporated
into the CWB, resulting in a tool that can also handle BPE-processes. This
tool can verify properties of BPE-processes. In [65], Huynh presents a mapping
from BPEL processes to BPE-processes. This mapping allows us to verify BPEL
processes by means of the extended CWB.

3.3 LOTOS

In [40, 106], Ferrara, Salaün and Chirichiello present a two-way mapping between
the process algebra LOTOS and BPEL. Most BPEL activities including fault
handlers, compensation handlers and event handlers are considered. By going
from BPEL to LOTOS, the toolbox CADP [39], standing for Construction and
Analysis of Distributed Processes, can be exploited for the verification of BPEL
processes. Counterexamples produced by CADP, given in LOTOS, are mapped
back to BPEL.

In [112], CADP is also proposed as the basis of a tool for the verification of
BPEL processes. Tremblay and Chae suggest to translate a BPEL activity to a
LOTOS process and to map its specification, expressed as a path expression, to
a mu-calculus expression. Subsequently, CADP can be exploited to verify if a
BPEL process conforms to its specification.
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3.4 Other Approaches

In [99], Pu, Zhao, Wang and Qiu introduce a process algebra that is based on
the activities of BPEL and focuses on fault and compensation handling. Pu et
al. provide a formal model for their process algebra. In [100], Pu, Zhu, Qiu,
Wang, Zhao and He extend the process algebra. For example, the switch and
while activity and links are covered. Pu et al. extend the model to deal with the
additional constructs. Furthermore, they introduce a behavioural equivalence
which relates those processes that behave the same. The process algebra, this
time without compensation handling, is considered in [101]. A translation that
maps each process to a network of timed automata is presented. The translation
has been proved correct and it has been implemented. The resulting network of
timed automata can be used as input for the UPPAAL tool [12]. This tool can
check properties expressed in a subset of the logic CTL.

In [59] and [58, Chapter 3], Hamadi and Benatallah introduce a process alge-
bra to model web service composition. They do not focus on BPEL in particular,
but most basic and structured activities of BPEL can easily be expressed in their
process algebra. To provide a semantics for the process algebra, each process is
mapped to a Petri net.

Butler, Ferreira and Ng [22] model almost all BPEL activities by mapping
them to the process algebra StAC, which stands for Structured Activity Com-
pensation, enriched with the B notation. The B notation is exploited to handle
data. The focus is on compensation handlers. Since the semantics of StAC is
formally defined, this provides us with a model for part of BPEL.

Mazzara and Lucchi [85] extend the π-calculus with event notification, by
adding two new constructs: one to notify an event and another to associate
a scope with an event. The semantics of this extended calculus is defined in
terms of a labelled transition system. Mazzara and Lucchi show that BPEL’s
exception handling, event handling and compensation handling can be expressed
in the calculus.

Viroli [115] presents a process algebra that captures most BPEL activities
and focuses on correlation. The process algebra is modelled by means of a labelled
transition system.

4 Abstract State Machines

Abstract state machines (ASMs) have been used to model a large variety of
languages. A basic ASM consists of a finite set of transition rules. Each transition
rule consists of two parts: a Boolean expression and a finite set of assignments.
The transition rules captures which transitions the ASM can make. A transition
takes the ASM from one state to another. The latter state is obtained from
the former state by performing the assignments of those transition rules whose
Boolean expressions evaluate to true. For an introduction to the ASM approach,
we refer the reader to, for example, [17].

ASMs have also been used to model BPEL. Below, we provided a brief
overview of this work.
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4.1 The SFU Group

A group at Simon Frasier Univerisity has provided a semantic model for BPEL
using the ASM approach. Farahbod, Glässer and Vajihollahi [34–38] model all
key aspects of BPEL. For example, the basic and structured activities, cor-
relation, and compensation, event and fault handling are modelled. To model
interaction, Farahbod et al. introduce so-called inbox and outbox managers that
deal with the message exchanges. For dealing with some of real time aspects of
BPEL, like time-outs, an abstract notion of global system time is introduced
and additional constraints on the sequences of transition are imposed.

4.2 Fahland and Reisig

The ASM model for BPEL proposed by Fahland and Reisig [32, 33, 103] extends
and refines the SFU model. Reisig discusses the model by means of an example
in [103]. In [33], the focus is on fault handlers and event handlers. It is shown
how these BPEL features can be modelled within the ASM framework. [32] can
be viewed as a variation on and an extension of the model developed by the
SFU group. For example, Fahland models dead-path-elimination. [32] provides
a complete model of BPEL.

5 Automata

Wombacher, Fankhauser and Neuhold [116] present a translation of most BPEL
activities into annotated deterministic finite automata. The states of the au-
tomata are annotated with Boolean expressions. These Boolean expressions cap-
ture how a BPEL process interacts with its environment. Since deterministic
finite automata have a well-defined semantics, the transformation provides a
model for most BPEL activities.

In [57], Haddad, Melliti, Moreaux and Rampacek model some of the activities
of XLANG, one of BPEL’s predecessors, by means of labelled transition systems.
The transitions capture the passing of time in a discrete way. Furthermore,
Haddad et al. define when two labelled transition systems, modelling XLANG
processes, interact correctly. In [56], Haddad et al. extend their results from
discrete time to real time. Instead of labelled transition systems, timed automata
are used to model the XLANG activities.

In [67], Kazhamiakin and Pistore focus on three communication models of
business processes: synchronous, ordered asynchronous, and unordered asyn-
chronous. Given a number of communicating BPEL processes, each process is
transformed into a state transition system and subsequently these systems are
composed in parallel, resulting in yet another state transition system. The result-
ing system can be fed into the NuSMV tool to check the validity of the system
with respect to a given communication model. Furthermore, NuSMV can also
be exploited to verify properties of the system.

In [98], Pistore, Traverso, Bertoli and Marconi present a number of tools
for BPEL. The tool BPEL2STS translates an (abstract) BPEL process to a
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state transition system. A number of these state transition systems, representing
BPEL processes, are composed in parallel. The resulting parallel composition is
also represented by a state transition system. The tool MBP takes as input such a
parallel composition and a requirement, the latter being formalized in EaGLe. As
output, MBP produces a state transition system such that this system in parallel
with the input system satisfies the input specification. The tool STS2BPEL
translates a state transition system to a BPEL process. Combined these tools
can synthesize web service compositions expressed in BPEL.

Baldoni, Baroglio, Martelli, Patti and Schifanella [11] propose a formal frame-
work that can be applied for checking conformance of an implementation, as de-
scribed in, for example, BPEL, to a specification, as described in, for example,
WS-CDL, and for checking if two implementations, as described in, for example,
BPEL, are compatible. Both the BPEL process and the WS-CDL specification
are mapped to a deterministic finite automaton.

6 Other Models and Verification Techniques and Tools

Duan, Bernstein, Lewis and Lu [31, 30] present a weakest precondition and a
strongest postcondition semantics for some of the BPEL activities. Also an ax-
iomatic semantics for these activities is given. Furthermore, Duan et al. have
implemented a tool that annotates activities with pre- and postconditions.

In [97], Pistore, Rovera and Busetta use Formal Tropos (FT) [55] to specify
business processes. By means of a set of formal techniques, a BPEL process is
extracted from an FT specification. Pistore et al. have extended the T-Tool [55]
with a translation of BPEL activities to finite state machines. These finite state
machines can be used as input to the tool NuSMV, which can subsequently be
exploited to verify properties of the finite state machines and, hence, of the BPEL
activities. In [68], Kazhamiakin, Pistore and Roveri show how an FT specification
of a business process can be encoded in Promela, the input language of SPIN.
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