
Models and Verification of BPEL

Franck van Breugel1 and Maria Koshkina2 ?

1 York University
4700 Keele Street, Toronto, M3J 1P3, Canada

franck@cs.yorku.ca
2 IBM

8200 Warden Avenue, Markham, L6G 1C7, Canada
mkoshkin@ca.ibm.com

Abstract. The Web Services Business Process Execution Language (BPEL
for short) is a recently developed language that is used to specify com-
positions of web services. In the last few years, a considerable amount
of work has been done on modelling (parts of) BPEL and developing
verification techniques and tools for BPEL. In this paper, we provide
an overview of the different models of BPEL that have been proposed.
Furthermore, we discuss the verification techniques for BPEL that have
been put forward and the verification tools for BPEL that have been
developed.

Introduction

The Business Process Execution Language for Web Services (BPEL4WS or
BPEL for short) was proposed by BEA, IBM and Microsoft. In July 2002, the
first version of BPEL was published [27]. Subsequently, SAP and Siebel joined
the effort. The second version of BPEL [7] was published in May 2003. That same
month, BEA, IBM, Microsoft, SAP and Siebel submitted BPEL to the Orga-
nization for the Advancement of Structured Information Standards (OASIS for
short) for standardization purposes and the Web Services Business Process Ex-
ecution Language Technical Committee (WSBPEL TC, for short) was formed.
Since then, many major vendors have joined the WSBPEL TC, including Adobe,
Hewlett-Packard, NEC, Oracle and Sun. The language has been renamed to the
Web Services Business Process Execution Language (WS-BPEL or BPEL for
short). The latest version of BPEL can be found in [10].

BPEL represents a convergence of two languages: the Web Services Flow
Language (WSFL) [72] of IBM and XLANG [111] of Microsoft. WFSL, XLANG
and BPEL are languages to compose web services. Numerous introductions to
BPEL can be found on the web and in the literature, including, for example,
[28]. Even the first books about BPEL have already appeared (see, for example,
[66]). For a detailed comparison of the languages BPEL, WSFL and XLANG we
refer the reader to, for example, [4].

? This research was supported by IBM and NSERC.



2 Franck van Breugel and Maria Koshkina

Like most languages, (the semantics of) BPEL is defined in English prose
(see [7, 10, 27]). Such descriptions, although often masterpieces of apparent clar-
ity, usually suffer from inconsistency, ambiguity and incompleteness. Also the
(initial) definition of BPEL suffered from inconsistencies (see, for example, [26,
Issue 39]), ambiguities (see, for example, [26, Issue 111]) and incompleteness
(see, for example, [26, Issue 32]). The WSBPEL TC recognized the need for a
formalism to define (the semantics of) BPEL (see [26, Issue 42]). Formalizing
the definition of BPEL eliminates inconsistencies and ambiguities and provides a
complete description of the language. Such a formal definition may prove fruitful
when implementing BPEL, when developing BPEL processes and when reason-
ing about those processes. For a detailed discussion of the merits of formally
defined models we refer the reader to, for example, [96]. Different formalisms
have been exploited to formally define (the semantics of) BPEL. In this paper,
we will present an overview of the various models that have been developed for
BPEL.

Due to the presence of concurrency and intricate features like compensa-
tion handling, correlation and death-path-elimination, BPEL processes are error-
prone. In addition, BPEL processes may use valuable resources in the form of
invocations of web services. Therefore, there is a need to ensure that BPEL pro-
cesses behave correctly. Testing is an effective way to detect incorrect behaviour.
Often it is beneficial to also exploit verification techniques and tools to detect
incorrect behaviour. For a detailed discussion of the benefits of verification we
refer the reader to, for example, [13]. The need for verification of business pro-
cesses, like those expressed in BPEL, is argued in, for example, [69]. Different
verification techniques and tools have been developed for BPEL. In this paper,
we will present an overview of these techniques and tools.

Research on modelling and verifying BPEL processes has been published in
the proceedings of numerous conferences and workshops and in several journals.
In particular, the International Conference on Business Process Management
(BPM) [6, 29, 5], the International Conference on Web Services (ICWS) [124, 1,
2] and the Workshop on Web Services and Formal Methods (WS-FM) [19, 18]
are popular venues to present this type of research. There are a few papers that
present an overview of this research area (see, for example, [63, 64]). However,
these overviews are not as focused and extensive as the one we present here. In
the rest of this paper, we will discuss almost 90 papers on models and verification
of BPEL.

Acknowledgements

The authors would like to thank Andrew Rimes and Christian Stahl for their
help with the literature search.

1 Petri Nets

Petri nets are a formal model for concurrency. A Petri net is a directed, con-
nected, and bipartite graph in which each node is either a place or a transition.



Models and Verification of BPEL 3

Tokens occupy places. When there is at least one token in every place connected
to a transition, the transition is enabled. Any enabled transition may fire remov-
ing one token from every input place, and depositing one token in each output
place. For an introduction to Petri nets refer the reader to, for example, [102].

Petri nets have been extensively used to model and verify business processes.
For an overview, we refer the reader to, for example, [3].

Since the semantics of Petri nets is formally defined, by mapping each BPEL
process to a Petri net a formal model of BPEL can be obtained. Not only does
this approach provide a model. It also allows the verification techniques and
tools developed for Petri nets to be exploited in the context of BPEL processes.
This approach has been taken by several research groups.

1.1 The German School

In [109], Schmidt and Stahl discuss a mapping from BPEL to Petri nets by giving
several examples. Each BPEL construct is mapped into a Petri net pattern. The
complete transformation from BPEL to Petri nets is given by Stahl in [110].
Hinz, Schmidt and Stahl [61] describe the tool BPEL2PN that implements the
transformation when abstracting from data. The details of this tool are presented
by Hinz in [60]. As shown in [61], the resulting Petri net can be verified using
the tool LoLA [108]. LoLA, which stands for a Low Level Analyzer, supports the
verification of standard properties of Petri nets, like, for example, determining
if a Petri net contains a deadlock, and the verification of properties expressed in
the logic CTL.

In most of his work [75–82], Martens focuses on Petri nets rather than BPEL
processes. However, since there is a mapping from BPEL processes to Petri nets,
all his results are directly applicable to BPEL. Martens introduces several criteria
for business processes and their compositions. Next, we will roughly capture
them in terms of BPEL. A BPEL process is called usable (or controllable) if
there exists an environment with which the process can interact such that the
process terminates properly. Two BPEL processes are called compatible if their
composition is usable. A BPEL is said to simulate another BPEL process if
each environment that makes the latter usable makes the former usable as well.
Two BPEL processes are called equivalent (or consistent) if the one simulates
the other and vice versa. Martens also presents algorithms to check if BPEL
processes satisfy these criteria. These algorithms have been implemented in the
tool WOMBAT [83, 84].

In [107], Schlingloff, Martens and Schmidt also consider the usability prob-
lem. They show that usability can be expressed in alternating-time temporal
logic. As a consequence, model checking algorithms for this logic can be exploited
to check for usability. Reisig, Schmidt and Stahl [104] and Lohmann, Massuthe,
Stahl and Weinberg [73] also consider the usability (or controllability) problem.

In [103], Reisig proposes to model BPEL by means of a special type of Petri
nets called business process nets.



4 Franck van Breugel and Maria Koshkina

1.2 The Business Process Management Center

In [113], Verbeek and van der Aalst focus on the structured activities of BPEL.
They present a mapping of these structured activities to a class of Petri nets
called workflow nets. For this class of Petri nets, a verification tool named Wol-
fan [114] has been developed. This tool can verify properties like, for example,
termination of a workflow net and detection of nodes that can never be acti-
vated. In their mapping from BPEL to workflow nets, they also consider links,
join conditions and dead-path-elimination.

In [95], Ouyang, van der Aalst, Breutel, Dumas, ter Hofstede and Verbeek
provide a mapping of all control-flow constructs of BPEL into Petri nets. As
a consequence, the authors provide a formal semantics of BPEL. In [94, 95],
Ouyang et al. describe two tools that, if used in combination, allow for automated
verification of BPEL processes. The BPEL2PNML tool is used to perform a
translation from BPEL into the Petri Net Modeling Language (PNML). The
resulting model is used as input for the WofBPEL tool. The latter tool has been
built using the earlier mentioned Woflan tool. The following three analyses have
been implemented in WofBPEL: detection of unreachable activities, detection
of multiple simultaneously enabled activities that may consume the same type
of message, and determination, for each possible state of a process execution,
which types of messages may be consumed in the rest of the execution.

1.3 Coloured Petri Nets

Yang, Tan, Xiao, Yu and Liu [117–121] consider coloured Petri nets. They use
coloured Petri nets as these provide a more compact way to model business
processes than ordinary Petri nets. Yang et al. show how to map most of the basic
and structured activities of BPEL and the Web Service Choreography Interface
(WSCI), another language to describe web service composition, to coloured Petri
nets.

Also Yi and Kochut [122, 123] focus on coloured Petri nets. They sketch how
to verify BPEL processes. Furthermore, they show how the skeleton of a BPEL
process can be generated from a coloured Petri net.

2 SPIN

SPIN is a tool to verify software systems. It accepts programs written in the
process meta language (Promela) and properties specified in linear temporal
logic (LTL) as input. Provided that the Promela program is bounded, SPIN can
check if the program satisfies the LTL property. For more details about SPIN,
we refer the reader to, for example, [62].

A wide variety of software systems have been expressed in Promela and
many interesting properties can be captured in LTL. In order to exploit SPIN
to verify BPEL processes, one has to translate BPEL into Promela. A number
of researchers have developed translations of (a part of) BPEL into Promela.
Below, we will discuss their work.



Models and Verification of BPEL 5

Since Promela has a formally defined semantics (see, for example, [62, Chap-
ter 7]), a map from BPEL to Promela provides us with a formal model of BPEL.

2.1 The Santa Barbara Group

Fu, Bultan and Su [51, 54] present a framework to verify properties of a web
service composition consisting of multiple BPEL processes that communicate
asynchronously. Each BPEL process is translated to a guarded automaton. Sub-
sequently, these guarded automata are mapped to Promela. The combination
of these translations provide a map from (a part of) BPEL to Promela. Such
a two step approach allows for the support of other languages than BPEL and
Promela in the future. Furthermore, Fu et al. put forward sufficient conditions
so that asynchronous communication can be replaced with synchronous commu-
nication without changing the semantics. This replacement simplifies the verifi-
cation problem.

To handle XML data and XPath expressions, Fu et al. [52] show how these
can be expressed in Promela. The Model Schema Language (MSL) is a formal
model of XML Schema. MSL is mapped to Promela. Also XPath expressions are
translated into Promela. In this way, also data manipulation in BPEL processes
can be mapped to Promela and, hence, can be verified in SPIN.

In [53], Fu et al. present the Web Service Analysis Tool (WSAT). This tool
contains, for example, a translator of BPEL processes to guarded automata. [20,
21] provide overviews of the work described in this section. For more details, we
refer the reader to the thesis of Fu [50].

2.2 Nakajima

In [89, 90], Nakajima presents a translation of the WSFL activities—WSFL is a
predecessor of BPEL—into Promela and, hence, a formal model of the WSFL
activities. Furthermore, Nakajima shows how SPIN can be exploited to verify
web service compositions expressed in WSFL. Nakajima considers BPEL in [92,
93]. The translation of BPEL activities into Promela is split into two parts. First,
a BPEL activity is mapped to an extended finite automaton. This provides
a formal model for BPEL activities. Second, the automaton is represented in
Promela. In the translation abstraction techniques are exploited. This allows for
more precise results.

In order to study information leakage in web service compositions, Nakajima
[91] proposes to decorate BPEL processes with security labels. Such a decorated
BPEL activity can be translated into Promela. Also the environment with which
the activity interacts is represented in Promela. Nakajima shows how SPIN can
be exploited to detect information leakage.

2.3 Other Approaches

Arias-Fisteus, Fernández and Kloos [8, 9] introduced a tool called VERBUS,
standing for verification for business processes. This tool has been developed



6 Franck van Breugel and Maria Koshkina

in a modular way so that it can support multiple languages to compose web
services and so that it can exploit multiple model checkers. Currently, VERBUS
supports BPEL and the model checkers SPIN, SMV [86] and NuSMV [23]. The
tool implements a translation of most BPEL activities to finite state machines.
These finite state machines are subsequently mapped onto Promela and the input
language for SMV and NuSMV.

3 Process Algebras

A process algebra is a rather small concurrent language that abstracts from
many details and focuses on particular features. Numerous process algebras have
been introduced including, for example, the Calculus of Communicating Systems
(CCS) [87], LOTOS [15] and the π-calculus [88]. Process algebras are usually
modelled by means of labelled transition systems. The transition relation of the
labelled transition system is generally defined by a collection of axioms and
rules. Many different equivalence relations on the set of states of the labelled
transition system have been introduced. These behavioural equivalences capture
which states behave the same. For an overview of the work on process algebra,
we refer the reader to, for example, [14].

Bordeaux and Salaün present an overview of the applicability of process
algebras in the context of web services in [16].

Existing process algebras and also new process algebras have been used to
model BPEL. Below, we give an overview of this work.

3.1 Labelled Transition System Analyzer

In [74], Kramer and Magee present a process algebra named FSP (Finite State
Process). Each FSP represents a finite labelled transition system. The formal
model for FSP can be found in [74, Appendix C]. Kramer and Magee also present
a tool for FSP named Labelled Transition System Analyzer (LTSA). This tool
takes as input an FSP and translates it into a labelled transition system. Sub-
sequently, this labelled transition is analyzed. LTSA can check for safety and
progress properties as well as properties expressed in the logic LTL.

Foster, Uchitel, Magee, and Kramer have developed an extension of LTSA to
verify BPEL processes. This tool is named LTSA-WS. A key component of the
tool is the translation of the activities of BPEL into FSPs. A detailed description
of this translation can be found in [42, Appendix C]. Since FSP has a formal
semantics, this translation provides a formal model for part of BPEL.

In [44], Foster et al. show how LTSA can be exploited to check if a web
service composition implemented in BPEL satisfies a web service composition
specification captured by Message Sequence Charts (MSCs). Both the BPEL
process and the MSC are translated into FSPs. In [43], Foster et al. use LTSA
to check compatibility of web service compositions in BPEL. A case study by
Foster, Uchitel, Magee, Kramer and Hu is presented in [49].



Models and Verification of BPEL 7

Foster, Uchitel, Magee, and Kramer [46] extended their earlier work to model
and verify multiple interacting BPEL processes. The tool LTSA-WS was reim-
plemented as an Eclipse plug-in [45]. An overview of this work can be found in
[41, 47].

In [48], Foster et al. extend their framework by also considering the Web
Service Choreography Description Language (WS-CDL). In this language one
can describe how web services should interact. Foster et al. present a translation
between WS-CDL and FSP. Given multiple BPEL processes and a WS-CDL
specification, the extension of the LTSA-WS tool translates all into FSPs and
checks if the BPEL processes and the WS-CDL specification are consistent.

3.2 Concurrency Workbench

Salaün, Bordeaux and Schaerf [105] advocate to use existing process algebras to
model web service compositions like those expressed in BPEL. In particular, they
show how the process algebra CCS can be exploited. The Concurrency Work-
bench (CWB) tool [24] can subsequently be used to check if the resulting CCS
processes are behaviourally equivalent or if a CCS process satisfies a property
expressed in a logic like CTL∗.

The authors [70, 71] introduce a process algebra named the BPE-calculus to
model most activities of BPEL. The focus is on links and dead-path-elimination.
Given the syntax of the BPE-calculus, in terms of a grammar, and the semantics
of the BPE-calculus, in terms of a collection of axioms and rules, the Process
Algebra Compiler [25] generates a module. This module can be incorporated
into the CWB, resulting in a tool that can also handle BPE-processes. This
tool can verify properties of BPE-processes. In [65], Huynh presents a mapping
from BPEL processes to BPE-processes. This mapping allows us to verify BPEL
processes by means of the extended CWB.

3.3 LOTOS

In [40, 106], Ferrara, Salaün and Chirichiello present a two-way mapping between
the process algebra LOTOS and BPEL. Most BPEL activities including fault
handlers, compensation handlers and event handlers are considered. By going
from BPEL to LOTOS, the toolbox CADP [39], standing for Construction and
Analysis of Distributed Processes, can be exploited for the verification of BPEL
processes. Counterexamples produced by CADP, given in LOTOS, are mapped
back to BPEL.

In [112], CADP is also proposed as the basis of a tool for the verification of
BPEL processes. Tremblay and Chae suggest to translate a BPEL activity to a
LOTOS process and to map its specification, expressed as a path expression, to
a mu-calculus expression. Subsequently, CADP can be exploited to verify if a
BPEL process conforms to its specification.



8 Franck van Breugel and Maria Koshkina

3.4 Other Approaches

In [99], Pu, Zhao, Wang and Qiu introduce a process algebra that is based on
the activities of BPEL and focuses on fault and compensation handling. Pu et
al. provide a formal model for their process algebra. In [100], Pu, Zhu, Qiu,
Wang, Zhao and He extend the process algebra. For example, the switch and
while activity and links are covered. Pu et al. extend the model to deal with the
additional constructs. Furthermore, they introduce a behavioural equivalence
which relates those processes that behave the same. The process algebra, this
time without compensation handling, is considered in [101]. A translation that
maps each process to a network of timed automata is presented. The translation
has been proved correct and it has been implemented. The resulting network of
timed automata can be used as input for the UPPAAL tool [12]. This tool can
check properties expressed in a subset of the logic CTL.

In [59] and [58, Chapter 3], Hamadi and Benatallah introduce a process alge-
bra to model web service composition. They do not focus on BPEL in particular,
but most basic and structured activities of BPEL can easily be expressed in their
process algebra. To provide a semantics for the process algebra, each process is
mapped to a Petri net.

Butler, Ferreira and Ng [22] model almost all BPEL activities by mapping
them to the process algebra StAC, which stands for Structured Activity Com-
pensation, enriched with the B notation. The B notation is exploited to handle
data. The focus is on compensation handlers. Since the semantics of StAC is
formally defined, this provides us with a model for part of BPEL.

Mazzara and Lucchi [85] extend the π-calculus with event notification, by
adding two new constructs: one to notify an event and another to associate
a scope with an event. The semantics of this extended calculus is defined in
terms of a labelled transition system. Mazzara and Lucchi show that BPEL’s
exception handling, event handling and compensation handling can be expressed
in the calculus.

Viroli [115] presents a process algebra that captures most BPEL activities
and focuses on correlation. The process algebra is modelled by means of a labelled
transition system.

4 Abstract State Machines

Abstract state machines (ASMs) have been used to model a large variety of
languages. A basic ASM consists of a finite set of transition rules. Each transition
rule consists of two parts: a Boolean expression and a finite set of assignments.
The transition rules captures which transitions the ASM can make. A transition
takes the ASM from one state to another. The latter state is obtained from
the former state by performing the assignments of those transition rules whose
Boolean expressions evaluate to true. For an introduction to the ASM approach,
we refer the reader to, for example, [17].

ASMs have also been used to model BPEL. Below, we provided a brief
overview of this work.



Models and Verification of BPEL 9

4.1 The SFU Group

A group at Simon Frasier Univerisity has provided a semantic model for BPEL
using the ASM approach. Farahbod, Glässer and Vajihollahi [34–38] model all
key aspects of BPEL. For example, the basic and structured activities, cor-
relation, and compensation, event and fault handling are modelled. To model
interaction, Farahbod et al. introduce so-called inbox and outbox managers that
deal with the message exchanges. For dealing with some of real time aspects of
BPEL, like time-outs, an abstract notion of global system time is introduced
and additional constraints on the sequences of transition are imposed.

4.2 Fahland and Reisig

The ASM model for BPEL proposed by Fahland and Reisig [32, 33, 103] extends
and refines the SFU model. Reisig discusses the model by means of an example
in [103]. In [33], the focus is on fault handlers and event handlers. It is shown
how these BPEL features can be modelled within the ASM framework. [32] can
be viewed as a variation on and an extension of the model developed by the
SFU group. For example, Fahland models dead-path-elimination. [32] provides
a complete model of BPEL.

5 Automata

Wombacher, Fankhauser and Neuhold [116] present a translation of most BPEL
activities into annotated deterministic finite automata. The states of the au-
tomata are annotated with Boolean expressions. These Boolean expressions cap-
ture how a BPEL process interacts with its environment. Since deterministic
finite automata have a well-defined semantics, the transformation provides a
model for most BPEL activities.

In [57], Haddad, Melliti, Moreaux and Rampacek model some of the activities
of XLANG, one of BPEL’s predecessors, by means of labelled transition systems.
The transitions capture the passing of time in a discrete way. Furthermore,
Haddad et al. define when two labelled transition systems, modelling XLANG
processes, interact correctly. In [56], Haddad et al. extend their results from
discrete time to real time. Instead of labelled transition systems, timed automata
are used to model the XLANG activities.

In [67], Kazhamiakin and Pistore focus on three communication models of
business processes: synchronous, ordered asynchronous, and unordered asyn-
chronous. Given a number of communicating BPEL processes, each process is
transformed into a state transition system and subsequently these systems are
composed in parallel, resulting in yet another state transition system. The result-
ing system can be fed into the NuSMV tool to check the validity of the system
with respect to a given communication model. Furthermore, NuSMV can also
be exploited to verify properties of the system.

In [98], Pistore, Traverso, Bertoli and Marconi present a number of tools
for BPEL. The tool BPEL2STS translates an (abstract) BPEL process to a



10 Franck van Breugel and Maria Koshkina

state transition system. A number of these state transition systems, representing
BPEL processes, are composed in parallel. The resulting parallel composition is
also represented by a state transition system. The tool MBP takes as input such a
parallel composition and a requirement, the latter being formalized in EaGLe. As
output, MBP produces a state transition system such that this system in parallel
with the input system satisfies the input specification. The tool STS2BPEL
translates a state transition system to a BPEL process. Combined these tools
can synthesize web service compositions expressed in BPEL.

Baldoni, Baroglio, Martelli, Patti and Schifanella [11] propose a formal frame-
work that can be applied for checking conformance of an implementation, as de-
scribed in, for example, BPEL, to a specification, as described in, for example,
WS-CDL, and for checking if two implementations, as described in, for example,
BPEL, are compatible. Both the BPEL process and the WS-CDL specification
are mapped to a deterministic finite automaton.

6 Other Models and Verification Techniques and Tools

Duan, Bernstein, Lewis and Lu [31, 30] present a weakest precondition and a
strongest postcondition semantics for some of the BPEL activities. Also an ax-
iomatic semantics for these activities is given. Furthermore, Duan et al. have
implemented a tool that annotates activities with pre- and postconditions.

In [97], Pistore, Rovera and Busetta use Formal Tropos (FT) [55] to specify
business processes. By means of a set of formal techniques, a BPEL process is
extracted from an FT specification. Pistore et al. have extended the T-Tool [55]
with a translation of BPEL activities to finite state machines. These finite state
machines can be used as input to the tool NuSMV, which can subsequently be
exploited to verify properties of the finite state machines and, hence, of the BPEL
activities. In [68], Kazhamiakin, Pistore and Roveri show how an FT specification
of a business process can be encoded in Promela, the input language of SPIN.

References

1. Proceedings of the 2nd IEEE International Conference on Web Services, San
Diego, CA, USA, July 2004. IEEE.

2. Proceedings of the 2005 IEEE International Conference on Web Services, Orlando,
FL, USA, July 2005. IEEE.

3. W.M.P. van der Aalst. Challenges in business process management: Verification
of business processes using Petri nets. Bulletin of the EATCS, 80:174–199, June
2003.

4. W.M.P. van der Aalst. Don’t go with the flow: Web services composition standards
exposed. IEEE Intelligent Systems, 18(1):72–76, January/February 2003.

5. W.M.P. van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors. Pro-
ceedings of the 3rd International Conference on Business Process Management,
volume 3649 of Lecture Notes in Computer Science, Nancy, France, September
2005. Springer-Verlag.



Models and Verification of BPEL 11

6. W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske, editors. Proceedings
of the International Conference on Business Process Management, volume 2678
of Lecture Notes in Computer Science, Eindhoven, The Netherlands, June 2003.
Springer-Verlag.

7. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business process
execution language for web services, version 1.1, May 2003.

8. J. Arias-Fisteus, L.S. Fernández, and C.D. Kloos. Formal verification of
BPEL4WS business collaborations. In K. Bauknecht, M. Bichler, and B. Pröll,
editors, Proceedings of the 5th International Conference on Electronic Commerce
and Web Technologies, volume 3182 of Lecture Notes in Computer Science, pages
76–85, Zaragoza, Spain, August/September 2004. Springer-Verlag.

9. J. Arias-Fisteus, L.S. Fernández, and C.D. Kloos. Applying model checking to
BPEL4WS business collaborations. In H. Haddad, L.M. Liebrock, A. Omicini, and
R.L. Wainwright, editors, Proceedings of the 2005 ACM Symposium on Applied
Computing, pages 826–830, Santa Fe, NM, USA, March 2005. ACM.

10. A. Arkin, S. Askary, B. Bloch, F. Curbera, Y. Goland, N. Kartha, C.K. Liu,
V. Mehta, S. Thatte, P. Yendluri, A. Yiu, and A. Alves. Web services business
process execution language, version 2.0, December 2005.

11. M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and C. Schifanella. Verifying
the conformance of web services to global interaction protocols: a first step. In
M. Bravetti, L. Kloul, and G. Zavattaro, editors, Proceedings of the 2nd Interna-
tional Workshop on Web Services and Formal Methods, volume 3670 of Lecture
Notes in Computer Science, pages 257–271, Versailles, France, September 2005.
Springer-Verlag.

12. G. Behrmann, A. David, and K.G. Larsen. A tutorial on UPPAAL. In
M. Bernardo and F. Corradini, editors, Proceedings on the International School on
Formal Methods for the Design of Computer, Communication, and Software Sys-
tems, volume 3185 of Lecture Notes in Computer Science, pages 200–236, Berti-
nora, Italy, September 2004. Springer-Verlag.

13. B. Bérard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, and Ph. Sch-
noebelen. Systems and Software Verification. Springer-Verlag, Berlin, Germany,
2001.

14. J.A. Bergstra, A. Ponse, and S.A. Smolka, editors. Handbook of Process Algebra.
Elsevier, Amsterdam, The Netherlands, 2001.

15. T. Bolognesi and E. Brinksma. Introduction to the ISO specification language
LOTOS. Computer Networks, 14:25–59, 1987.

16. L. Bordeaux and G. Salaün. Using process algebra for web services: Early results
and perspectives. In M. Shan, U. Dayal, and M. Hsu, editors, Proceedings of
the 5th International Workshop on Technologies for E-Services, volume 3324 of
Lecture Notes in Computer Science, pages 54–68, Toronto, Canada, August 2004.
Springer-Verlag.

17. E. Börger and R. Stärk. Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer-Verlag, New York, NY, USA, 2003.

18. M. Bravetti, L. Kloul, and G. Zavattaro, editors. Proceedings of the 2nd Interna-
tional Workshop on Web Services and Formal Methods, volume 3670 of Lecture
Notes in Computer Science, Versailles, France, September 2005. Sringer-Verlag.

19. M. Bravetti and G. Zavattaro, editors. Proceedings of the 1st International Work-
shop on Web Services and Formal Methods, volume 105 of Electronic Notes in
Theoretical Computer Science, Pisa, Italy, February 2004. Elsevier.



12 Franck van Breugel and Maria Koshkina

20. T. Bultan, X. Fu, and J. Su. Tools for automated verification of web services. In
F. Wang, editor, Proceedings of the 2nd International Conference on Automated
Technology for Verification and Analysis, volume 3299 of Lecture Notes in Com-
puter Science, pages 8–10, Taipei, Taiwan, October/November 2004. Springer-
Verlag.

21. T. Bultan, X. Fu, and J. Su. Analyzing conversations of web services. IEEE
Internet Computing, 10(1):18–25, January/February 2006.

22. M. Butler, C. Ferreira, and M.Y. Ng. Precise modelling of compensating business
transactions and its application to BPEL. Journal of Universal Computer Science,
11(5):712–743, May 2005.

23. A. Cimatti, E.M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: a new symbolic
model verifier. Software Tools for Technology Transfer, 2(4):410–425, March 2000.

24. R. Cleaveland and S. Sims. The NCSU concurrency workbench. In R. Alur
and T. Henzinger, editors, Proceedings of the 8th International Conference on
Computer Aided Verification, volume 1102 of Lecture Notes in Computer Science,
pages 394–397, New Brunswick, NJ, USA, July 1996. Springer-Verlag.

25. R. Cleaveland and S.T. Sims. Generic tools for verifying concurrent systems.
Science of Computer Programming, 42(1):39–47, January 2002.

26. Web Services Business Process Execution Language Technical Committee. WS
BPEL issues list, April 2006.

27. F. Curbera, Y. Goland, J. Klein, F. Leymann, D. Roller, S. Thatte, and S. Weer-
awarana. Business process execution language for web services, version 1.0, July
2002.

28. F. Curbera, R. Khalaf, N. Mukhi, S. Tai, and S. Weerawarana. The next step in
web services. Communications of the ACM, 46(10):29–34, October 2003.

29. J. Desel, B. Pernici, and M. Weske, editors. Proceedings of the 2nd International
Conference on Business Process Management, volume 3080 of Lecture Notes in
Computer Science, Potsdam, Germany, June 2004. Springer-Verlag.

30. Z. Duan, A. Bernstein, P. Lewis, and S. Lu. A model for abstract process specifi-
cation, verification and composition. In M. Aiello, M. Aoyama, F. Curbera, and
M.P. Papazoglou, editors, Proceedings of the 2nd ACM International Conference
on Service Oriented Computing, pages 232–241, New York, NY, USA, November
2004. ACM.

31. Z. Duan, A. Bernstein, P. Lewis, and S. Lu. Semantics based verification and
synthesis of BPEL4WS abstract processes. In Proceedings of the IEEE Interna-
tional Conference on Web Services, pages 734–737, San Diego, CA, USA, July
2004. IEEE.

32. D. Fahland. Complete abstract operational semantics for the web service business
process execution language. Informatik-Berichte 190, Humboldt-Universität zu
Berlin, Berlin, Germany, September 2005.

33. D. Fahland and W. Reisig. ASM-based semantics for BPEL: The negative control
flow. In D. Beauquier, E. Börger, and A. Slissenko, editors, Proceedings of the
12th International Workshop on Abstract State Machines, pages 131–151, Paris,
France, March 2005.

34. R. Farahbod. Extending and refining an abstract operational semantics of the
web services architecture for the business process execution language. Master’s
thesis, Simon Fraser University, Burnaby, Canada, July 2004.

35. R. Farahbod, U. Glässer, and M. Vajihollahi. Abstract operational semantics of
the business process execution language for web services. Technical Report SFU-
CMPT-TR-2004-03, Simon Frasier University, Burnaby, Canada, April 2004.



Models and Verification of BPEL 13

36. R. Farahbod, U. Glässer, and M. Vajihollahi. Specification and validation of the
business process execution language for web services. In W. Zimmermann and
B. Thalheim, editors, Proceedings of the 11th International Workshop on Abstract
State Machines, volume 3052 of Lecture Notes in Computer Science, pages 78–94,
Lutherstadt Wittenberg, Germany, May 2004. Springer-Verlag.

37. R. Farahbod, U. Glässer, and M. Vajihollahi. An abstract machine architecture
for web service based business process management. In C. Bussler and A. Haller,
editors, Proceedings of the Business Process Management Workshops, volume 3812
of Lecture Notes in Computer Science, pages 144–157, Nancy, France, September
2005. Springer-Verlag.

38. R. Farahbod, U. Glässer, and M. Vajihollahi. A formal semantics for the business
process execution language for web services. In S. Bevinakoppa, L.F. Pires, and
S. Hammoudi, editors, Proceedings of the Joint Workshop on Web Services and
Model-Driven Enterprise Information Services, pages 122–133, Miami, FL, USA,
May 2005. INSTICC Press.

39. J.-C. Fernandez, H. Garavel, A. Kerbrat, L. Mounier, R. Mateescu, and
M. Sighireanu. CADP – a protocol validation and verification toolbox. In R. Alur
and T. Henzinger, editors, Proceedings of the 8th International Conference on
Computer Aided Verification, volume 1102 of Lecture Notes in Computer Science,
pages 437–440, New Brunswick, NJ, USA, July 1996. Springer-Verlag.

40. A. Ferrara. Web services: a process algebra approach. In M. Aiello, M. Aoyama,
F. Curbera, and M.P. Papazoglou, editors, Proceedings of 2nd ACM International
Conference on Service Oriented Computing, pages 242–251, New York, NY, USA,
November 2004. ACM.

41. H. Foster. Web service compositions: From XML syntax to service models. In
Proceedings of XML 2005 Conference, Atlanta, GA, USA, November 2005. Ren-
derX.

42. H. Foster. A Rigorous Approach To Engineering Web Service Compositions. PhD
thesis, Imperial College, London, UK, January 2006.

43. H. Foster, S. Uchitel, J. Kramer, and J. Magee. Compatibility verification for
web service choreography. In Proceedings of the IEEE International Conference
on Web Services, pages 738–741, San Diego, CA, USA, June 2004. IEEE.

44. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based verification of
web service compositions. In Proceedings of 18th IEEE International Conference
on Automated Software Engineering, pages 152–163, Montreal, Canada, October
2003. IEEE.

45. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Leveraging Eclipse for integrated
model-based engineering of web service compositions. In Proceedings of the 2005
OOPSLA Workshop on Eclipse Technology Exchange, pages 95–99, San Diego,
CA, USA, October 2005. ACM.

46. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Tool support for model-based
engineering of web service compositions. In Proceedings of the 2005 IEEE In-
ternational Conference on Web Services, pages 95–102, Orlando, FL, USA, July
2005. IEEE.

47. H. Foster, S. Uchitel, J. Magee, and J. Kramer. LTSA-WS: A tool for model-based
verification of web service compositions and choreography. In Proceeding of the
28th International Conference on Software Engineering, pages 771–774, Shanghai,
China, May 2006. ACM.

48. H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based analysis of obli-
gations in web service choreography. In Proceedings of the International Confer-



14 Franck van Breugel and Maria Koshkina

ence on Internet and Web Applications and Services, pages 149–149, Guadeloupe,
February 2006. IEEE.

49. H. Foster, S. Uchitel, J. Magee, J. Kramer, and M. Hu. Using a rigorous approach
for engineering web service compositions: a case study. In Proceedings of the 2005
IEEE International Conference on Services Computing, volume 1, pages 217–224,
Orlando, FL, USA, July 2005. IEEE.

50. X. Fu. Formal Specification and Verification of Asynchronously Communicating
Web Services. PhD thesis, University of California, Santa Barbara, CA, USA,
June 2004.

51. X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL web services. In S.I.
Feldman, M. Uretsky, M. Najork, and C.E. Wills, editors, Proceedings of the 13th
International World Wide Web Conference, pages 621–630, New York, NY, USA,
May 2004. ACM.

52. X. Fu, T. Bultan, and J. Su. Model checking XML manipulating software. In
G.S. Avrunin and G. Rothermel, editors, Proceedings of the ACM/SIGSOFT In-
ternational Symposium on Software Testing and Analysis, pages 252–262, Boston,
MA, USA, July 2004. ACM.

53. X. Fu, T. Bultan, and J. Su. WSAT: A tool for formal analysis of web services. In
R. Alur and D. Peled, editors, Proceedings of the 16th International Conference on
Computer Aided Verification, volume 3114 of Lecture Notes in Computer Science,
pages 510–514, Boston, MA, USA, July 2004. Springer-Verlag.

54. X. Fu, T. Bultan, and J. Su. Synchronizability of conversations among web ser-
vices. IEEE Transactions on Software Engineering, 31(12):1042–1055, December
2005.

55. A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri, and P. Traverso. Spec-
ifying and analyzing early requirements in Tropos. Requirements Engineering,
9(2):132–150, May 2004.

56. S. Haddad, T. Melliti, P. Moreaux, and S. Rampacek. A dense time semantics
for web services specifications languages. In Proceedings of the 1st International
Conference on Information and Communication Technologies: from Theory to
Applications, pages 647–648, Damas, Syrie, April 2004. IEEE.

57. S. Haddad, T. Melliti, P. Moreaux, and S. Rampacek. Modelling web services
interoperability. In Proceedings of the 6th International Conference on Enterprise
Information Systems, volume 4, pages 287–295, Porto, Portugal, April 2004.

58. R. Hamadi. Formal Composition and Recovery Policies in Service-Based Business
Processes. PhD thesis, The University of New South Wales, Sydney, Australia,
April 2005.

59. R. Hamadi and B. Benatallah. A Petri net-based model for web service compo-
sition. In K. Schewe and X. Zhou, editors, Proceedings of the 14th Australasian
Database Conference, volume 17 of CRPITS, pages 191–200, Adelaide, Australia,
February 2003. Australian Computer Society.

60. S. Hinz. Implementierung einer Petrinetz-semantik für BPEL. Master’s thesis,
Humboldt-Universität zu Berlin, Berlin, Germany, March 2005.

61. S. Hinz, K. Schmidt, and C. Stahl. Transforming BPEL to Petri nets. In W.M.P.
van der Aalst, B. Benatallah, F. Casati, and F. Curbera, editors, Proceedings of
the 3rd International Conference on Business Process Management, volume 2649
of Lecture Notes in Computer Science, pages 220–235, Nancy, France, September
2005. Springer-Verlag.

62. G.J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, Boston, MA, USA, 2004.



Models and Verification of BPEL 15

63. R. Hull and J. Su. Tools for design of composite web services. In G. Weikum, A.C.
König, and S. Deßloch, editors, Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 958–961, Paris, France, June 2004.
ACM.

64. R. Hull and J. Su. Tools for composite web services: A short overview. SIGMOD
Record, 34(2):86–95, June 2005.

65. K. Huynh. Analysis through reflection: walking the EMF model of BPEL4WS.
Master’s thesis, York University, Toronto, Canada, September 2005.

66. M.B. Juric, B. Mathew, and P. Sarang. Business Process Execution Language for
Web Services: BPEL and BPEL4WS. Packt, Birmingham, UK, second edition,
2006.

67. R. Kazhamiakin and M. Pistore. Parametric communication model for the veri-
fication of BPEL4WS compositions. In M. Bravetti, L. Kloul, and G. Zavattaro,
editors, Proceedings of the 2nd International Workshop on Web Services and For-
mal Methods, volume 3670 of Lecture Notes in Computer Science, pages 318–332,
Versailles, France, September 2005. Springer-Verlag.

68. R. Kazhamiakin, M. Pistore, and M. Roveri. Formal verification of requirements
using SPIN: A case study on web services. In Proceedings of the 2nd International
Conference on Software Engineering and Formal Methods, pages 406–415, Beijing,
China, September 2004. IEEE.

69. J. Koehler, G. Tirenni, and S. Kumaran. From business process model to con-
sistent implementation: a case study for formal verification methods. In Proceed-
ings of the 6th International Enterprise Distributed Object Computing Conference,
pages 96–106, Lausanne, Switzerland, September 2002. IEEE.

70. M. Koshkina. Verification of business processes for web services. Master’s thesis,
York University, Toronto, Canada, October 2003.

71. M. Koshkina and F. van Breugel. Modelling and verifying web service orchestra-
tion by means of the concurrency workbench. ACM SIGSOFT Software Engi-
neering Notes, 29(5), September 2004.

72. F. Leymann. Web services flow language (WSFL 1.0), May 2001.

73. N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. Analyzing interacting
BPEL processes. In Proceedings of the 4th International Conference on Busi-
ness Process Management, Lecture Notes in Computer Science, Vienna, Austria,
September 2006. Springer-Verlag.

74. J. Magee and J. Kramer. Concurrency: State Models and Java Programs. Wiley,
New York, NY, USA, second edition, 2006.

75. A. Martens. Distributed Business Processes — Modeling and Verification by help
of Web Services. PhD thesis, Humboldt-Universität zu Berlin, Berlin, Germany,
July 2003.

76. A. Martens. On compatibility of web services. Petri Net Newsletter, 65:12–20,
October 2003.

77. A. Martens. On usability of web services. In C. Calero, O. Diaz, and M. Piattini,
editors, Proceedings of 4th International Conference on Web Information Systems
Engineering Workshops, pages 182–190, Rome, Italy, December 2003. IEEE.

78. A. Martens. Analysis and re-engineering of web services. In Proceedings of the
6th International Conference on Enterprise Information Systems, pages 419–426,
Porto, Portugal, April 2004.

79. A. Martens. Verteilte Geschäftsprozesse – Modellierung und Verifikation mit Hilfe
von Web Services. WiKu-Verlag, 2004.



16 Franck van Breugel and Maria Koshkina

80. A. Martens. Analyzing web service based business processes. In M. Cerioli, editor,
Proceedings of the 8th International Conference on Fundamental Approaches to
Software Engineering, volume 3442 of Lecture Notes in Computer Science, pages
19–33, Edinburgh, UK, April 2005. Springer-Verlag.

81. A. Martens. Consistency between executable and abstract processes. In Proceed-
ings of the 2005 IEEE International Conference on e-Technology, e-Commerce
and e-Service, pages 60–67, Hong Kong, March/April 2005. IEEE.

82. A. Martens. Simulation and equivalence between BPEL process models. In
D. Tutsch, editor, Proceedings of the Design, Analysis, and Simulation of Dis-
tributed Systems Symposium, San Diego, CA, USA, April 2005. The Society for
Modeling and Simulation International.

83. A. Martens and S. Moser. Diagnosing SCA components using WOMBAT. In
Proceedings of the 4th International Conference on Business Process Management,
Lecture Notes in Computer Science, Vienna, Austria, September 2006. Springer-
Verlag.

84. A. Martens, S. Moser, A. Gerhardt, and K. Funk. Analyzing compatibility of
BPEL processes. In Proceedings of the Advanced International Conference on
Telecommunications and the International Conference on Internet and Web Ap-
plications and Services, page 147, Guadeloupe, February 2006. IEEE.

85. M. Mazarra and R. Lucchi. A framework for generic error handling in business
processes. In Proceedings of the 1st International Workshop on Web Services and
Formal Method, volume 105 of Electronic Notes in Theoretical Computer Science,
pages 133–145, Pisa, Italy, February 2004. Elsevier.

86. K.L. McMillan. Symbolic Model Checking: An Approach to the State Explosion
Problem. Kluwer, Boston, MA, USA, 1993.

87. R. Milner. Communication and Concurrency. Prentice Hall, New York, NY, USA,
1989.

88. R. Milner. Communicating and Mobile Systems: The π-Calculus. Cambridge
University Press, Cambridge, UK, 1999.

89. S. Nakajima. On verifying web service flows. In Proceedings of the Symposium
on Applications and the Internet Workshops, pages 223–224, Nara City, Japan,
January/February 2002. IEEE.

90. S. Nakajima. Verification of web service flows with model-checking techniques. In
Proceedings of the 1st International Symposium on Cyber Worlds, pages 378–386,
Tokyo, Japan, November 2002. IEEE.

91. S. Nakajima. Model-checking of safety and security aspects in web service flows.
In N. Koch, P. Fraternali, and M. Wirsing, editors, Proceedings of the 4th In-
ternational Conference on Web Engineering, volume 3140 of Lecture Notes in
Computer Science, pages 488–501, Munich, Germany, July 2004. Springer-Verlag.

92. S. Nakajima. Lightweight formal analysis of web service flows. Progress in Infor-
matics, 1(2):57–76, November 2005.

93. S. Nakajima. Model-checking behavioral specification of BPEL applications. In
Proceedings of the International Workshop on Web Languages and Formal Meth-
ods, volume 151(2) of Electronic Notes in Theoretical Computer Science, pages
89–105, New Castle, UK, July 2005. Elsevier.

94. C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. ter Hofstede,
and E. Verbeek. WofBPEL: A tool for automated analysis of BPEL processes. In
B. Benatallah, F. Casati, and P. Traverso, editors, Proceedings of the 3rd Interna-
tional Conference on Service-Oriented Computing, volume 3826 of Lecture Notes
in Computer Science, pages 484–489, Amsterdam, The Netherlands, December
2005. Springer-Verlag.



Models and Verification of BPEL 17

95. C. Ouyang, W.M.P. van der Aalst, S. Breutel, M. Dumas, A.H.M. ter Hofstede,
and H.M.W. Verbeek. Formal semantics and analysis of control flow in WS-BPEL.
Report BPM-05-15, BPM Center, 2005.

96. F.G. Pagan. Formal Specification of Programming Languages. Prentice Hall, New
York, NY, USA, 1981.

97. M. Pistore, M. Roveri, and P. Busetta. Requirements-driven verification of web
services. In Proceedings of the 1st International Workshop on Web Services and
Formal Method, volume 105 of Electronic Notes in Theoretical Computer Science,
pages 95–108, Pisa, Italy, February 2004. Elsevier.

98. M. Pistore, P. Traverso, P. Bertoli, and A. Marconi. Automated synthesis of
composite BPEL4WS web services. In Proceedings of the 2005 IEEE International
Conference on Web Services, pages 293–301, Orlando, FL, USA, July 2005. IEEE.

99. G. Pu, X. Zhao, S. Wang, and Z. Qiu. Towards the semantics and verification
of BPEL4WS. In Proceedings of the International Workshop on Web Languages
and Formal Methods, volume 151(2) of Electronic Notes in Theoretical Computer
Science, pages 33–52, New Castle, UK, July 2005. Elsevier.

100. G. Pu, H. Zhu, Z. Qiu, S. Wang, X. Zhao, and J. He. Theoretical foundation
of scope-based compensable flow language for web service. In R. Gorrieri and
H. Wehrheim, editors, Proceedings of the 8th IFIP WG 6.1 International Con-
ference on Formal Methods for Open Object-Based Distributed Systems, volume
4037 of Lecture Notes in Computer Science, pages 251–266, Bologna, Italy, June
2006. Springer-Verlag.

101. Z. Qiu, S. Wang, G. Pu, and X. Zhao. Semantics of BPEL4WS-like fault and
compensation handling. In J. Fitzgerald, I.J. Hayes, and A. Tarlecki, editors,
Proceedings of the International Symposium on Formal Methods, volume 3582 of
Lecture Notes in Computer Science, pages 350–365, Newcastle upon Tyne, UK,
July 2005. Springer-Verlag.

102. W. Reisig. Petri Nets: An Introduction. Springer-Verlag, New York, NY, USA,
1985.

103. W. Reisig. Modeling- and analysis techniques for web services and business pro-
cesses. In M. Steffen and G. Zavattaro, editors, Proceedings of the 7th IFIP
WG 6.1 International Conference on Formal Methods for Open Object-Based
Distributed Systems, volume 3535 of Lecture Notes in Computer Science, pages
243–258, Athens, Greece, June 2005. Springer-Verlag.

104. W. Reisig, K. Schmidt, and C. Stahl. Kommunizierende workflow-services model-
lieren und analysieren. Informatik - Forschung und Entwicklung, 20(1/2):90–101,
October 2005.

105. G. Salaün, L. Bordeaux, and M. Schaerf. Describing and reasoning on web services
using process algebra. In Proceedings of the IEEE International Conference on
Web Services, pages 43–51, San Diego, CA, USA, June 2004. IEEE.

106. G. Salaün, A. Ferrara, and A. Chirichiello. Negotiation among web services using
LOTOS/CADP. In L. Zhang, editor, Proceedings of the European Conference on
Web Services, volume 3250 of Lecture Notes in Computer Science, pages 198–212,
Erfurt, Germany, September 2004. Springer-Verlag.

107. B. Schlingloff, A. Martens, and K. Schmidt. Modeling and model checking web
services. In Proceedings of the 2nd International Workshop on Logic and Commu-
nication in Multi-Agent Systems, volume 126 of Electronic Notes in Theoretical
Computer Science, pages 3–26, Nancy, France, August 2004. Elsevier.

108. K. Schmidt. LoLA – a low level analyser. In M. Nielsen and D. Simpson, editors,
Proceedings of the 21st International Conference on Application and Theory of



18 Franck van Breugel and Maria Koshkina

Petri Nets, volume 1825 of Lecture Notes in Computer Science, pages 465–474,
Aarhus, Denmark, June 2000. Springer-Verlag.

109. K. Schmidt and C. Stahl. A Petri net semantic for BPEL4WS – validation and
application. In E. Kindler, editor, Proceedings of the 11th Workshop on Algorithms
and Tools for Petri Nets, pages 1–6, Paderborn, Germany, September/October
2004. Universität Paderborn.

110. C. Stahl. Transformation von BPEL4WS in Petrinetze. Master’s thesis,
Humboldt-Universität zu Berlin, Berlin, Germany, April 2004.

111. S. Thatte. XLANG, 2001.
112. G. Tremblay and J. Chae. Towards specifying contracts and protocols for web

services. In H. Mili and F. Khendek, editors, Proceedings of the MCeTech Montreal
Conference on eTechnologies, pages 73–85, Montreal, Canada, January 2005.

113. H.M.W. Verbeek and W.M.P. van der Aalst. Analyzing BPEL processes us-
ing Petri nets. In D. Marinescu, editor, Proceedings of the Second International
Workshop on Applications of Petri Nets to Coordination, Workflow and Business
Process Management, pages 59–78, Miami, FL, USA, October 2005.

114. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing workflow
processes using Woflan. The Computer Journal, 44(4):246–279, July 2001.

115. M. Viroli. Towards a formal foundation to orchestration languages. In Proceedings
of the 1st International Workshop on Web Services and Formal Method, volume
105 of Electronic Notes in Theoretical Computer Science, pages 51–71, Pisa, Italy,
February 2004. Elsevier.

116. A. Wombacher, P. Fankhauser, and E. Neuhold. Transforming BPEL into an-
notated deterministic finite state automata for service discovery. In Proceedings
of the 2nd IEEE International Conference on Web Services, pages 316–323, San
Diego, CA, USA, July 2004. IEEE.

117. Y. Yang, Q. Tan, and Y. Xiao. Verifying web services composition. In J. Akoka,
S.W. Liddle, I. Song, M. Bertolotto, I. Comyn-Wattiau, S.S. Cherfi, W. vanden
Heuvel, B. Thalheim, M. Kolp, P. Bresciani, J. Trujillo, C. Kop, and H.C. Mayr,
editors, Proceedings of the ER 2005 Workshops, volume 3770 of Lecture Notes in
Computer Science, pages 354–363, Klagenfurt, Austria, October 2005. Springer-
Verlag.

118. Y. Yang, Q. Tan, and Y. Xiao. Verifying web services composition based on
hierarchical colored Petri nets. In Proceedings of the 1st International Workshop
on Interoperability of Heterogeneous Information Systems, pages 47–54, Bremen,
Germany, November 2005. ACM.

119. Y. Yang, Q. Tan, Y. Xiao, J. Yu, and F. Liu. Exploiting hierarchical CP-nets to
increase reliability of web services workflow. In Proceeding of the International
Symposium on Applications and the Internet, pages 116–122, Phoeniz, AZ, USA,
January 2006. IEEE.

120. Y. Yang, Q. Tan, Xiao Y, J. Yu, and F. Liu. Verifying web services composition:
A transformation-based approach. In Proceedings of the 6th International Con-
ference on Parallel and Distributed Computing, pages 546–548, Dalian, China,
December 2005. IEEE.

121. Y. Yang, Q. Tan, J. Yu, and F. Liu. Transformation BPEL to CP-nets for verifying
web services composition. In Proceedings of the International Conference on Next
Generation Web Services Practices, Seoul, Korea, August 2005. IEEE.

122. X. Yi and K.J. Kochut. A CP-nets-based design and verification framework for
web services composition. In Proceedings of the 2nd IEEE International Confer-
ence on Web Services, pages 756–760, San Diego, CA, USA, July 2004. IEEE.



Models and Verification of BPEL 19

123. X. Yi and K.J. Kochut. Process composition of web services with complex con-
versation protocols: a colored Petri nets based approach. In Proceedings of the
Design, Analysis, and Simulation of Distributed Systems Symposium, pages 141–
148, Arlington, VA, USA, April 2004. The Society for Modeling and Simulation
International.

124. L.-J. Zhang, editor. Proceedings of the International Conference on Web Services,
Las Vegas, NV, USA, June 2003. CSREA Press.


