
 A Framework for Studying Clones In Large Software Systems

Zhen Ming Jiang and Ahmed E. Hassan
University of Victoria
Victoria, BC, Canada

{zmjiang, ahmed}@ece.uvic.ca

Abstract

Clones are code segments that have been created by
copying-and-pasting from other code segments. Clones
occur often in large software systems. It is reported that 5
to 50% of the source code of a large software system is
cloned. A major challenge when studying code cloning in
large software systems is handling the large amount of
clone candidates produced by leading edge clone detec-
tion tools. For example, the CCFinder, clone detection
tool, produces over 7 million pairs of clone candidates for
the Linux kernel (which consists of over 4 MLOC). More-
over, the output of clone detection tools grows rapidly as
a software system evolves. Researchers and developers
need tools to help them study the large amount of clone
data in order to better understand the clone phenomena
in large systems. In this paper, we propose a data mining
framework to help researchers cope with the large
amount of data produced by clone detection tools. We
propose techniques to reduce, abstract and highlight the
most interesting data produced by clone detection tools.
Our framework also introduces a visualization tool which
allows users to query and explore clone data at various
abstraction levels. We demonstrate our framework on a
case study of the clone phenomena in the Linux kernel.

1. Introduction
A clone is a code segment that has been created though
duplication of another piece of code. Clones are quite
common in large software systems. It is reported that
about 5 to 50% [1, 2, 3] of the source code is cloned. De-
velopers clone code for many reasons. Code cloning may
be unavoidable due to language limitations [6] (e.g., for
code template [4] or for implementing cross-cutting con-
cerns [7]). Cloning as well helps in minimizing risks [5]
by reusing code and designs [4] and experimenting with
different designs [8]. However, many researchers believe
that cloning is a “bad code smell” since it complicates the
maintenance of long lived systems [2, 3, 9, 10, 11, 12].
Unfortunately, there is little empirical study done on the
consequence of cloning [13].
One of the major challenges when studying clones in
large software systems is handling the large amount of
data produced by state of the art clone detection tools. For
large software systems such as the Linux kernel (with
over 4 MLOC), a clone detection tool (e.g., CCFinder
[11]) would produce around 7 million pairs of clone can-
didates (i.e. potential clones). The volume of clone data
reported by CCFinder increases dramatically as the sys-
tem evolves.

Figure 1. A Plot of the Growth of Clone Pairs As
Produced By the CCFinder

Figure 1 plots the number of clone pairs over the lines of
code for the Linux kernel over time. The Linux kernel has
grown from around 120KLOC (Linux version 1.0) to over
4.0MLOC (Linux version 2.6.0). From the figure, the
ratio starts with around 0.02 (Linux 1.0) to 1.6 (Linux
2.6.0). In other words, for Linux 1.0 the amount of clone
data exceed by 2% of the size of the code base, whereas
the number of clone candidates exceeds by 20% of the
size of Linux 2.4.0 and by 40% of the size of Linux 2.6.0.
Examining this large number of clone data by hand is not
feasible and requires a tremendous amount of effort.
In this paper, we introduce the concept of clone mining.
We define Clone mining as the process of uncovering
interesting clones and clone patterns from the large
amount of clone candidates produced by clone detection
tools. We define a clone mining framework to support
developers and researchers in clone mining activities. Our
framework is influenced by traditional data mining
frameworks [30, 31]. Whereas traditional data mining
frameworks focus on extracting previously unknown or
potentially useful information from large data sets, our
clone mining framework focuses on uncovering previ-
ously unknown or potentially useful clone patterns in
large sets of clone data. Our framework uses data reduc-
tion and visualization techniques. The framework reduces
the clone data by aggregating clone information at various
abstraction levels and removing irrelevant data. Our
framework also offers a visualization tool which allows
users to query and explore clone data at various abstrac-
tion levels.

Organization of the Paper
Here is the organization of the paper: In section 2, we
give an overview of our clone mining framework. In sec-
tion 3, we use the Linux Kernel as a case study to apply
our framework. In section 4, we present the related work.
In section 5, we conclude our paper and propose some
future work.

2. An Overview of Our Clone Mining
Framework

Figure 2 illustrates our clone mining framework. Our
framework consists of four steps: Problem Specification,
Data Filtering, Data Reduction and Data Visualization.
Here we explain the input to our framework, each step in
our framework, and the gained knowledge from using our
framework.

Figure 2. A Framework for Clone Mining

Clone Candidates are segments of code which are re-
ported as clones by clone detection tools. There are sev-
eral clone detection tools [3, 9, 11, 14]. Each tool uses
different heuristics to decide if two code segments are
similar (i.e., clone candidates). For example, in metric
based clone detection tools [14], code segments which
share similar metric value are considered as clones. In
abstract syntax tree (AST) based clone detection tools [9],
code segments which have the similar AST subtrees are
considered as clones. No technique is perfect, as these
techniques might miss clones or report false positive
clones [15].
The reported clone candidates are represented as either
clone pairs or clone classes. A clone pair is a pair of code
segments which are identical or similar to each other. A
clone class is the maximum set of code segments in which
any two of the code segments in the set form a clone pair.
For example Figure 3(a) shows 4 clone pairs. The three
red code blocks in “File1”, “File2”, and “File3” form
three clone pairs. The two blue blocks in “File2” and
“File4” form another clone pair. Figure 3(b) represents
the same clone information using clone classes instead of
clone pairs as shown in Figure 3(a). Figure 3(b) has two

clone classes. A pink diamond indicates a clone class con-
necting the three red blocks from “File1”, “File2” and
“File3”. Another blue diamond represents another clone
class connecting the two blue blocks from “File2” and
“File4”.

Figure 3. An Example of Clone Pairs and Clone

Classes

Problem Specification describes the purpose of our anal-
ysis. By defining the purpose of our analysis, we can de-
fine interesting clones that we should look for (i.e., mine)
and not interesting clones which we should prune. The
problem specification drives the rest of steps in our
framework. For example, we may be interested in study-
ing the spread of the clones. Spread refers to the scatter
of clones across a software system. Clone pairs or classes
may contain files that reside within one subsystem (inter-
nal clones) or files which reside in many subsystems (ex-
ternal clones). In particular, we may be interested in only
studying widely scattered clones in a code base.
Data Filtering is the operation of removing noise from
the data. A fraction of the clone candidates produced by a
clone detection tool are false positives. Data filtering is
used to remove false positives clones. Filtering techniques
depend on the heuristics used by the clone detection tools.
For example, the CCFinder tool uses a “Parameterized
Token Matching” [11] heuristic to decide whether two
code segments are similar. All the reported clones by
CCFinder exhibit similar structures. However, the clone
candidates may not share similar semantics. “Textual fil-
tering” technique would be suitable for improving the
precision of the clone data.
Textual filtering compares pairs of code segments and
calculates a textual similarity between them using the diff
algorithm. Suppose we have two code segments A and B,
then the textual similarity between A and B is defined as
T(A, B) = s/(a+b –s), where

a is total number of lines in code segment A;
b is total number of lines in code segment B; and
s is lines of code in which A and B are similar.

If A and B are identical, then T(A, B) is 1. If A and B
have nothing in common, then T(A, B) is 0. If the textual
similarity is above a threshold, then these two code seg-
ments are considered as a clone pair. Otherwise, these two

code segments do not form a clone pair and should be
removed from the clone data set. The filtering threshold is
determined by trial-and-error in an iterative fashion. In
our experiments, we start with a threshold of 0.01 and
explore the results of the filtering using a random sam-
pling of 100 clone candidate pairs. Based on the results of
the random sampling, the threshold is incremented by
0.01 at each step until the user of the framework is satis-
fied with the precision of the data.
Data Reduction is concerned with systematically reduc-
ing the volume of data. We have used two data reduction
approaches: aggregation and pruning. Data aggregation
abstracts the clone data to highlight general trends. Data
pruning removes the irrelevant clone data to make inter-
esting clone information more visible.
Two data aggregation approaches are introduced here:
merging and lifting. We describe both approaches below.
• Merging: The merging approach combines clone

classes with different line ranges in the same file into
a single clone. Also, if two clone classes contain ex-
actly the same set of files or subsystems, then we
merge these clone classes into a larger clone class.

Figure 4. An Illustration of the Merging Approach

We illustrate the merging approach through an exam-
ple. Figure 4(a) shows three clone classes before
merging. The three clone classes are shown in red,
blue and yellow. Both the red clone and the blue
clone classes contain three files, whereas the yellow
clone class contains two files. Figure 4(b) shows the
clone classes after merging. We have two clone
classes: the big white clone class and the yellow
clone class. The white clone class is the result of
merging the red clone class and the blue clone class.
The yellow clone class remains unchanged since it
contains only two files and cannot be merged with
the other two clone classes which both contain three
files.

• Lifting: The lifting approach abstracts clone relations
from the code segment level up to the file level or up
to the subsystem (i.e., directory) level.
We illustrate the lifting approach through an exam-
ple. Figure 5(a) shows the clone relations before lift-
ing. We have three directories: dirA, dirB and dirC.
Under dirA, we have three files: File1, File2 and

File3. We also have File4 under dirB and File5 under
dirC. There are two clone classes shown in red and
blue respectively. Figure 5(b) shows the result after
lifting. Since File1 and File2 are both under dirA, the
red clone class gets lifted to dirA. The blue block in
dirA is from File3. The clone relations from File4
and File5 are lifted to dirB and to dirC, respectively.

Figure 5. An Illustration of the Lifting Approach

Pruning is the operation of removing uninteresting clones.
In this paper, we introduce the notion of interesting
clones. Interesting clones are defined in a subjective man-
ner. The definition of interesting clones varies depending
on the purpose of a study. For example, if a researcher is
interested in examining the clone relations among differ-
ent filesystems in the Linux kernel (e.g., ext2, nfs), then a
clone in the code implementing the network drivers is not
an interesting clone. Or if a researcher is interested in
studying clones in a particular subsystem, then all clones
not in that subsystem are not interesting clones.
Data Visualization displays the processed data in order
to summarize and highlight interesting clones. We have
developed various visualization techniques. In [17], we
presented the Clone Cohesion and Coupling (CCC)
graph. The CCC graph highlights the amount of internal
clones (clones within subsystems) and external clones
(clones across-subsystems) for a single level of system
abstraction. In this paper we present another visualization
called the Clone System Hierarchical (CSH) graph. The
CSH graph provides an interactive mechanism for explor-
ing and querying the clone data. The visualization uses a
tree layout which mimics the directory structure of the
filesystem. We believe that developers are more comfort-
able working with directories and would be more com-
fortable exploring clone data using a similar structure.
Moreover, the tree layout enables the display of data at
different levels of abstractions instead of having to lift the
data to a particular abstraction level (as done in the CCC
graph). The tree layout shows clones at all levels of ab-
straction in the same time.
Gained Knowledge refers to interesting clone patterns or
clone phenomena uncovered from the clone candidates.
Knowledge discovery is an iterative process as shown by
the dotted lines in Figure 2. The Feedback loop can re-
fine any of our framework steps or specify new problems.
In Section 3, we will demonstrate our knowledge discov-
ery framework by studying clones in the Linux kernel.

3. The Linux Kernel - A Case Study
We apply our clone mining framework to study the clone
phenomena in the Linux kernel. The Linux kernel is an
open source, Unix-like operating system kernel. Linux
has been rapidly evolving over the past sixteen years. The
total lines of code for Linux has grown at a super-linear
rate [20, 21] as the system evolves to add in new features,
and to adapt to new hardware platform and devices. The
total lines of code started from 176K in version 1.0.0
(March 1994) to 4.6M in version 2.6.16.13 (May 2006).
We present our case study following the structure of our
framework as shown in Figure 2.

3.1 Clone Candidates
We use the CCFinder tool [11] as our clone detection
tool. CCFinder outputs the clone detection results as clone
pairs or clone classes. CCFinder is reported to have a high
recall and low precision compared to other clone detec-
tion tools [15]. We choose 30 tokens as the minimum
clone size, since previous studies [26, 27] show that the
output of CCFinder is of reasonable accuracy at this token
level. We also turn off the option to locate clones within
the same file, since we are more interested in detecting
similarities across source code files and among subsys-
tems. Different options can be configured and other clone
detection tools could be used if needed.

Releases LOC Clone Pair Clone Classes

Linux 1.0 118,247 2,486 592

Linux 1.2.0 194,794 5,766 1,091

Linux 2.0.1 473,190 37,154 3,015

Linux 2.2.0 1,114,194 633,522 9,657

Linux 2.4.0 2,069,846 2,403,684 19,325

Linux 2.6.0 3,626,873 5,773,032 33,000

Linux 2.6.16.13 4,601,990 7,369,040 41,064
Table 1. Clones Detected by CCFinder for Linux

Table 1 shows details about the CCFinder output for 7
releases of the Linux kernel. Each row shows the version
of the kernel, the total lines of source code (.c and .h files
only), the number of clone pairs CCFinder produced and
the number of clone classes CCFinder produced. For ex-
ample, version 1.0 contains 118,247 lines of source code.
CCFinder has detected 2,486 clone pairs and 592 clone
classes.

3.2 Problem Specification
We are interested in discovering clone patterns in the Li-
nux kernel by studying the spread of clones across the
source code for the kernel.

3.3 Data Filtering
We use the textual filtering technique to remove false
positive clones produced by the CCFinder tool. After

manually examining the CCFinder output, we find there
are mainly two types of false positives.
• One type of false positives is mainly due to similar

structure in variable declarations and functional pro-
totypes. Figure 6 shows one example of such func-
tional prototype declarations taken from the linux-
2.6.16.13/drivers/scsi/aha152x.c and linux-
2.6.16.13/drivers/scsi/esp.c files. These two code
segments are considered as clones by CCFinder.

Figure 6. An Example of a False Positive Clone

• The other type of false positives refers to clones
which are similar but are not intentionally cloned by
developers. Such clones are called “accidental
clones” [29]. Such clones usually occur due to devel-
opers having to follow specific protocol or library
routines. In the Linux kernel, these types of clones
are mainly caused by case-switch statements in the
device driver implementations. There are many case-
switch statements which follow the format of one
case statement followed by one line of method invo-
cation and a break statement. Each case statement
normally corresponds to one register, and each regis-
ter will perform specific actions. The two code seg-
ments shown in Figure 7 are similar in structure but
have no semantic similarity. The two code segments
are taken from Linux 2.6.16.13. We do not consider
these segments as clones since they are not intention-
ally created by the developers.

Figure 7. An Example of An Accidental Clone

We use the textual filtering technique to remove the false
positives produced by the CCFinder. Since CCFinder uses
a “Parameterized Token Matching” heuristics [11], all the
detected clones exhibit similar structures. The false posi-
tives and accidental clones are the segments of code
which do not have any semantic similarities. We use the
amount of common lines between code segments to meas-
ure the semantic similarity.
We implemented the textual filtering technique using a
Perl script. The scripts reads the clone relations generated
from CCFinder and compares the textual differences be-
tween the code segments for each clone pair. If the per-

centage of text in common between two code segments
falls below a certain threshold, we remove the clone pairs
from our analysis. The value of the filtering threshold is
determined as follows: we start with the value 0.01. Then
we categorize all the clones into different groups with
respect to the number of cloned lines (i.e., large, medium,
and small clones). We randomly sample a few clone pairs
from each of these groups and manually check whether
they are false positives. If they are, we set the threshold to
be high enough to filter these clones. We notice that our
filtering technique also removes the true clones. We re-
peat this process until we find an optimal value which
filters out all the false positive clones in the sample and
keeps most of the true clones. For Linux, we use 0.06 as
our filtering threshold.
Clearly it is not feasible to versify by hand the accuracy
of our filtering technique. We sampled another 100 ran-
dom clones of the original clone pairs. Such a sample size
can be considered enough to ensure a confidence level of
95% and a confidence level of ±7%. Our sampling
showed that 14 of the clones were false positives not and
the filtering has removed 2 of the true clones. So our fil-
tering is reasonably accurate although it is very simple.
Table 2 shows the filtering percentage. As we can see our
filtering techniques reduces the amount of clone data sig-
nificantly. Furthermore, as the number of clone pairs gets
larger, the textual filtering technique removes more clone
data.

Number of clone pairs

Releases Before
filtering

After
filtering

% of
filtering

Linux 1.0 2,486 1,296 47.8
Linux 1.2.0 5,766 1,672 71.0
Linux 2.0.1 37,154 4,583 87.7
Linux 2.2.0 633,522 22,362 96.5
Linux 2.4.0 2,403,684 73,299 96.9
Linux 2.6.0 5,773,032 124,301 97.8
Linux 2.6.16.13 7,369,040 160,707 97.8

Table 2. Results of Our Filtering for Linux

Textual filtering requires many I/O operations since for
each clone pair we must process millions of code seg-
ments in thousands of files in Linux. Calculations based
on our initial implementation for filtering shows that it
would takes the implementation more than 2 months to
filter the results of CCFinder for Linux 2.6. To address
this issue, we re-implemented our filtering in order to
minimize the I/O processing. First, we grouped clone
pairs by common files so we can compare different code
segments from the same pairs of files rather than reading
files multiple times. Second we use the Perl's diff package
rather than the UNIX diff. The use of Perl’s diff enables us
to do the textual comparison in-memory rather than writ-

ing the code segments into files and invoking the UNIX
diff command. These enhancements dramatically im-
proved the performance of our textual filtering implemen-
tation. The improved implementation takes 3 hours to
perform a full textual filtering of a version in the Linux
2.6 series.

3.4 Data Reduction
Filtering reduces the clone data significantly. However,
the clone data set is still large. For example, Linux 2.6.0
contains over 120,000 clone pairs after textual filtering.
We perform aggregation and pruning to further scale
down the volume of the clone data. We merge clone
classes which have the same set of entities into bigger
clone classes. We lift the clone classes from the code
segment level first to the file level, then to the directory
level (from lower level directories to the top level directo-
ries). In Linux 2.6.0, the number of relations from the top
level subsystems is about 2% of the second level subsys-
tems. The number of clone pairs from the second level
subsystems is about 22% of the number of clone pairs
from the third level subsystems.

3.5 Data Visualization
Once data is scaled down at various abstraction levels, we
visualize the clone data with an emphasis on studying the
spread of the clones. Spread refers to the scatter of clones
across a software system. For a particular clone class how
far apart, according to the directory structure, are the
cloned files or directories? How many files or directories
are in the clone class? Our visualization lays out the clone
data in the directory tree structure. It highlights clone rela-
tions for individual files and directories by mouse move-
ments.
Knowing the spread of clones at the file level is important
because the more spread out a clone is, the more effort is
required to modify the code base such as propagating bug
fixes selectively to clone instances or to perform re-
engineering tasks such as refactoring common code to
eliminate clones. For example, drivers/net/3c501.c in Li-
nux Kernel version 1.0 has eleven files that have clone
relationships. It is relatively harder to maintain than driv-
ers/FPU-emu/reg_add_sub.c, which has code duplica-
tions with only one file.
Knowing the spread of clones at the subsystem level helps
in improving our understanding of the design of the sys-
tems. The spread of the clone relations can uncover cer-
tain functional relations or clone patterns which are usu-
ally not documented. Consider the filesystem subsystem
(fs) inside the Linux Kernel for example. Subsystems
such as fs/ext2 and fs/minix have many external clone
relations with each other but have a small number of
clones between files inside the subsystems (i.e., internal
clones). This is a sign of potential “forking” clone pattern
[4]. Forking pattern involves large portions of code
duplicates which will evolve independently.

We call our visualization the Clone System Hierarchical
(CSH) Graph. We first explain the components in our

visualization then we provide an example of using our
visualization.

Figure 8. An Annotated Screenshot of the CSH Graph for Linux 1.0

Components of The CSH Graph
The CSH graph consists of 4 components as annotated in
Figure 8: Node Name, Clone System Hierarchical Tree,
Selection Menu, and Clone Information Panel. We ex-
plain the details of each component below.
The Clone System Hierarchical Tree is an interactive
graph which allows a user to select nodes to highlight the
spread of clones across the directory structure (i.e., tree)
of a software system. Within the tree, we have two types
of entities: nodes and edges. Nodes represent either files
(for the lowest level of nodes) or directories (for the rest
of the nodes). Edges indicate the containment relation-
ship. For example, there is an edge going from node fs to
node minix indicating that the minix is a subdirectory (i.e.,
subsystem) of fs.
Entities Metric Description

Width Number of internally cloned lines with-
in the node (directory or file)

Node
Height Number of internal clone classes within

the node

Edge Thickness Number of cross-subsystem clone
classes from this node

Table 2. Descriptions of the Entities in the Clone
System Hierarchical Tree

Table 2 describes the metrics embedded in nodes and
edges in the CSH graph. The width of the directory nodes
shows the number of duplicated lines; whereas the height
is proportional to the number of internal clone classes.
Flat nodes imply that a subsystem contains very few clone
classes but that these clone classes contain a large amount
of duplicated code. A thin node indicates that a subsystem
contains many small clone code fragments. For file nodes,

the size of the node is constant. We choose to use the
same size for the file nodes mainly for scalability con-
cerns: if we embedded the clone information into the di-
mension of the file nodes it would result in a visualization
that is too large to fit in the screen; since there are too
many files. The thickness of edges shows the degree of
external cloning from that node. The thicker the edge, the
larger the amount of external cloning from that node is.
Furthermore, sibling directories (directories under the
same parent directory) are sorted by the number of their
children. The more children that a directory contains, the
farther left the directory will be placed. Finally, the graph
highlights the clone information for each individual node.
Here we define the term: Clone Buddy. For example,
subsystem A has clone relations with subsystems B, C
and D. Then the clone buddies for subsystem A are sub-
systems B, C and D. In the Clone System Hierarchical
Tree, when a node is selected, its clone buddies will be
highlighted. In addition, we also highlight the edges in
order to help researchers trace the selected node and its
clone buddies.
Once a node is selected by mouse over or mouse clicking,
the Node Name component will display the name of the
selected node.
The Selection Menu allows users to select either a file or
a directory to highlight the clone information on the
Clone System Hierarchical Tree.
The Clone Information Panel displays the names of
clone buddies for the selected node.

3.6 Gained Knowledge
Interesting clone relations or clone patterns are reported
using a combination of our CSH graph and manual ex-
amination of the source code. We demonstrate below our

process of extracting some interesting clone patterns from
Linux 1.0.
When the CSH graph starts up, it looks similar as Figure 8
except three things: First, the Node Name component is
blank. Second, all the nodes in Clone System Hierarchi-
cal Tree remain as pink and edges remain as black. Third,
the Clone Information Panel is blank. The initial view
gives an overview of the amount of internal and external
clones at different directory levels. The visualization indi-
cates the amount of clones by using the size of nodes (for
internal clones) and the thickness of the edges (for exter-
nal clones). Examining Figure 8 we note that the fs sub-
system has more internal clones than the drivers and net
subsystems given that the fs node is larger than the other
two nodes. Within the fs subsystem, directories like ext2,
minix2, ext, xiafs, and sysv have many external clone rela-
tions as indicated by the thickness of the edges. The CSH
graph provides an overview of the degree of code cloning
within each directory. For example, the drivers/scsi direc-
tory contains the largest number of files among its sibling
directories, thus the drivers/scsi (the SCSI device drivers)
is placed as the left-most node among all the nodes for the
other drivers subsystems (all the device drivers). How-
ever, the drivers/scsi directory contains less clones than
drivers/net (network device drivers) directory; since the
drivers/scsi node is small and the thickness of the outgo-
ing edges from drivers/net and drivers/scsi is about the
same.
When a user moves the mouse over a node, the various
components in the visualization are updated. First the
node’s name appears in the Node Name component. Also
the node’s name appears in the Selection Menu compo-
nent. Furthermore, the node, below the mouse, turns green
if it has clone relations with other nodes and blue if it
does not have clone relations with any other nodes. The
clone buddies of the selected node are coloured in red. In
addition, the path in the directory tree from the currently
selected node up to the root directory will be highlighted
in green. Meanwhile, the paths from all node buddies with
the selected node up to the root directory are highlighted
in red. Finally, the Clone Information Panel displays the
name of the currently selected node as well as the names
of its clone buddies. The information displayed in the
panel is helpful in giving the user a textual representation
of the results of their query instead of having to follow the
different clone edges in the displayed tree.
Figure 8 shows the graph after a user moves the mouse to
the node fs/sysv: The node name is shown in the upper left
corner. The pink node fs/sysv turns green. All the clone
buddies of the fs/sysv node are highlighted in red. The
path from the fs/sysv node to the root node is coloured
green. The paths from the clone buddies of the fs/sysv
node to the root node are coloured in red. We note that the
red path from the fs node to the root nodes is coloured in
green since the query node and its clone buddies share the
same path segment from the fs node up to the root node.

The selected node name is displayed in the Selection
Menu. The Clone Information Panel displays the corre-
sponding information: all fs/sysv clones are within the fs
directory. There are no external clones which involve files
outside of the fs directory. When we move the mouse
away from the selected node or click again on the same
node; our visualization will undo all the visual changes
mentioned above, and revert back to the original state.
In other cases, there may be no clone buddies associated
with a node. For example, in Figure 9 we note that there
are no external clones for the drivers/net subdirectory thus
the node is coloured in blue and there is only one path
(coloured in green) going from that node up to the root
node. Consequently, there are no clone buddies displayed
in the Clone Information Panel. Many of the nodes un-
der the drivers subsystem (e.g., the drivers/char node)
follow this same pattern: Large number of inner clones
and small number of external clones. This pattern is easy
to observe in our visualization since the size of the nodes
are large (indicating many clones inside them), however
the edges coming out from the nodes towards the root
node are thin (indication no clone relation with files out-
side of the subsystem).

Figure 9. The CSH Graph After Clicking the net

Subsystem

Pointing and clicking on the graph allows users to navi-
gate and query the clone information interactively. How-
ever, certain nodes (like file nodes – the lowest level
nodes) may be too small or may be too closely placed to
allow the user to pick them correctly. To solve this prob-
lem, the drop-down list from the Selection Menu can be
used to locate nodes. Once we select a node from the
drop-down menu, the same visual changes described
above will appear as if the node was picked.
The CSH graph enables users to rapidly scroll through the
clone data across a file system by using the Selection
Menu. Once an item from the Selection Menu is se-
lected, we can use the up and down arrow keys to move
quickly across the various files, this will result in an ani-
mation like effect. Since files in the same directory are
placed together (items in the selection menu are sorted by
file path), then rapidly scrolling through the selection list
will help in spotting patterns and anomalies at the direc-
tory level. Using the selection menu to rapidly navigate
through all the files in the fs directory, we notice that all
clones occur among files in sibling directories. This is the
pattern shown in Figure 10(a). The fs directory is the
filesystem subsystem in Linux kernel. It contains a num-
ber of subsystems which are different types of filesystems
like minix (fs/minix) or ext2 (fs/ext2) or nfs (fs/nfs). This is
an example of the “template” clone pattern [4] where a

subsystem is cloned to serve as a template to create an-
other similar subsystem. The CSH visualization helps in
directing our attention to a limited set of files. We then
examine these files and note that they all contain a set of
structs which have function pointers for each specific
operation. For example, the structs in file.c are repeated in
all types of filesystems which are supported by the Linux
kernel (e.g., vfat, ntfs, and nfs filesystems). file.c contains
definitions for structs like inode_operations or
file_operations. inode_operations which define interfaces
for inode related operations. To implement various types
of filesystems, developers need to implement functions
for reading and writing to a file, creating and removing a
file; developer then set the function pointers in the file.c
file to point to their implemented functions for a particu-
lar filesystem. Thus, file.c file in one type of filesystem is
similar to the file.c file in another type of filesystems.
Figure 10(b) shows an anomaly of the above clone pat-
tern. Using the CSH we noticed that the fs/nfs/mmap.c file
does not have any clone buddies in the fs directory, in-
stead the file has clone buddies with the mm (memory
management) directory. The source code comments of the
fs/nfs/mmap.c file state that the code is borrowed from
mm/mmap.c and mm/memory.c; which explains the clone
relations.

Figure 10. Observed Pattern and Anomaly Using

CSH1

3.7 Summary of the Gained Knowledge
Using our framework to study clones in the Linux kernel,
we learned that the fs and drivers subsystems contain
many clone relations. However, these two subsystems
exhibit different patterns.
• The fs subsystems (e.g., fs/ext2) contain more cross-

subsystem clones. Each filesystem directory contains
a set of files implementing different general function-
alities needed for a filesystems (e.g., opening and
closing a file). Clones usually happen among files

1 Due to space constraints, Figure 10 is redrawn using Microsoft

Visio.

which implement the same functionality in different
types of filesystems.

• There are many clone relations inside drivers subsys-
tems (like drivers/scsi, drivers/net) but few cross-
subsystem clone relations. Device drivers which are
for similar hardware chipsets tend to have large code
segments in common. However, there are few clone
relations among drivers of different types.

3.8 Feedback
Having obtained some insight of the clone knowledge
inside the Linux kernel, we can either refine the tech-
niques applied in the case study or specify new sub-
problems based on the observed clone patterns. Whereas
in Section 3.5 we demonstrated the clone patterns ob-
served in Linux 1.0. We tried our visualization on Linux
2.6.0. The amount of clone data is so overwhelming that
even the simplest type of clone visualization tool (the
scatter-plot from Gemini2 [24]) fails to load. As show in
Figure 11, the number of nodes is too crowded for hu-
mans to extract any interesting patterns.

Figure 11. The CSH Tree for Linux 2.6.0

We apply our framework to prune uninteresting or irrele-
vant clone information. We use two types of pruning ap-
proaches: level pruning and subsystem pruning.
• Level pruning removes all the nodes and edges if

their abstraction levels are below a threshold value.
As we go lower in the directory tree, the number of
nodes increases. Figure 12 shows the result of prun-
ing file nodes and the lowest level directories (prun-
ing nodes which are at level 4 or higher). Using the
CSH visualization we note that in Linux 2.6.0, the
arch subsystem has many internal clone relations in
comparison to the fs subsystem (the left-most direc-
tory).

Figure 12. Level-4 Pruning for Linux 2.6.0

• Subsystem pruning removes all the clone informa-
tion which is unrelated to a specific subsystem. If we
are interested in clones in the drivers subsystem, then
all the clone relations not related to fs will be re-
moved from the data set.

We can also refine our problem. For example, we can
specify a new problem such as studying the number of
distinct driver families in the Linux kernel using the clone

2 Gemini is the GUI front-end of the CCFinder.

relations. This is an interesting problem to study since
drivers are a major source of operating system errors [19]
and our case study shows that there are many clone rela-
tions among similar drivers but little clone relations
among unrelated drivers.

4. Related Work
Basit and Stan apply the Frequent Itemset data mining
techniques in order to detect design level clones using the
clone information [18]. Cory and Godfrey propose to un-
derstand clone in large software systems through catego-
rization [28]. Clones are mapped into eight types of
regions (e.g., functions regions and type definitions
regions). Several heuristics are used to remove the false
positive clones. In contrast, our framework uses a simpler
filtering technique. However, Cory and Godfrey’s
filtering could be adopted into our framework. Kim et al.
present an ethnographic study of the developer’s copy and
paste behavior and propose taxonomy of clone usage
patterns [8]. Later, they study the clone evolution for two
Java open source projects [16]. In contrast to our
automated filtering approach, false positive clones are
manually filtered due to the limited size of clones in the
studied systems. Several techniques have been proposed to visualize clones
at the code level, such as the scatter plot [22, 23, 24], the
metrics graph [24], file similarity graph [24], Hass dia-
gram [25], Hyperlinked web [26], link editing [27] and
exemplar-based visualization [32]. Cory and Godfrey [28]
use software architecture like boxes-and-arrows diagram
to visualize the clone information. Tairas et al. [33] im-
plement their clone visualization as an Eclipse plugin. It
contains both a textual and graphical representation of
clone output at the file level. Jiang et al. [17] use force-
based graph layout to visualize the amount of clones both
within and across subsystems in the Linux Kernel. Rieger
et al. [23] propose a number of visualization techniques
for qualitatively studying the clone information. Rieger et
al.’s System Model View lays out the clone information
in a directory structure and embeds clone metrics into the
dimensions of nodes and edges. Edges are used to show
both containment and clone relationships. In comparison
to our visualization, the System Model View shows clone
information at single level of the tree instead of showing
all the levels of abstractions.

5. Conclusions and Future Work
In this paper, we propose a framework for mining useful
clone information from the large data set produced a
clone detection tool. Our approach reduces the volume of
data by first filtering out false positive clones using a sim-
ple lightweight textual filtering technique. The data is
scaled down further by aggregating it at various levels of
system abstraction. Finally, we use the Clone System Hi-
erarchy visualization to present the data. The visualization
is interactive and permits users to explore and query clone
data sets using the directory structure of a software sys-
tem. The directory structure layout since it is familiar

structure for most developers so using the visualization
should require a minimal cognitive effort.
In the future, we plan to extend our framework to adopt
other data mining techniques such as clustering and asso-
ciation mining. In addition, we want to experiment with
different clone detection tools and different filtering tech-
niques. We are as well exploring the use of animation in
order to examine the evolution of clones across time. Fi-
nally, we would like to perform a user study in order to
better understand the strengths and weaknesses of our
framework and the CSH graph.

6. ACKNOWLEDGMENTS
The authors thank Dr. Richard C. Holt and Dr. Michael
W. Godfrey for their fruitful suggestions on this work.

7. REFERENCES
[1] Bruno Lague, Daniel Proulx, Jean Mayrand, Ettore Merlo

and John P. Hudepohl. Assessing the Benefits of Incorpo-
rating Function Clone Detection in a Development Process.
In Proceedings of the International Conference on Software
Maintenance, pages 314–321, 1997.

[2] B.S. Baker. On finding duplication and near duplication in
large software system. In Proceedings of Second IEEE
Working Conference on Reverse Eng., July 1995.

[3] S. Ducasse, M. Rieger and S. Demeyer. A language inde-
pendent approach for detecting duplicated code. In Pro-
ceedings of IEEE International Conference on Software
Maintenance, August 1999.

[4] Cory Kapser and Michael W. Godfrey. “Cloning Consid-
ered Harmful” Considered Harmful. In Proceedings of the
2006 Working Conference on Reverse Engineering
(WCRE-06), Benevento, Italy, October 2006.

[5] James R. Cordy. Comprehending Reality: Practical Chal-
lenges to Software Maintenance Automation. In Proceed-
ings of IEEE 11th International Workshop on Program
Comprehension, IWPC 2003 (Keynote paper), May 2003.

[6] Hamid Abdul Basit, Damith C. Rajapakse and Stan Jarza-
bek. Beyond templates: a study of clones in the STL and
some general implications. In Proceedings of International
Conference on Software Engineering, May 2005.

[7] Magiel Bruntink, Arie van Deursen, Tom Tourwe, Remco
van Engelen. An Evaluation of Clone Detection Techniques
for Identifying Crosscutting Concerns. In Proceedings of
ICSM 2004, pages 200–209, 2004.

[8] Miryung Kim, Lawrence D. Bergman, Tessa A. Lau and
David Notkin. An Ethnographic Study of Copy and Paste
Programming Practices in OOPL. In International Sympo-
sium on Empirical Software Engineering, August 2004.

[9] I. D. Baxter, A. Yahin, L. Moura, M. Sant’Anna and L.
Bier. Clone detection using abstract syntax trees. In Pro-
ceedings of the International Conference on Software
Maintenance, page 368,Washington, DC, USA, 1998. IEEE
Computer Society.

[10] J. H. Johnson. Substring matching for clone detection and
change tracking. In Proceedings of the International Con-
ference on Software Maintenance, pages 120---126, 1994.

[11] Toshihiro Kamiya, Shinji Kusumoto and Katsuro Inoue.
CCFinder: A Multi-Linguistic Token-based Code cloning
Detection System for Large Scale Source Code. IEEE
Transactions on Software Engineering, 28(7):654–670, July
2002.

[12] K. Kontogiannis, R. DeMori, E. Merlo, M. Galler and M.
Bernstein. Pattern matching for clone and concept detection.
Autom. Softw. Eng., 3(1/2):77–108, 1996.

[13] A. Monden, D. Nakae, T. Kamiya and S. Sato and K. Ma-
tsumoto. Software quality analysis by code clonings in in-
dustrial legacy software. In Proceedings of IEEE Sympo-
sium on Software Metrics 2002, 2002.

[14] Kostas Kontogiannis. Evaluation Experiments on the De-
tection of Programming Patterns Using Software Metrics.
In Proceedings of the Fourth Working Conference on Re-
verse Engineering, 1997.

[15] E. Burd and J. Bailey. Evaluating clone detection tools for
use during preventative maintenance. In Second IEEE In-
ternational Workshop on Source Code Analysis and Ma-
nipulation, pages 36–43, 2002.

[16] Kim, M., Sazawal, V., Notkin, D., and Murphy, G. An
empirical study of code cloning genealogies. SIGSOFT
Softw. Eng. Notes 30, 5, 187-196. September 2005.

[17] Zhen Ming Jiang, Ahmed E. Hassan, and Richard C. Holt.
Visualizing Clone Cohesion and Coupling. Proceedings of
APSEC 2006: IEEE Asia Pacific Conference on Software
Engineering, Bangalore, India, Dec. 6-8, 2006.

[18] Basit, H. A. and Jarzabek, S. Detecting higher-level simi-
larity patterns in programs. In Proceedings of the 10th Eu-
ropean Software Engineering Conference Held Jointly with
13th ACM SIGSOFT international Symposium on Founda-
tions of Software Engineering. Lisbon, Portugal, September
05 - 09, 2005.

[19] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. R. Engler.
An empirical study of operating system errors. In Proceed-
ings of the 18th ACM Symposium on Operating Systems
Principles (SOSP), pages 73–88, Banff, Alberta, Canada,
October 2001.

[20] Michael W. Godfrey and Qiang Tu. Evolution in open
source software: A case study. In Proceedings of the 16th
International Conference on Software Maintenance, pages
131–142, San Jose, California, October 2000.

[21] Gregorio Robles, Juan Jose Amor, Jess M. Gonzlez Bara-
hona and Israel Herraiz. Evolution and Growth in Large
Libre Software Projects. In Proceedings of the 2005 Inter-
national Workshop on Software Evolution (IPWSE 2005),
pages 165 – 174, 2005.

[22] J. Helfman. Dotplot Patterns: a Literal Look at Pattern
Languages. In TAPOS, pages 31–41, 1995.

[23] Matthias Rieger, Stphane Ducasse, and Michele Lanza.
Insights into System-Wide Code Duplication. In WCRE
2004.

[24] Yasushi Ueda, Yoshiki Higo, Toshihiro Kamiya, Shinji
Kusumoto, and Katsuro Inoue. Gemini: Code cloning anal-
ysis tool. In Proc. of 2002 International Symposium on
Empirical Software Engineering (ISESE2002), Nara, Japan,
Oct 2002.

[25] J. H. Johnson. Visualizing textual redundancy in legacy
source. In Proceedings of CASCON 94, pages 9–18, 1994.

[26] J. H. Johnson. Navigating the textual redundancy web in
legacy source. In Proceedings of the 1996 conference of the
Centre for Advanced Studies on Collaborative research,
1996.

[27] Michael Toomim, Andrew Begel, and Susan L. Graham.
Managing Duplicated Code with Linked Editing. In
VL/HCC 2004, pages 173–180, 2004.

[28] Cory J. Kapser and Michael W. Godfrey. Supporting the
Analysis of Clones in Software Systems: A Case Study.
Journal of Software Maintenance and Evolution: Research
and Practice, 18(2), 2006.

[29] Raihan Al-Ekram, Cory Kapser, Richard Holt, and Michael
Godfrey. “Cloning by Accident: An Empirical Study of
Source Code Cloning Across Software Systems”. Proc. of
the 2005 Intl. Symposium on Empirical Software Engineer-
ing (ISESE-05), Noosa Heads, Australia, 17-18 November
2005.

[30] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar.
Introduction to Data Mining. Addison-Wesley, 2005.

[31] Peggy Wright. 1998. Knowledge discovery in databases:
tools and techniques. Crossroads 5, 2 (Nov. 1998), 23-26.

[32] Cordy, J. R., Dean, T. R., and Synytskyy, N. 2004. Practi-
cal language-independent detection of near-miss clones. In
Proceedings of the 2004 Conference of the Centre For Ad-
vanced Studies on Collaborative Research (Markham, On-
tario, Canada, October 04 - 07, 2004). H. Lutfiyya, J. Sing-
er, and D. A. Stewart, Eds. IBM Centre for Advanced Stud-
ies Conference. IBM Press, 1-12.

[33] Tairas, R., Gray, J., and Baxter, I. 2006. Visualization
of clone detection results. In Proceedings of the 2006
OOPSLA Workshop on Eclipse Technology Ex-
change (Portland, Oregon, October 22 - 23, 2006).
eclipse '06. ACM Press, New York, NY, 50-54.

