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Abstract 

Clones are code segments that have been created by 
copying-and-pasting from other code segments. Clones 
occur often in large software systems. It is reported that 5 
to 50% of the source code of a large software system is 
cloned. A major challenge when studying code cloning in 
large software systems is handling the large amount of 
clone candidates produced by leading edge clone detec-
tion tools. For example, the CCFinder, clone detection 
tool, produces over 7 million pairs of clone candidates for 
the Linux kernel (which consists of over 4 MLOC). More-
over, the output of clone detection tools grows rapidly as 
a software system evolves. Researchers and developers 
need tools to help them study the large amount of clone 
data in order to better understand the clone phenomena 
in large systems. In this paper, we propose a data mining 
framework to help researchers cope with the large 
amount of data produced by clone detection tools. We 
propose techniques to reduce, abstract and highlight the 
most interesting data produced by clone detection tools. 
Our framework also introduces a visualization tool which 
allows users to query and explore clone data at various 
abstraction levels. We demonstrate our framework on a 
case study of the clone phenomena in the Linux kernel.  

1. Introduction 
A clone is a code segment that has been created though 
duplication of another piece of code. Clones are quite 
common in large software systems. It is reported that 
about 5 to 50% [1, 2, 3] of the source code is cloned. De-
velopers clone code for many reasons. Code cloning may 
be unavoidable due to language limitations [6] (e.g., for 
code template [4] or for implementing cross-cutting con-
cerns [7]). Cloning as well helps in minimizing risks [5] 
by reusing code and designs [4] and experimenting with 
different designs [8].  However, many researchers believe 
that cloning is a “bad code smell” since it complicates the 
maintenance of long lived systems [2, 3, 9, 10, 11, 12]. 
Unfortunately, there is little empirical study done on the 
consequence of cloning [13].  
One of the major challenges when studying clones in 
large software systems is handling the large amount of 
data produced by state of the art clone detection tools. For 
large software systems such as the Linux kernel (with 
over 4 MLOC), a clone detection tool (e.g., CCFinder 
[11]) would produce around 7 million pairs of clone can-
didates (i.e. potential clones). The volume of clone data 
reported by CCFinder increases dramatically as the sys-
tem evolves.   

 

Figure 1. A Plot of the Growth of Clone Pairs As 
Produced By the CCFinder 

Figure 1 plots the number of clone pairs over the lines of 
code for the Linux kernel over time. The Linux kernel has 
grown from around 120KLOC (Linux version 1.0) to over 
4.0MLOC (Linux version 2.6.0). From the figure, the 
ratio starts with around 0.02 (Linux 1.0) to 1.6 (Linux 
2.6.0). In other words, for Linux 1.0 the amount of clone 
data exceed by 2% of the size of the code base, whereas 
the number of clone candidates exceeds by 20% of the 
size of Linux 2.4.0 and by 40% of the size of Linux 2.6.0. 
Examining this large number of clone data by hand is not 
feasible and requires a tremendous amount of effort.   
In this paper, we introduce the concept of clone mining. 
We define Clone mining as the process of uncovering 
interesting clones and clone patterns from the large 
amount of clone candidates produced by clone detection 
tools. We define a clone mining framework to support 
developers and researchers in clone mining activities. Our 
framework is influenced by traditional data mining 
frameworks [30, 31]. Whereas traditional data mining 
frameworks focus on extracting previously unknown or 
potentially useful information from large data sets, our 
clone mining framework focuses on uncovering previ-
ously unknown or potentially useful clone patterns in 
large sets of clone data. Our framework uses data reduc-
tion and visualization techniques. The framework reduces 
the clone data by aggregating clone information at various 
abstraction levels and removing irrelevant data. Our 
framework also offers a visualization tool which allows 
users to query and explore clone data at various abstrac-
tion levels.  
 



Organization of the Paper 
Here is the organization of the paper: In section 2, we 
give an overview of our clone mining framework. In sec-
tion 3, we use the Linux Kernel as a case study to apply 
our framework. In section 4, we present the related work. 
In section 5, we conclude our paper and propose some 
future work. 

2. An Overview of Our Clone Mining 
Framework 

Figure 2 illustrates our clone mining framework. Our 
framework consists of four steps: Problem Specification, 
Data Filtering, Data Reduction and Data Visualization. 
Here we explain the input to our framework, each step in 
our framework, and the gained knowledge from using our 
framework. 

 
Figure 2. A Framework for Clone Mining 

Clone Candidates are segments of code which are re-
ported as clones by clone detection tools. There are sev-
eral clone detection tools [3, 9, 11, 14]. Each tool uses 
different heuristics to decide if two code segments are 
similar (i.e., clone candidates). For example, in metric 
based clone detection tools [14], code segments which 
share similar metric value are considered as clones. In 
abstract syntax tree (AST) based clone detection tools [9], 
code segments which have the similar AST subtrees are 
considered as clones. No technique is perfect, as these 
techniques might miss clones or report false positive 
clones [15].  
The reported clone candidates are represented as either 
clone pairs or clone classes. A clone pair is a pair of code 
segments which are identical or similar to each other. A 
clone class is the maximum set of code segments in which 
any two of the code segments in the set form a clone pair. 
For example Figure 3(a) shows 4 clone pairs. The three 
red code blocks in “File1”, “File2”, and “File3” form 
three clone pairs. The two blue blocks in “File2” and 
“File4” form another clone pair. Figure 3(b) represents 
the same clone information using clone classes instead of 
clone pairs as shown in Figure 3(a). Figure 3(b) has two 

clone classes. A pink diamond indicates a clone class con-
necting the three red blocks from “File1”, “File2” and 
“File3”. Another blue diamond represents another clone 
class connecting the two blue blocks from “File2” and 
“File4”.  

 
Figure 3. An Example of Clone Pairs and Clone 

Classes 

Problem Specification describes the purpose of our anal-
ysis. By defining the purpose of our analysis, we can de-
fine interesting clones that we should look for (i.e., mine) 
and not interesting clones which we should prune. The 
problem specification drives the rest of steps in our 
framework. For example, we may be interested in study-
ing the spread of the clones. Spread refers to the scatter 
of clones across a software system. Clone pairs or classes 
may contain files that reside within one subsystem (inter-
nal clones) or files which reside in many subsystems (ex-
ternal clones). In particular, we may be interested in only 
studying widely scattered clones in a code base. 
Data Filtering is the operation of removing noise from 
the data. A fraction of the clone candidates produced by a 
clone detection tool are false positives. Data filtering is 
used to remove false positives clones. Filtering techniques 
depend on the heuristics used by the clone detection tools. 
For example, the CCFinder tool uses a “Parameterized 
Token Matching” [11] heuristic to decide whether two 
code segments are similar. All the reported clones by 
CCFinder exhibit similar structures. However, the clone 
candidates may not share similar semantics. “Textual fil-
tering” technique would be suitable for improving the 
precision of the clone data.  
Textual filtering compares pairs of code segments and 
calculates a textual similarity between them using the diff 
algorithm. Suppose we have two code segments A and B, 
then the textual similarity between A and B is defined as 
T(A, B) = s/(a+b –s), where  

a is total number of lines in code segment A; 
b is total number of lines in code segment B; and 
s is lines of code in which A and B are similar. 

If A and B are identical, then T(A, B) is 1. If A and B 
have nothing in common, then T(A, B) is 0. If the textual 
similarity is above a threshold, then these two code seg-
ments are considered as a clone pair. Otherwise, these two 



code segments do not form a clone pair and should be 
removed from the clone data set. The filtering threshold is 
determined by trial-and-error in an iterative fashion. In 
our experiments, we start with a threshold of 0.01 and 
explore the results of the filtering using a random sam-
pling of 100 clone candidate pairs. Based on the results of 
the random sampling, the threshold is incremented by 
0.01 at each step until the user of the framework is satis-
fied with the precision of the data. 
Data Reduction is concerned with systematically reduc-
ing the volume of data. We have used two data reduction 
approaches: aggregation and pruning. Data aggregation 
abstracts the clone data to highlight general trends. Data 
pruning removes the irrelevant clone data to make inter-
esting clone information more visible.   
Two data aggregation approaches are introduced here: 
merging and lifting. We describe both approaches below. 
• Merging: The merging approach combines clone 

classes with different line ranges in the same file into 
a single clone. Also, if two clone classes contain ex-
actly the same set of files or subsystems, then we 
merge these clone classes into a larger clone class. 

 
Figure 4. An Illustration of the Merging Approach 

We illustrate the merging approach through an exam-
ple. Figure 4(a) shows three clone classes before 
merging. The three clone classes are shown in red, 
blue and yellow. Both the red clone and the blue 
clone classes contain three files, whereas the yellow 
clone class contains two files. Figure 4(b) shows the 
clone classes after merging. We have two clone 
classes: the big white clone class and the yellow 
clone class. The white clone class is the result of 
merging the red clone class and the blue clone class. 
The yellow clone class remains unchanged since it 
contains only two files and cannot be merged with 
the other two clone classes which both contain three 
files. 

• Lifting: The lifting approach abstracts clone relations 
from the code segment level up to the file level or up 
to the subsystem (i.e., directory) level. 
We illustrate the lifting approach through an exam-
ple. Figure 5(a) shows the clone relations before lift-
ing. We have three directories: dirA, dirB and dirC. 
Under dirA, we have three files: File1, File2 and 

File3. We also have File4 under dirB and File5 under 
dirC. There are two clone classes shown in red and 
blue respectively. Figure 5(b) shows the result after 
lifting. Since File1 and File2 are both under dirA, the 
red clone class gets lifted to dirA. The blue block in 
dirA is from File3. The clone relations from File4 
and File5 are lifted to dirB and to dirC, respectively. 

 
Figure 5. An Illustration of the Lifting Approach 

Pruning is the operation of removing uninteresting clones. 
In this paper, we introduce the notion of interesting 
clones. Interesting clones are defined in a subjective man-
ner. The definition of interesting clones varies depending 
on the purpose of a study. For example, if a researcher is 
interested in examining the clone relations among differ-
ent filesystems in the Linux kernel (e.g., ext2, nfs), then a 
clone in the code implementing the network drivers is not 
an interesting clone. Or if a researcher is interested in 
studying clones in a particular subsystem, then all clones 
not in that subsystem are not interesting clones.  
Data Visualization displays the processed data in order 
to summarize and highlight interesting clones. We have 
developed various visualization techniques. In [17], we 
presented the Clone Cohesion and Coupling (CCC) 
graph. The CCC graph highlights the amount of internal 
clones (clones within subsystems) and external clones 
(clones across-subsystems) for a single level of system 
abstraction. In this paper we present another visualization 
called the Clone System Hierarchical (CSH) graph. The 
CSH graph provides an interactive mechanism for explor-
ing and querying the clone data. The visualization uses a 
tree layout which mimics the directory structure of the 
filesystem. We believe that developers are more comfort-
able working with directories and would be more com-
fortable exploring clone data using a similar structure.  
Moreover, the tree layout enables the display of data at 
different levels of abstractions instead of having to lift the 
data to a particular abstraction level (as done in the CCC 
graph). The tree layout shows clones at all levels of ab-
straction in the same time.  
Gained Knowledge refers to interesting clone patterns or 
clone phenomena uncovered from the clone candidates. 
Knowledge discovery is an iterative process as shown by 
the dotted lines in Figure 2. The Feedback loop can re-
fine any of our framework steps or specify new problems. 
In Section 3, we will demonstrate our knowledge discov-
ery framework by studying clones in the Linux kernel. 



3. The Linux Kernel - A Case Study 
We apply our clone mining framework to study the clone 
phenomena in the Linux kernel. The Linux kernel is an 
open source, Unix-like operating system kernel. Linux 
has been rapidly evolving over the past sixteen years. The 
total lines of code for Linux has grown at a super-linear 
rate [20, 21] as the system evolves to add in new features, 
and to adapt to new hardware platform and devices. The 
total lines of code started from 176K in version 1.0.0 
(March 1994) to 4.6M in version 2.6.16.13 (May 2006). 
We present our case study following the structure of our 
framework as shown in Figure 2. 

3.1 Clone Candidates 
We use the CCFinder tool [11] as our clone detection 
tool. CCFinder outputs the clone detection results as clone 
pairs or clone classes. CCFinder is reported to have a high 
recall and low precision compared to other clone detec-
tion tools [15]. We choose 30 tokens as the minimum 
clone size, since previous studies [26, 27] show that the 
output of CCFinder is of reasonable accuracy at this token 
level. We also turn off the option to locate clones within 
the same file, since we are more interested in detecting 
similarities across source code files and among subsys-
tems. Different options can be configured and other clone 
detection tools could be used if needed.  

Releases LOC Clone Pair Clone Classes 

Linux 1.0 118,247 2,486 592 

Linux 1.2.0 194,794 5,766 1,091 

Linux 2.0.1 473,190 37,154 3,015 

Linux 2.2.0 1,114,194 633,522 9,657 

Linux 2.4.0 2,069,846 2,403,684 19,325 

Linux 2.6.0 3,626,873 5,773,032 33,000 

Linux 2.6.16.13 4,601,990 7,369,040 41,064 
Table 1. Clones Detected by CCFinder for Linux 

Table 1 shows details about the CCFinder output for 7 
releases of the Linux kernel. Each row shows the version 
of the kernel, the total lines of source code (.c and .h files 
only), the number of clone pairs CCFinder produced and 
the number of clone classes CCFinder produced. For ex-
ample, version 1.0 contains 118,247 lines of source code. 
CCFinder has detected 2,486 clone pairs and 592 clone 
classes. 

3.2 Problem Specification 
We are interested in discovering clone patterns in the Li-
nux kernel by studying the spread of clones across the 
source code for the kernel. 

3.3 Data Filtering 
We use the textual filtering technique to remove false 
positive clones produced by the CCFinder tool. After 

manually examining the CCFinder output, we find there 
are mainly two types of false positives.  
• One type of false positives is mainly due to similar 

structure in variable declarations and functional pro-
totypes. Figure 6 shows one example of such func-
tional prototype declarations taken from the linux-
2.6.16.13/drivers/scsi/aha152x.c and linux-
2.6.16.13/drivers/scsi/esp.c files. These two code 
segments are considered as clones by CCFinder. 

 
Figure 6. An Example of a False Positive Clone 

• The other type of false positives refers to clones 
which are similar but are not intentionally cloned by 
developers. Such clones are called “accidental 
clones” [29]. Such clones usually occur due to devel-
opers having to follow specific protocol or library 
routines. In the Linux kernel, these types of clones 
are mainly caused by case-switch statements in the 
device driver implementations. There are many case-
switch statements which follow the format of one 
case statement followed by one line of method invo-
cation and a break statement. Each case statement 
normally corresponds to one register, and each regis-
ter will perform specific actions. The two code seg-
ments shown in Figure 7 are similar in structure but 
have no semantic similarity. The two code segments 
are taken from Linux 2.6.16.13. We do not consider 
these segments as clones since they are not intention-
ally created by the developers. 

 
Figure 7. An Example of An Accidental Clone 

We use the textual filtering technique to remove the false 
positives produced by the CCFinder. Since CCFinder uses 
a “Parameterized Token Matching” heuristics [11], all the 
detected clones exhibit similar structures. The false posi-
tives and accidental clones are the segments of code 
which do not have any semantic similarities. We use the 
amount of common lines between code segments to meas-
ure the semantic similarity. 
We implemented the textual filtering technique using a 
Perl script. The scripts reads the clone relations generated 
from CCFinder and compares the textual differences be-
tween the code segments for each clone pair. If the per-



centage of text in common between two code segments 
falls below a certain threshold, we remove the clone pairs 
from our analysis. The value of the filtering threshold is 
determined as follows: we start with the value 0.01. Then 
we categorize all the clones into different groups with 
respect to the number of cloned lines (i.e., large, medium, 
and small clones). We randomly sample a few clone pairs 
from each of these groups and manually check whether 
they are false positives. If they are, we set the threshold to 
be high enough to filter these clones. We notice that our 
filtering technique also removes the true clones. We re-
peat this process until we find an optimal value which 
filters out all the false positive clones in the sample and 
keeps most of the true clones. For Linux, we use 0.06 as 
our filtering threshold.  
Clearly it is not feasible to versify by hand the accuracy 
of our filtering technique. We sampled another 100 ran-
dom clones of the original clone pairs. Such a sample size 
can be considered enough to ensure a confidence level of 
95% and a confidence level of ±7%. Our sampling 
showed that 14 of the clones were false positives not and 
the filtering has removed 2 of the true clones. So our fil-
tering is reasonably accurate although it is very simple. 
Table 2 shows the filtering percentage. As we can see our 
filtering techniques reduces the amount of clone data sig-
nificantly. Furthermore, as the number of clone pairs gets 
larger, the textual filtering technique removes more clone 
data.  

Number of clone pairs 

Releases Before 
filtering 

After 
filtering 

% of 
filtering 

Linux 1.0 2,486 1,296 47.8 
Linux 1.2.0 5,766 1,672 71.0 
Linux 2.0.1 37,154 4,583 87.7 
Linux 2.2.0 633,522 22,362 96.5 
Linux 2.4.0 2,403,684 73,299 96.9 
Linux 2.6.0 5,773,032 124,301 97.8 
Linux 2.6.16.13 7,369,040 160,707 97.8 

Table 2. Results of Our Filtering for Linux 

Textual filtering requires many I/O operations since for 
each clone pair we must process millions of code seg-
ments in thousands of files in Linux. Calculations based 
on our initial implementation for filtering shows that it 
would takes the implementation more than 2 months to 
filter the results of CCFinder for Linux 2.6. To address 
this issue, we re-implemented our filtering in order to 
minimize the I/O processing. First, we grouped clone 
pairs by common files so we can compare different code 
segments from the same pairs of files rather than reading 
files multiple times. Second we use the Perl's diff package 
rather than the UNIX diff. The use of Perl’s diff enables us 
to do the textual comparison in-memory rather than writ-

ing the code segments into files and invoking the UNIX 
diff command. These enhancements dramatically im-
proved the performance of our textual filtering implemen-
tation. The improved implementation takes 3 hours to 
perform a full textual filtering of a version in the Linux 
2.6 series.  

3.4 Data Reduction 
Filtering reduces the clone data significantly. However, 
the clone data set is still large. For example, Linux 2.6.0 
contains over 120,000 clone pairs after textual filtering. 
We perform aggregation and pruning to further scale 
down the volume of the clone data. We merge clone 
classes which have the same set of entities into bigger 
clone classes. We lift the clone classes from the code 
segment level first to the file level, then to the directory 
level (from lower level directories to the top level directo-
ries).  In Linux 2.6.0, the number of relations from the top 
level subsystems is about 2% of the second level subsys-
tems. The number of clone pairs from the second level 
subsystems is about 22% of the number of clone pairs 
from the third level subsystems.  

3.5 Data Visualization 
Once data is scaled down at various abstraction levels, we 
visualize the clone data with an emphasis on studying the 
spread of the clones. Spread refers to the scatter of clones 
across a software system. For a particular clone class how 
far apart, according to the directory structure, are the 
cloned files or directories? How many files or directories 
are in the clone class? Our visualization lays out the clone 
data in the directory tree structure. It highlights clone rela-
tions for individual files and directories by mouse move-
ments.  
Knowing the spread of clones at the file level is important 
because the more spread out a clone is, the more effort is 
required to modify the code base such as propagating bug 
fixes selectively to clone instances or to perform re-
engineering tasks such as refactoring common code to 
eliminate clones. For example, drivers/net/3c501.c in Li-
nux Kernel version 1.0 has eleven files that have clone 
relationships. It is relatively harder to maintain than driv-
ers/FPU-emu/reg_add_sub.c, which has code duplica-
tions with only one file. 
Knowing the spread of clones at the subsystem level helps 
in improving our understanding of the design of the sys-
tems. The spread of the clone relations can uncover cer-
tain functional relations or clone patterns which are usu-
ally not documented. Consider the filesystem subsystem 
(fs) inside the Linux Kernel for example. Subsystems 
such as fs/ext2 and fs/minix have many external clone 
relations with each other but have a small number of 
clones between files inside the subsystems (i.e., internal 
clones). This is a sign of potential “forking” clone pattern 
[4]. Forking pattern involves large portions of code 
duplicates which will evolve independently. 



We call our visualization the Clone System Hierarchical 
(CSH) Graph. We first explain the components in our 

visualization then we provide an example of using our 
visualization.  

 
Figure 8. An Annotated Screenshot of the CSH Graph for Linux 1.0  

Components of The CSH Graph 
The CSH graph consists of 4 components as annotated in 
Figure 8: Node Name, Clone System Hierarchical Tree, 
Selection Menu, and Clone Information Panel. We ex-
plain the details of each component below. 
The Clone System Hierarchical Tree is an interactive 
graph which allows a user to select nodes to highlight the 
spread of clones across the directory structure (i.e., tree) 
of a software system. Within the tree, we have two types 
of entities: nodes and edges. Nodes represent either files 
(for the lowest level of nodes) or directories (for the rest 
of the nodes). Edges indicate the containment relation-
ship. For example, there is an edge going from node fs to 
node minix indicating that the minix is a subdirectory (i.e., 
subsystem) of fs. 
Entities Metric Description 

Width Number of internally cloned lines with-
in the node (directory or file) 

Node 
Height Number of internal clone classes within 

the node 

Edge Thickness Number of cross-subsystem clone 
classes from this node 

Table 2. Descriptions of the Entities in the Clone 
System Hierarchical Tree  

Table 2 describes the metrics embedded in nodes and 
edges in the CSH graph. The width of the directory nodes 
shows the number of duplicated lines; whereas the height 
is proportional to the number of internal clone classes. 
Flat nodes imply that a subsystem contains very few clone 
classes but that these clone classes contain a large amount 
of duplicated code. A thin node indicates that a subsystem 
contains many small clone code fragments. For file nodes, 

the size of the node is constant. We choose to use the 
same size for the file nodes mainly for scalability con-
cerns: if we embedded the clone information into the di-
mension of the file nodes it would result in a visualization 
that is too large to fit in the screen; since there are too 
many files. The thickness of edges shows the degree of 
external cloning from that node. The thicker the edge, the 
larger the amount of external cloning from that node is. 
Furthermore, sibling directories (directories under the 
same parent directory) are sorted by the number of their 
children. The more children that a directory contains, the 
farther left the directory will be placed. Finally, the graph 
highlights the clone information for each individual node. 
Here we define the term: Clone Buddy. For example, 
subsystem A has clone relations with subsystems B, C 
and D. Then the clone buddies for subsystem A are sub-
systems B, C and D. In the Clone System Hierarchical 
Tree, when a node is selected, its clone buddies will be 
highlighted. In addition, we also highlight the edges in 
order to help researchers trace the selected node and its 
clone buddies. 
Once a node is selected by mouse over or mouse clicking, 
the Node Name component will display the name of the 
selected node.  
The Selection Menu allows users to select either a file or 
a directory to highlight the clone information on the 
Clone System Hierarchical Tree.  
The Clone Information Panel displays the names of 
clone buddies for the selected node. 

3.6 Gained Knowledge 
Interesting clone relations or clone patterns are reported 
using a combination of our CSH graph and manual ex-
amination of the source code. We demonstrate below our 



process of extracting some interesting clone patterns from 
Linux 1.0.  
When the CSH graph starts up, it looks similar as Figure 8 
except three things: First, the Node Name component is 
blank. Second, all the nodes in Clone System Hierarchi-
cal Tree remain as pink and edges remain as black. Third, 
the Clone Information Panel is blank. The initial view 
gives an overview of the amount of internal and external 
clones at different directory levels. The visualization indi-
cates the amount of clones by using the size of nodes (for 
internal clones) and the thickness of the edges (for exter-
nal clones). Examining Figure 8 we note that the fs sub-
system has more internal clones than the drivers and net 
subsystems given that the fs node is larger than the other 
two nodes. Within the fs subsystem, directories like ext2, 
minix2, ext, xiafs, and sysv have many external clone rela-
tions as indicated by the thickness of the edges.  The CSH 
graph provides an overview of the degree of code cloning 
within each directory. For example, the drivers/scsi direc-
tory contains the largest number of files among its sibling 
directories, thus the drivers/scsi (the SCSI device drivers) 
is placed as the left-most node among all the nodes for the 
other drivers subsystems (all the device drivers). How-
ever, the drivers/scsi directory contains less clones than 
drivers/net (network device drivers) directory; since the 
drivers/scsi node is small and the thickness of the outgo-
ing edges from drivers/net and drivers/scsi is about the 
same. 
When a user moves the mouse over a node, the various 
components in the visualization are updated. First the 
node’s name appears in the Node Name component. Also 
the node’s name appears in the Selection Menu compo-
nent. Furthermore, the node, below the mouse, turns green 
if it has clone relations with other nodes and blue if it 
does not have clone relations with any other nodes. The 
clone buddies of the selected node are coloured in red. In 
addition, the path in the directory tree from the currently 
selected node up to the root directory will be highlighted 
in green. Meanwhile, the paths from all node buddies with 
the selected node up to the root directory are highlighted 
in red. Finally, the Clone Information Panel displays the 
name of the currently selected node as well as the names 
of its clone buddies. The information displayed in the 
panel is helpful in giving the user a textual representation 
of the results of their query instead of having to follow the 
different clone edges in the displayed tree. 
Figure 8 shows the graph after a user moves the mouse to 
the node fs/sysv: The node name is shown in the upper left 
corner. The pink node fs/sysv turns green. All the clone 
buddies of the fs/sysv node are highlighted in red. The 
path from the fs/sysv node to the root node is coloured 
green. The paths from the clone buddies of the fs/sysv 
node to the root node are coloured in red. We note that the 
red path from the fs node to the root nodes is coloured in 
green since the query node and its clone buddies share the 
same path segment from the fs node up to the root node. 

The selected node name is displayed in the Selection 
Menu. The Clone Information Panel displays the corre-
sponding information: all fs/sysv clones are within the fs 
directory. There are no external clones which involve files 
outside of the fs directory. When we move the mouse 
away from the selected node or click again on the same 
node; our visualization will undo all the visual changes 
mentioned above, and revert back to the original state.  
In other cases, there may be no clone buddies associated 
with a node. For example, in Figure 9 we note that there 
are no external clones for the drivers/net subdirectory thus 
the node is coloured in blue and there is only one path 
(coloured in green) going from that node up to the root 
node. Consequently, there are no clone buddies displayed 
in the Clone Information Panel. Many of the nodes un-
der the drivers subsystem (e.g., the drivers/char node) 
follow this same pattern: Large number of inner clones 
and small number of external clones. This pattern is easy 
to observe in our visualization since the size of the nodes 
are large (indicating many clones inside them), however 
the edges coming out from the nodes towards the root 
node are thin (indication no clone relation with files out-
side of the subsystem). 

 
Figure 9. The CSH Graph After Clicking the net 

Subsystem 

Pointing and clicking on the graph allows users to navi-
gate and query the clone information interactively. How-
ever, certain nodes (like file nodes – the lowest level 
nodes) may be too small or may be too closely placed to 
allow the user to pick them correctly. To solve this prob-
lem, the drop-down list from the Selection Menu can be 
used to locate nodes. Once we select a node from the 
drop-down menu, the same visual changes described 
above will appear as if the node was picked. 
The CSH graph enables users to rapidly scroll through the 
clone data across a file system by using the Selection 
Menu. Once an item from the Selection Menu is se-
lected, we can use the up and down arrow keys to move 
quickly across the various files, this will result in an ani-
mation like effect. Since files in the same directory are 
placed together (items in the selection menu are sorted by 
file path), then rapidly scrolling through the selection list 
will help in spotting patterns and anomalies at the direc-
tory level. Using the selection menu to rapidly navigate 
through all the files in the fs directory, we notice that all 
clones occur among files in sibling directories. This is the 
pattern shown in Figure 10(a). The fs directory is the 
filesystem subsystem in Linux kernel. It contains a num-
ber of subsystems which are different types of filesystems 
like minix (fs/minix) or ext2 (fs/ext2) or nfs (fs/nfs). This is 
an example of the “template” clone pattern [4] where a 



subsystem is cloned to serve as a template to create an-
other similar subsystem. The CSH visualization helps in 
directing our attention to a limited set of files. We then 
examine these files and note that they all contain a set of 
structs which have function pointers for each specific 
operation. For example, the structs in file.c are repeated in 
all types of filesystems which are supported by the Linux 
kernel (e.g., vfat, ntfs, and nfs filesystems). file.c contains 
definitions for structs like inode_operations or 
file_operations. inode_operations which define interfaces 
for inode related operations. To implement various types 
of filesystems, developers need to implement functions 
for reading and writing to a file, creating and removing a 
file; developer then set the function pointers in the file.c 
file to point to their implemented functions for a particu-
lar filesystem. Thus, file.c file in one type of filesystem is 
similar to the file.c file in another type of filesystems. 
Figure 10(b) shows an anomaly of the above clone pat-
tern. Using the CSH we noticed that the fs/nfs/mmap.c file 
does not have any clone buddies in the fs directory, in-
stead the file has clone buddies with the mm (memory 
management) directory. The source code comments of the 
fs/nfs/mmap.c file state that the code is borrowed from 
mm/mmap.c and mm/memory.c; which explains the clone 
relations. 

 
Figure 10. Observed Pattern and Anomaly Using 

CSH1 

3.7 Summary of the Gained Knowledge 
Using our framework to study clones in the Linux kernel, 
we learned that the fs and drivers subsystems contain 
many clone relations. However, these two subsystems 
exhibit different patterns.  
• The fs subsystems (e.g., fs/ext2) contain more cross-

subsystem clones. Each filesystem directory contains 
a set of files implementing different general function-
alities needed for a filesystems (e.g., opening and 
closing a file). Clones usually happen among files 

                                                             
1 Due to space constraints, Figure 10 is redrawn using Microsoft 

Visio.  

which implement the same functionality in different 
types of filesystems.  

• There are many clone relations inside drivers subsys-
tems (like drivers/scsi, drivers/net) but few cross-
subsystem clone relations.  Device drivers which are 
for similar hardware chipsets tend to have large code 
segments in common. However, there are few clone 
relations among drivers of different types.  

3.8 Feedback 
Having obtained some insight of the clone knowledge 
inside the Linux kernel, we can either refine the tech-
niques applied in the case study or specify new sub-
problems based on the observed clone patterns. Whereas 
in Section 3.5 we demonstrated the clone patterns ob-
served in Linux 1.0. We tried our visualization on Linux 
2.6.0. The amount of clone data is so overwhelming that 
even the simplest type of clone visualization tool (the 
scatter-plot from Gemini2 [24]) fails to load. As show in 
Figure 11, the number of nodes is too crowded for hu-
mans to extract any interesting patterns.  

 
Figure 11. The CSH Tree for Linux 2.6.0 

We apply our framework to prune uninteresting or irrele-
vant clone information. We use two types of pruning ap-
proaches: level pruning and subsystem pruning.  
• Level pruning removes all the nodes and edges if 

their abstraction levels are below a threshold value. 
As we go lower in the directory tree, the number of 
nodes increases. Figure 12 shows the result of prun-
ing file nodes and the lowest level directories (prun-
ing nodes which are at level 4 or higher). Using the 
CSH visualization we note that in Linux 2.6.0, the 
arch subsystem has many internal clone relations in 
comparison to the fs subsystem (the left-most direc-
tory). 

 
Figure 12. Level-4 Pruning for Linux 2.6.0 

• Subsystem pruning removes all the clone informa-
tion which is unrelated to a specific subsystem. If we 
are interested in clones in the drivers subsystem, then 
all the clone relations not related to fs will be re-
moved from the data set.  

We can also refine our problem. For example, we can 
specify a new problem such as studying the number of 
distinct driver families in the Linux kernel using the clone 

                                                             
2 Gemini is the GUI front-end of the CCFinder. 



relations. This is an interesting problem to study since 
drivers are a major source of operating system errors [19] 
and our case study shows that there are many clone rela-
tions among similar drivers but little clone relations 
among unrelated drivers.  

4. Related Work 
Basit and Stan apply the Frequent Itemset data mining 
techniques in order to detect design level clones using the 
clone information [18]. Cory and Godfrey propose to un-
derstand clone in large software systems through catego-
rization [28]. Clones are mapped into eight types of 
regions (e.g., functions regions and type definitions 
regions). Several heuristics are used to remove the false 
positive clones. In contrast, our framework uses a simpler 
filtering technique. However, Cory and Godfrey’s 
filtering could be adopted into our framework. Kim et al. 
present an ethnographic study of the developer’s copy and 
paste behavior and propose taxonomy of clone usage 
patterns [8]. Later, they study the clone evolution for two 
Java open source projects [16]. In contrast to our 
automated filtering approach, false positive clones are 
manually filtered due to the limited size of clones in the 
studied systems. Several techniques have been proposed to visualize clones 
at the code level, such as the scatter plot [22, 23, 24], the 
metrics graph [24], file similarity graph [24], Hass dia-
gram [25], Hyperlinked web [26], link editing [27] and 
exemplar-based visualization [32]. Cory and Godfrey [28] 
use software architecture like boxes-and-arrows diagram 
to visualize the clone information. Tairas et al. [33] im-
plement their clone visualization as an Eclipse plugin. It 
contains both a textual and graphical representation of 
clone output at the file level. Jiang et al. [17] use force-
based graph layout to visualize the amount of clones both 
within and across subsystems in the Linux Kernel. Rieger 
et al. [23] propose a number of visualization techniques 
for qualitatively studying the clone information. Rieger et 
al.’s System Model View lays out the clone information 
in a directory structure and embeds clone metrics into the 
dimensions of nodes and edges. Edges are used to show 
both containment and clone relationships. In comparison 
to our visualization, the System Model View shows clone 
information at single level of the tree instead of showing 
all the levels of abstractions.  

5. Conclusions and Future Work 
In this paper, we propose a framework for mining useful 
clone information from the large data set produced a 
clone detection tool. Our approach reduces the volume of 
data by first filtering out false positive clones using a sim-
ple lightweight textual filtering technique. The data is 
scaled down further by aggregating it at various levels of 
system abstraction. Finally, we use the Clone System Hi-
erarchy visualization to present the data. The visualization 
is interactive and permits users to explore and query clone 
data sets using the directory structure of a software sys-
tem. The directory structure layout since it is familiar 

structure for most developers so using the visualization 
should require a minimal cognitive effort. 
In the future, we plan to extend our framework to adopt 
other data mining techniques such as clustering and asso-
ciation mining. In addition, we want to experiment with 
different clone detection tools and different filtering tech-
niques. We are as well exploring the use of animation in 
order to examine the evolution of clones across time. Fi-
nally, we would like to perform a user study in order to 
better understand the strengths and weaknesses of our 
framework and the CSH graph.  
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