
Examining the Evolution of Code Comments in
PostgreSQL

Zhen Ming Jiang and Ahmed E. Hassan
Software Architecture Group (SWAG)

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Canada
{zmjiang, aeehassa}@uwaterloo.ca

ABSTRACT
It is common, especially in large software systems, for developers
to change code without updating its associated comments due to
their unfamiliarity with the code or due to time constraints. This is
a potential problem since outdated comments may confuse or
mislead developers who perform future development. Using data
recovered from CVS, we study the evolution of code comments in
the PostgreSQL project. Our study reveals that over time the
percentage of commented functions remains constant except for
early fluctuation due to the commenting style of a particular
active developer.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement – Documentation.

General Terms
Human Factors.

Keywords
Software Evolution, Software Maintenance, Code comments.

1. INTRODUCTION
Most of the software development effort is devoted to software
maintenance. Developers spend about half of their time trying to
understand code [1]. Most developers agree that it is not easy to
read other people’s code. A well documented program is easy to
follow and improves the quality of the software [3]. However, in
large software systems, due to unfamiliarity with the system or
due to time constraints or maybe just laziness, developers are
likely to change source code without updating its associated
comments. This is a potential time bomb, since outdated
comments are misleading and cause confusion. We believe it is
worthwhile for managers to monitor the evolution of code
comments over time.

We study source code comments in the PostgreSQL project over
time. Our focus is on the comments associated with functions. We
categorize code comments into two types: Header Comments and
Non-Header Comments. Header Comments are comments before
the declaration of a function; whereas Non-Header Comments are
all other comments residing in the body of a function or trailing
the function. Developers usually use Header Comments to
describe the purpose of a function, and to document its parameters

and interfaces. Non-Header Comments are usually used to
document algorithms and low level design decisions.

Research by Perry et al. has shown that at least 66% of bugs in
large projects are due to interface errors [4]. Uncommented
interfaces or interfaces with outdated comments are likely to
cause bugs. In this paper, we examine whether the percentage of
functions with header comments (FH) drops over time relative to
the functions with non-header comments (FNH). We believe that
a drop may indicate that developers are not updating the interface
documentations.

2. DISCUSSION ABOUT OUR FINDINGS
To perform our study, we used the C-REX extractor [2] to recover
all CVS changes for PostgreSQL from 1996 to 2005. C-REX is
able to track the addition and removal of functions and function
dependencies over time. It also tracks all changes to comments
associated with these functions.

Figure 1: Percentage of FH and FNH Over Time.

Figure 1 shows the percentage of functions with header comments
(FH) and non-header comments (FNH) for every 30 days period.
This Figure reveals that:

1. During the initial two year period (the first 30*25 days), there
is a steady decrease in the percentage of FH and an increase in the
percentage of FNH.
2. After the initial two year period, the percentage of FH and FNH
remain steady, and are around 51% and 52%, respectively. Copyright is held by the author/owner(s).

MSR'06, May 22–23, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

The first finding is worth investigating since it may be due to the
removal of many FH or the addition of a large amount of FNH
relative to FH. It is also possible that quite a few FH had their
header comments removed. The addition of many FNH is
troublesome since the interfaces for these functions are not
documented and may cause future bugs.

Figure 2: Percentage of Added/Removed/Total Change for FNH
and FH.

To investigate the changes in the percentage of FH and FNH, we
plot the percentage of addition and removal of FH and FNH
during the first two year period in Figure 2. The Figure as well
shows the total change (percentage of added – percentage of
removed) over time. In both subgraphs in the Figure, we note that
the total change line is always above zero (except one case around
13 in the right subgraph). Therefore, we can conclude that more
FNH and FH are added than removed during this two year period.

Figure 3: Ratio of Number of Added FNH over Added FH

We now compare the amount of added FNH against the amount
of added FH. Figure 3 shows the relationship between added FNH
and FH for the two year period. The Figure plots the ratio of

added FNH over added FH for every 30 days. We see that the
ratio always stays above 1. This indicates that there are always
more FNH being added than FH during the initial two year
period.

Using the recovered C-REX data which tracks all changes to the
source code and the name of the developers who performed these
changes, we examine closely the spikes in Figure 3. Our
investigation reveals that these spikes are due to a particular
developer who contributed a large number transactions during
these time periods. These transactions added mainly utility
functions to PostgreSQL. The developer has a particular
commenting style, where he appends the name of a function at the
end of the function’s declaration block. For example, in revision
1.13 of the file “./postgres/pgsql/src/backend/utils/adt/geoops.c”,
he adds a small uncommented utility function called “int4 text”.

text * int4_text (int32 arg1)
{
. . .
} /* int4_text () */

If this method were added by other developers, it would probably
become a function with no comments at all; however, in this case
it belongs to the category of FNH functions.

3. CONCLUSION AND FUTUREWORK
Correct and up to date comments aid developers in understanding
the source code; wrong or outdated comments mislead developers
and cause the introduction of bugs. Thus, it is important that
managers monitor code comments over time. In this paper, we
studied comments in PostgreSQL. We discovered that apart from
the initial fluctuation due to the introduction of a new
commenting style; the percentage of functions with header and
non-header comments remains consistent throughout the
development history.

In the future, we plan to investigate the relationship between the
decrease in comment rate and the introduction of bugs.

4. REFERENCES
[1] R. Fjeldstad and W. Hamlen. Application program

maintenance-report to our respondents. In Tutorial On
Software Maintenance, pages 13–27.1983.

[2] A. E. Hassan and R. C. Holt. C-REX: An Evolutionary Code
Extractor for C. May 2004.

[3] D. Parnas. Software aging. In Proceedings of the 16th
International Conference on Software Engineering, pages
279 – 287, Sorrento, Italy, May 1994.

[4] D. E. Perry and W. M. Evangelist. An Empirical Study of
Software Interface Faults—An Update. In Proceedings of the
20th Annual Hawaii International Conference on Systems
Sciences, pages 113–136, Hawaii, USA, Jan. 1987

