
Leveraging Performance Counters and Execution Logs
to Diagnose Memory-Related Performance Issues

Mark D. Syer1, Zhen Ming Jiang2, Meiyappan Nagappan1, Ahmed E. Hassan1, Mohamed Nasser3 and Parminder Flora3

Software Analysis and Intelligence Lab1, Department of Electrical Engineering & Computer Science2, Performance Engineering3

School of Computing, Queen’s University, Canada1, York University, Canada2, BlackBerry, Canada3

mdsyer@cs.queensu.ca, zmjiang@cse.yorku.ca, {mei, ahmed}@cs.queensu.ca

Abstract—Load tests ensure that software systems are able to
perform under the expected workloads. The current state of load
test analysis requires significant manual review of performance
counters and execution logs, and a high degree of system-specific
expertise. In particular, memory-related issues (e.g., memory
leaks or spikes), which may degrade performance and cause
crashes, are difficult to diagnose. Performance analysts must
correlate hundreds of megabytes or gigabytes of performance
counters (to understand resource usage) with execution logs (to
understand system behaviour). However, little work has been
done to combine these two types of information to assist per-
formance analysts in their diagnosis. We propose an automated
approach that combines performance counters and execution logs
to diagnose memory-related issues in load tests. We perform three
case studies on two systems: one open-source system and one
large-scale enterprise system. Our approach flags ≤0.1% of the
execution logs with a precision ≥80%.

Keywords-Performance Engineering; Load Testing; Perfor-
mance Counters; Execution Logs

I. INTRODUCTION

The rise of ultra-large-scale (ULS) software systems (e.g.,

Amazon.com, Google’s GMail and AT&T’s infrastructure),

poses new challenges for the software maintenance field [1].

ULS systems require near-perfect up-time and potentially

support thousands of concurrent connections and operations.

Failures in such systems are more likely to be associated with

an inability to scale, than with feature bugs [2], [3]. This

inability to meet performance demands has led to several high-

profile failures, including the launch of Apple’s MobileMe [4]

and the release of Firefox 3.0 [5], with significant financial

and reputational repercussions [6], [7].

Load testing has become a critical component in the pre-

vention of these failures. Performance analysts are responsible

for performing load tests that monitor how the system behaves

under realistic workloads to ensure that ULS systems are able

to perform under the expected workloads. Such load tests

allow analysts to determine the maximum operating capacity

of a system, validate non-functional performance requirements

and uncover bottlenecks. Despite the important of load test-

ing, current load test analysis techniques require considerable

manual effort and a high degree of system-specific expertise

to review hundreds of megabytes or gigabytes of performance

counters (to understand resource usage) and execution logs (to

understand system behaviour) [2], [8], [9].

Performance analysts must also be aware of a wide variety

of performance issues. In particular, memory-related issues,

which may degrade performance (by increasing memory man-

agement overhead and depleting the available memory) and

cause crashes (by completely exhausting the available mem-

ory), are difficult to diagnose. Memory-related issues can be

broadly classified as transient or persistent. Transient memory

issues (memory spikes) are large increases in memory usage

over a relatively short period of time. Persistent memory issues

are steady increases in memory usage over time. Persistent

memory issues can be further divided into memory bloat

(caused by inefficient implementations) and memory leaks

(caused by a failure to release unneeded memory). Such issues

have led to high profile failures, including the October 22,

2012 failure of Amazon Web Services (caused by a memory

leak) that affected thousands of customers [10].

We present a novel approach to support performance an-

alysts in diagnosing memory-related issues in load tests by

combining performance counters and execution logs. First, we

abstract the execution logs into execution events. We then

combine the performance counters and execution events by

discretizing them into time-slices. Finally, we use statistical

techniques to identify a set of execution events corresponding

to a memory-related issue.

Our approach focuses on the diagnosis, as opposed to

the detection, of memory-related issues. Performance analysts

could use a variety of existing techniques to detect issues

prior to using our approach for diagnosis. For example,

performance analysts may plot memory usage over time to

determine whether there are any persistent memory issues

(where the memory usage continually increases) or compare

the minimum, mean and maximum memory usage to deter-

mine whether there are any transient memory issues.

This paper makes two main contributions:

1) Existing load test analysis techniques use either exe-

cution logs or performance counters. We present the

first approach that combines both sources to diagnose

memory-related issues in load tests.

2) Our approach is fully automated and scales well with

large-scale enterprise systems, flagging ≤0.1% of the

log lines for further analysis by system experts with a

precision ≥80%.

Fig. 1. Overview of Our Approach.

This paper is organized as follows: Section II provides

a motivational example of how our approach may be used

in practice. Section III describes our approach in detail.

Section IV presents the setup and results of our case studies

and Section V discusses how changes to the input data impact

our results. Section VI outlines the threats to validity of

our case studies. Section VII presents related work. Finally,

Section VIII concludes the paper and presents future work.

II. MOTIVATIONAL EXAMPLE

Jack, a performance analyst, performed a 24 hour load test

on a ULS system. He discovers that there may be a persistent

memory issue in the system based on a visual inspection of

memory usage, which continues to increase throughout the

entire load test. However, in order to properly report this

issue to the developers, Jack must understand the underlying

cause (i.e., the usage scenario and functionality that causes this

issue). This is a very challenging task because Jack needs to

correlate the 3 million log lines and 2,000 samples of memory

usage that were collected during the load test.

Jack is introduced to a new load test analysis approach to

help him diagnose the memory issue uncovered during the

load test. When applied to the execution logs and performance

counters that Jack collected, this approach flags 10 events,

less than 0.001% of the log lines, for further analysis. These

events directly correspond to specific usage scenarios and

functionality within the system.

The new approach has produced a much smaller data set

that Jack is able to manually analyze. Jack analyzes this much

smaller set of execution events and concludes that this memory

issue is caused by a particular usage scenario where an error

handler fails to release memory back to the system once the

error has occurred (i.e., a memory leak). Jack reports this issue,

along with the associated events, to the developers.

III. APPROACH

This section outlines our approach to diagnose memory-

related issues in load tests by combining and leveraging the

information provided by performance counters and execution

logs. Figure 1 provides an overview of our approach. We

describe each step in detail below.

The first step in our approach is data preparation. In this

step we abstract the execution logs into execution events and

combine the performance counters and execution events by

discretizing them into time-slices. Each time-slice represents a

period of time where we can measure the number of execution

events that have occurred and the change in memory usage.

The second step is to cluster the time-slices into groups where

a similar set of events have occurred. The third step in our

approach is to identify the events that are most likely to

correspond to the functionality that is causing the memory

issue by analyzing the clusters.
We will demonstrate our approach with a working example

of a real-time chat application.

Input Data

Execution Logs: Execution logs describe the occurrence

of important events in the system. They are generated by

output statements that developers insert into the source code of

the system. These output statements are triggered by specific

execution events (e.g., starting, queueing or completing a job

or encountering a specific error). Execution logs record notable

events at runtime and are used by developers (to debug a

system) and system administrators (to monitor the operation

of a system).
The second column of Table I presents the execution logs

from our working example. These execution logs contain both

static (e.g,. starts a chat) and dynamic (e.g., Alice

and Bob) information.
Performance Counters: Performance counters describe sys-

tem resource usage (e.g., CPU usage, memory usage, network

I/O and disk I/O). Memory usage may be measured by a

number of different counters, such as 1) the amount of allo-

cated virtual memory, 2) the amount of allocated private (non-

shared) memory and 3) the size of the working set (amount of

memory used in the previous time-slice). Performance analysts

must identify and collect the set of counters that are relevant

to their system. Each of these counters may then be analyzed

independently. Performance counters are sampled at periodic

intervals by resource monitoring tools (e.g., PerfMon) [11].
Table II presents the performance counters (i.e., memory

usage) for our working example. A transient memory issues

is seen at 00:12 (i.e., memory spikes to 100).

TABLE II
PERFORMANCE COUNTERS

Time Memory (MB)

00:00 10

00:04 15

00:08 20

00:12 100

00:16 20

00:20 10

TABLE I
ABSTRACTING EXECUTION LOGS TO EXECUTION EVENTS

Time Log Line Execution Event Execution Event ID

00:01 Alice starts a chat with Bob USER starts a chat with USER 1

00:01 Alice says ‘hi’ to Bob USER says MSG to USER 2

00:02 Bob says ‘hello’ to Alice USER says MSG to USER 2

00:05 Charlie starts a chat with Dan USER starts a chat with USER 1

00:05 Charlie says ‘here is the file’ to Dan USER says MSG to USER 2

00:06 Alice says ‘are you busy?’ to Bob USER says MSG to USER 2

00:08 Initiate file transfer (Charlie to Dan) Initiate file transfer (USER to USER) 3

00:13 Complete file transfer (Charlie to Dan) Complete file transfer (USER to USER) 4

00:14 Charlie ends the chat with Dan USER ends the chat with USER 5

00:17 Bob says ‘yes’ to Alice USER says MSG to USER 2

00:18 Alice says ‘ok, bye’ to Bob USER says MSG to USER 2

00:18 Alice ends the chat with Bob USER ends the chat with USER 5

1. Data Preparation

The first step in our approach is to prepare the execu-

tion logs and performance counters for automated, statistical

analysis. Data preparation is a two-step process. First, we

remove implementation and instance-specific details from the

execution logs to generate a set of execution events. Second,

we count the number of execution events and the change in

memory usage over each sampling interval.
Log Abstraction: Execution logs are not typically designed

for automated analysis. Each occurrence of an execution event

results in a slightly different log line, because each log line

contains static components as well as dynamic information

(which may be different for each occurrence of the execution

event). Therefore, we must remove this dynamic information

from the log lines prior to our analysis in order to identify

similar execution events. We refer to the process of identi-

fying and removing dynamic information from a log line as

“abstracting” the log line.
Our technique for abstracting log lines recognizes the static

and dynamic components of each log line using a technique

similar to token-based code cloning techniques [12]. In ad-

dition to preserving the static components of each log line,

some dynamic information is also partially preserved. This

is because some dynamic information may be relevant to

memory-issues (e.g., the size of a queue or file). Therefore, this

dynamic information is partially preserved by abstracting the

numbers into ranges (e.g., quantiles or the order of magnitude).
In order to verify the correctness of our abstraction, many

execution logs and their corresponding execution events have

been manually reviewed by system experts.
Table I presents the execution events and execution event

IDs (a unique ID automatically assigned to each unique

execution event for automated analysis and brevity) for the

log lines in our working example.
Time-Slice Profiling: We combine performance counters

with the execution events using time stamps. When a log line

is generated or a performance counter is sampled, the log line

or performance counter is written to a log/counter file along

with the date and time of generation/sampling.
Although performance counters and execution logs both

contain time stamps, combining these two is a major challenge.

This is because performance counters are sampled at periodic

intervals, whereas execution logs are generated continuously.

Therefore, we must discretize the execution logs such that they

co-occur with the performance counters.

Discretization also allows us to account for the delayed

impact of some functionality on the performance counters. For

example, there may be a slight delay between when a log line

is generated and when the associated functionality is executed.

Discretization also helps to reduce the overhead imposed

on the system during load testing because the performance

counter sampling frequency can be reduced.

During the period of time between two successive samples

of the performance counters (i.e., a “time-slice”), zero or more

log lines may be generated by events occurring within the

system. For example, a log line may be generated when a new

work item is started, queued or completed or a specific error

is encountered during the time-slice. The execution events are

then discretized by creating a profile for each time-slice. This

profile is created by counting the number of times that each

type of execution event occurred during the time-slice and by

calculating the change in memory usage between the start and

end of the time-slice. Therefore, each time-slice has a profile

with two components: 1) a log activity component, which is

a count of each execution event that has occurred during the

time-slice and 2) a memory delta over the time-slice. We refer

to the process of connecting the performance counters with

the execution events as “profiling” the time-slices.

Our profiling technique is agnostic to the contents and

format of the performance counters and execution logs. We do

not rely on transaction/thread/job IDs and we do not assume

any tags other than a time stamp.

Table III shows the results of profiling the time-slices from

our working example.

TABLE III
TIME-SLICE PROFILES

Log Activity

(Execution Event ID) Memory

Time 1 2 3 4 5 Delta

00:04 1 2 0 0 0 5

00:08 1 2 0 0 0 5

00:12 0 0 1 0 0 80

00:16 0 0 0 1 1 -80

00:20 0 2 0 0 1 -10

2. Clustering

The second step in our approach is to cluster the time-slice

profiles into groups with similar log activity (i.e., where a

similar set of events have occurred). This is because we expect

that similar log activity should lead to similar memory deltas.

Memory-related issues will impact these memory deltas. We

have automated the clustering step using robust statistical

techniques to account for the size of the data.

Distance Calculation: Each time-slice profile is represented

by one point in a multi-dimensional space. Clustering proce-

dures rely on identifying points that are “close” in this multi-

dimensional space. Therefore, we must specify how distance

is to be measured in this space. Larger distance between two

points imply a greater dissimilarity between the time-slice

profiles that these points represent. We calculate the distance

between the log activity component of every pair of time-slice

profiles. This produces a distance matrix.

We use the Pearson distance, as opposed to the many other

distance measures [13]–[15], as this measure often results in

a clustering that is closer to the true clustering [14], [15].

We first use the Pearson correlation to calculate the similar-

ity between two profiles. This measure ranges from -1 to +1,

where a value of 1 indicates that two profiles are identical,

a value of 0 indicates that there is no relationship between

the profiles and a value of -1 indicates an inverse relationship

between the profiles (i.e., as the occurrence execution logs

increase in one profile, they decrease in the other).

ρ =
n
∑n

i xi × yi −
∑n

i xi ×
∑n

i yi
√

(n
∑n

i x
2 − (

∑n

i x)
2)× (n

∑n

i y
2 − (

∑n

i y)
2

(1)

where x and y are the log activity components of two time-

slice profiles and n is the number of execution events. We then

convert the Pearson correlation to the Pearson distance.

dρ =

{

1− ρ for ρ ≥ 0

|ρ| for ρ < 0
(2)

Table IV presents the distance matrix produced by calcu-

lating the Pearson distance between every pair of time-slice

profiles in our working example.

TABLE IV
DISTANCE MATRIX

00:04 00:08 00:12 00:16 00:20

00:04 0 0.333 0.408 0.408 0.667
00:08 0.333 0 0.612 0.612 0.167
00:12 0.408 0.612 0 0.25 0.408
00:16 0.408 0.612 0.25 0 0.388
00:20 0.667 0.167 0.408 0.388 0

Hierarchical Clustering: We cluster the time-slice profiles

(i.e., to group time-slices where a similar set of logs have

occurred) using the distance matrix and an agglomerative,

hierarchical clustering procedure. This procedure starts with

each profile in its own cluster and proceeds to find and merge

the closest pair of clusters (using the distance matrix), until

only one cluster (containing everything) is left. Every time two

clusters are merged, the distance matrix is updated.

Hierarchical clustering updates the distance matrix based

on a specified linkage criteria. We use the average linkage, as

opposed to the many other linkage criteria [13], [16], as this

linkage is the most appropriate when little information about

the expected clustering (e.g., the relative size of the expected

clusters) is available. Every time two clusters are merged, the

average linkage criteria removes the merged clusters from the

distance matrix and adds the new cluster by calculating the

distance between the new cluster and all existing clusters.

The distance between two clusters is the average distance (as

calculated by the Pearson distance) between the profiles of the

first cluster and the profiles of the second cluster [13], [16].
Figure 2 shows the dendrogram produced by hierarchically

clustering the time-slice profiles using the distance matrix

(Table IV) from our working example.

0
0

:1
2

0
0

:1
6

0
0

:2
0

0
0

:0
4

0
0

:0
8

A B C

Fig. 2. Sample Dendrogram.

Dendrogram Cutting: The result of a hierarchical clustering

procedure is a hierarchy of clusters that are typically visualized

using hierarchical cluster dendrograms (e.g., Figure 2). These

are binary tree-like diagrams that show each stage of the

clustering procedure as nested clusters [16].
To complete the clustering procedure, the dendrogram must

be cut at some height. This results in a clustering where each

time-slice profile is assigned to only one cluster. Such cutting

of the dendrogram is done either by manual (visual) inspection

or by statistical tests (referred to as stopping rules).
Although a visual inspection of the dendrogram is flexible

and fast, it is subject to human bias and may not be reliable.

We use the Calinski-Harabasz stopping rule, as opposed to the

many other stopping rules [17]–[21], as this rule is commonly

referred to as the most accurate [19]. The Calinski-Harabasz

stopping rule is a pseudo-F-statistic, which is a ratio reflecting

within-cluster similarity and between-cluster dissimilarity. The

optimal clustering will have high within-cluster similarity (i.e.,

the time-slice profiles within a cluster are very similar) and a

high between-cluster dissimilarity (i.e., the time-slice profiles

from two different clusters are very dissimilar).
The horizontal line in Figure 2 shows how the Calinski-

Harabasz stopping rule is used to cut the dendrogram from

our working example into three clusters. Cluster A contains

one time-slice profile (00:12), cluster B contains one (00:16)

and cluster C contains three (00:20, 00:04 and 00:08).

TABLE V
SCORING TECHNIQUES FOR IDENTIFYING OUTLYING CLUSTERS

Transient Memory Issues Persistent Memory Issues
Memory Spike Memory Bloat Memory Leak

Motivation
Functionality causing a memory spike is
characterized by a higher than average mem-
ory delta in small clusters or a combination
of a higher than average memory delta and
higher than average memory delta standard
deviation in larger clusters. The standard
deviation component is scaled with the clus-
ter size to emphasize the standard deviation
component in larger clusters.

Functionality causing memory bloat is char-
acterized by a higher than average memory
delta.

Functionality causing a memory leak is char-
acterized by a combination of a higher than
average memory delta and a higher than
average memory delta standard deviation.
The standard deviation component is added
because functionality with variable memory
deltas may indicate a memory leak.

Score
spikei =

ni × σi

max(n× σ)
+

µi

maxµ
bloati =

µi

maxµ
leaki =

σi

maxσ
+

µi

maxµ

µi =
1

ni

ni
∑

j=1

∆memoryi,j σi =

√

√

√

√

1

ni − 1

ni
∑

j=1

(∆memoryi,j − µi)2

where i is the cluster number, ni is the size of cluster i, µi is the average memory delta across each time-slice profiles, j, in cluster
i, σi is the standard deviation of the memory deltas of cluster i and spikei, bloati and leaki are the scores assigned to cluster i.
n, µ and σ are vectors containing the cluster size, average memory delta and standard deviation of the memory deltas of all clusters.
The standard deviation of a cluster with one time-slice profile is arbitrarily assigned the maximum standard deviation (i.e., such that
the first component of the spike and leak scores is equal to one).

3. Cluster Analysis

The third step in our approach is to identify the log lines

that correspond to the functionality that is responsible for the

memory issue exhibited by the data set. First, outlying clusters

are detected. Second, the key log lines of the outlying clusters

are identified. As in our previous step, we have used robust

statistical techniques to automate this step.

Outlier Detection: We identify outlying clusters by exam-

ining the memory deltas from each of the time-slice profiles

within each of the clusters. Outlying clusters will contain time-

slice profiles that have a significant impact on memory usage

(as evidenced by the memory deltas). Given the wide variety

of memory-related performance issues, identifying time-slice

profiles that have the “right” impact on memory usage is a

major challenge.

After discussions with system experts and a review of

memory-related issue reports from an enterprise system, we

developed scoring techniques to identify clusters that contain

evidence of these memory issues. Table V presents the scor-

ing technique used to identify transient memory issues (i.e.,

memory spikes) and persistent memory issues (i.e., memory

bloat or memory leaks).

We calculate either the memory spike (spike) or memory

bloat (bloat) and memory leak (leak) scores for each cluster,

depending on whether a transient or persistent memory issue is

detected. Outlying clusters are identified as having a score that

is more than twice the standard deviation above the average

score (i.e., a z-score greater than 2). The z-score is the number

of standard deviations a data point is from the average.

Table VI presents the spike score for each of the clusters

in our working example (i.e., each of the clusters that were

identified when the Calinski-Harabasz stopping rule was used

to cut the dendrogram in Figure 2). We calculate the spike

score because a transient memory issues is seen at 00:12 (i.e.,

memory spikes to 100 at 00:12).

TABLE VI
Spike SCORES FOR FIGURE 2 CLUSTERS

Cluster Spike Score

Cluster A 2
Cluster B 0
Cluster C 1

µspike 1
σspike 1

From Table VI, we find that the average spike score (µspike)

is 1 and the standard deviation in the spike scores (σspike) is

1. Therefore, no clusters are identified as outliers (i.e., there

are no spike scores ≥ µspike + 2 × σspike = 3). However,

outliers are extremely difficult to detect in such small data

sets. Therefore, for the purposes of this working example, we

will use one standard deviation (as opposed to two standard

deviations). Consequently, we identify Cluster A as an outlying

cluster (as it is one standard deviation above the average).

Influence Analysis: We perform an influence analysis on

the outlying clusters to determine which execution events

differentiate the time-slice profiles in outlying clusters from

the average (“normal”) time-slice profile. These execution

events are most likely to be responsible for the cause of

memory-related issues.
We first calculate the centre of the outlying cluster and the

universal centre. The centre of the outlying cluster is calculated

by averaging the count of each event in all the time-slice

profiles of a cluster. Similarly, the universal centre is calculated

by averaging the count of each event in all the time-slice

profiles of all clusters. These centres represent the location,

in an n-dimensional space (where n is the number of unique

execution events), of each of the clusters, as well as the average

(“normal”) time-slice profile.
We then calculate the Pearson distance (Equation 1 and

Equation 2) between the centre of the outlying cluster and

the universal centre. This “baseline” distance quantifies the

difference between the time-slice profiles in outlying clusters

and the universal average time-slice profile.
We then calculate the change in the baseline distance

between the outlying cluster’s centre and the universal centre

with and without each execution event. This quantifies the

influence of each execution event. When an overly influential

execution event is removed, the outlying cluster becomes more

similar to the universal average time-slice profile (i.e., closer

to the universal center).
Therefore, overly influential execution events are identified

as any execution event that, when removed from the distance

calculation, decreases the distance between the outlying clus-

ter’s centre and the universal centre by more than twice the

standard deviation above the average change in distance.
Table VII presents the change in the distance between

Cluster A and average (“normal”) time-slice profile when each

event is removed from the distance calculation.

TABLE VII
IDENTIFYING OVERLY INFLUENTIAL EXECUTION EVENTS

Event ID ∆dρ
1 4.267×10−2

2 1.999×10−1

3 -3.774×10−1

4 1.487×10−1

5 4.267×10−2

µ∆dρ 1.131×10−2

σ∆dρ 2.278×10−1

From Table VII, the average ∆dρ (µ∆dρ
) is 1.131×10−2

and the standard deviation in ∆dρ (σ∆dρ
)is 2.278×10−1.

Therefore, no clusters are identified as outliers (i.e., no ∆dρ
is ≥ µ∆dρ

− 2 × σ∆dρ
= −4.442 × 10−1). Again, for the

purposes of this example, we will use one standard deviation

(as opposed to two standard deviations). Therefore, we identify

event 3 as overly influential. This flagged event corresponds

to initiating the transfer of a file. Performance analysts and

developers now have a concrete starting point for their inves-

tigation of this memory issue.

IV. CASE STUDY

This section outlines the setup and results of our case study.

First, we provide an overview of the subject systems. We then

present a case study using a Hadoop application. Finally, we

discuss the results of an enterprise case study.

A. Subject Systems

Our case studies use performance counters and execution

logs from two systems. Table VIII outlines the systems and

data sets used in our case study.

Hadoop Case Study: Our first system is an application

that is built on Hadoop. Hadoop is an open-source distributed

data processing platform that implements the MapReduce data

processing framework [22], [23].

MapReduce is a distributed data processing framework that

allows large amounts of data to be processed in parallel

by the nodes of a distributed cluster of machines [23]. The

MapReduce framework consists of the Map component, which

divides the input data amongst the nodes of the cluster, and the

Reduce component, which collects and combines the results

from each of the nodes.

Enterprise System Case Study: Our second system is a

large-scale enterprise software system in the telecommunica-

tions domain. For confidentiality reasons, we cannot disclose

the specific details of the system’s architecture, however the

system is responsible for simultaneously processing thousands

of client requests and has very high performance requirements.

B. Hadoop Case Study

Our Hadoop case study focuses on the WordCount applica-

tion [24]. The WordCount application is a standard example of

a Hadoop application that is used to demonstrate the Hadoop

MapReduce Framework.

WordCount: The WordCount application [24] reads one or

more text files (a corpus) and counts the number of times each

unique word occurs within the corpus. The output is one or

more text files (depending on the number of unique words in

the corpus), with one unique word and the number of times

that word occurs in the corpus per line.

Load Test Configuration: We load test the Hadoop Word-

Count application on our cluster by attempting to count the

number in times each unique word occurs in two 150MB files

and one 15GB file. Linefeeds and carriage-returns are removed

from one of the 150MB files so that the file is composed on

one line.

According to the official Hadoop documentation: as the

Map operation is parallelized the input file set is first split

to several pieces called FileSplits. If an individual file is so

large that it will affect seek time it will be split to several

Splits. The splitting does not know anything about the input

file’s internal logical structure... [25].

Input files are split using linefeeds or carriage-returns [24],

[26]. Therefore, attempting to read the one-line 150MB file

(which lacks linefeeds and carriage-returns) will result in a

persistent memory issue (i.e., memory bloat as the application

attempts to read the entire file into memory).

TABLE VIII
CASE STUDY SUBJECT SYSTEMS.

Hadoop Enterprise System

Application domain Data processing Telecom
License Open-source Enterprise
Memory issue Memory bloat Memory leak Memory spike
Load test duration 49.2 minutes 17.5 hours 45.5 hours
Number of log lines 5,303 2,685,838 182,298,912
Number of flagged events 1 10 4
Reduction in analysis effort 1 - 0.019% 1 - 0.00037% 1 - 0.0000022%
Precision 100% 80% 100%

Application Failure: During the load test, the application

fails prior to processing the input files. As expected,

the cause of the failure is a memory-related issue. The

following log line (an error message) is seen in Hadoop’s

execution logs, indicating that the WordCount application

has a memory issue (i.e., the application is trying to

allocate more memory than available in the heap): FATAL

org.apache.hadoop.mapred.TaskTracker:

Task: attempt_id - Killed: Java heap space

Further, a plot of memory usage (i.e., memory heap usage)

for the WordCount application on the virtual machine with the

failure (Figure 3) clearly shows a persistent memory issue.

0 50 100 150 200

1
2

0
1

4
0

1
6

0
1

8
0

Execution Time (s)

M
e

m
o

ry
 U

s
a

g
e

 (
M

B
)

Fig. 3. Memory Usage

Applying Our Approach: We apply our approach to the

execution logs and performance counters collected during

our load test. Our approach identifies the following log line

as most likely to be responsible for this issue and flags it for

further analysis: INFO org apache hadoop mapred

TaskTracker attempt_id hdsf file start1 end8

Results: Our approach flagged only one log line for expert

analysis. As expected, this log line relates to data input.

Further, the numbers in this log line (e.g., “start 1 end 8”)

relates to the order of magnitude of the seek position (start)

within the file and the number of bytes (end) to be read. As

expected, our approach has flagged the execution event where

the data is read and split amongst the nodes of the cluster for

processing [26]. Our approach managed to reduce 5,303 log

lines into 1 execution event (a 100% − 0.019% = 99.981%
reduction in analysis effort) with a precision of 100% (i.e.,

this log line is relevant to the memory issue).

C. Enterprise System Case Study

Although the results of our Hadoop study were promising, we

apply our approach to two load tests of our Enterprise System to

examine the scalability of our approach. Similar to our Hadoop

data set, these load tests have exposed memory issues, however,

they are significantly larger than our Hadoop data set. From

Table VIII, we find that our enterprise case studies comprise

of data sets that contain 500 times more log lines from load

tests that are 20 times longer that our Hadoop data set.

We perform two case studies using the performance counters

and execution logs collected during two separate load tests of

the system that have been performed and analyzed by system

experts. The first load test exposed a memory leak caused by

a specific piece of functionality. The second load test exposed

a memory spike caused by rapidly queueing a large number

of work items. Each of these load tests have been analyzed by

system experts and their conclusions have been verified by at

least one additional expert. Therefore, we are confident that the

true cause of the memory issues have been correctly identified.

Our approach was applied to the performance counters and

execution logs collected during each of these load tests. We

flag 10 log lines (0.00037% of the 2,685,838 log lines) and

4 log lines (0.0000022% of the 182,298,912 log lines) for

the memory leak and memory spike data sets respectively.

We correctly identified 8 log lines (80% precision) and 4

log lines (100% precision) for the memory leak and memory

spike data sets respectively. These log lines correspond directly

to the functionality and usage scenario that system experts

have determined to be the cause of the memory issue. For

confidentiality reasons, we cannot disclose the log lines our

approach has flagged or the functionality and usage scenario

to which they correspond. However, our results have been

independently verified by system experts.

V. DISCUSSION

Although our approach has been fully automated to analyze

the execution logs and performance counter generated during a

load test, how this data is generated and collected is open to the

system’s developers and load testers. Developers must ensure

that they are inserting accurate execution logs that cover the

system’s features and load testers must specify how often the

performance counters are sampled (i.e., the sampling interval).

The sampling interval of our data sets range from 5 seconds

(Hadoop data set) to 30 seconds and 3 minutes (Enterprise

data sets). To explore how varying the sampling interval would

impact our results, we simulate longer sampling intervals in

the data set where a memory leak was found in our Enterprise

System. The sampling interval for this data set is 30 seconds,

however we simulate longer sampling intervals by merging

successive time-slice profiles. For example, a 60 second sam-

pling interval can be created by counting the execution events

and calculating the memory delta over two successive 30

second intervals. Using this approach, we simulate 60, 90,

120, 150 and 180 second sampling intervals.
Table IX presents how the number of flagged events, the

precision (the percentage of correctly flagged events) and the

recall is impacted by an increased sampling interval. As we

do not have a gold standard data set, we calculate recall using

the best results in Table IX. Sampling intervals between 90

and 150 seconds correctly flag 13 events. Hence, we measure

recall as the percentage of these 13 events that are flagged.

TABLE IX
IMPACT OF INCREASING THE SAMPLING INTERVAL

Sampling Interval

30s 60s 90s 120s 150s 180s
Flagged events 10 5 15 15 15 2
Precision (%) 80 100 87 87 87 0
Recall (%) 62 38 100 100 100 0

From Table IX, we find that sampling intervals between 90

seconds and 150 seconds flag events with high precision and

recall. However, performance analysts may need to tune this

parameter based on the duration of their load tests and the

sampling overhead on their system.

VI. THREATS TO VALIDITY

A. Threats to Construct Validity

1) Monitoring Performance Counters: Our approach is

based on the ability to identify log lines that have a significant

impact on memory usage. This is based on the assumption

that memory is allocated when requested and the allocation

of memory can be reliably monitored. Our approach should

be able to correctly identify the cause of memory issues in

any system that shares this property. To date, we have not yet

encountered a system where this property does not hold.
2) Timing of Events: Our approach is also based on the abil-

ity to combine the performance counters (specifically memory

usage) and execution logs. This is done using the date and time

from each log line and performance counter sample. However,

large-scale software systems are often distributed, therefore

the timing of events may not be reliable [27]. However, the

performance counters and execution logs used in our case

studies were generated from the same machine. Therefore,

there are no issues regarding the timing of events. System

experts also agree that this timing information is correct.
The timing of events may also be impacted if the time

stamps in the performance counters and execution logs do not

reliably reflect when the counters/logs were sampled/gener-

ated. However, we have found that the time stamps reflect

the times that the counters/logs were sampled/generated, as

opposed to the time the counters/logs were written to a file.

Therefore, the time stamps of the performance counters and

execution logs reliably reflect the true order of the events.

Our approach should only be used when the performance

counters and execution logs are reliably collected.

3) Evaluation: We have evaluated our approach by deter-

mining the precision with which our approach flags execution

events (i.e., the percentage of flagged events that are relevant

to the memory issue). While system analysts have verified

these results, we do no have a gold standard data set. Further,

complete system knowledge would be required to identify all

of the execution events that are relevant to a particular issue.

Therefore, we cannot calculate the recall of our approach.

However, our approach is intended to help performance an-

alysts diagnose memory-related issues by flagging execution

events for further analysis (i.e., to provide analysts with a start-

ing point). Therefore, our goal is to maximize precision so that

analysts have confidence in our approach. In our experience,

performance analysts agree with this view. Additionally, we

were able to identify at least one event that was relevant to

the memory issue at hand in all three case studies.

B. Threats to Internal Validity

1) Selecting Performance Counters: Our approach requires

performance counters measuring memory usage. However,

memory usage may be measured by a number of different

counters including, 1) allocated virtual memory, 2) allocated

private (non-shared) memory and 3) the size of the working set

(amount of memory used in the previous time-slice). Perfor-

mance analysts should sample all of the counters that may be

relevant. Once the load test is complete, performance analysts

can than detect whether memory-related issues are seen in any

of the counters and use our approach to diagnose these issues.

However, performance analysts may require system-specific

expertise to select an appropriate set of performance counters.

2) Execution Log Quality/Coverage: Our approach as-

sumes that the cause of any memory issue is manifested within

the execution logs (i.e., there are log lines associated with the

exercise of this functionality). However, it is possible that there

are no execution logs to indicate when certain functionality is

exercised. Therefore, our approach is incapable of identifying

this functionality in the case that they cause memory issues.

Further, our approach is incapable of identifying functionality

that does not occur while performance counters are being

collected (e.g., if the system crashes). However, this is true for

all execution log based analysis, including manual analysis.

This issue may be mitigated by utilizing automated instru-

mentation tools that would negate the need for developers to

manually insert output statements into the source code. How-

ever, we leave this to future work as automated instrumentation

imposes a heavy overhead on the system [28].

C. Threats to External Validity

1) Generalizing Our Results: The studied software systems

represent a small subset of the total number of software

systems. Therefore, it is unclear how our results will generalize

to additional systems, particularly systems from other domains

(e.g., e-commerce). However, our approach does not assume

any particular architectural details.

VII. RELATED WORK

Our approach is a form of dynamic program analysis,

however much of the existing work on dynamic analysis

focuses on the functional behaviour of a system (except for

some work on visualizing threads [29], [30]), whereas we

focus on the performance of a system. Cornelissen et al.

present an excellent survey of dynamic analysis [31]. Perfor-

mance testing, load test analysis, performance monitoring and

software ageing are the closest areas of research to our work.

A. Performance Testing

Grechanik et al. propose a novel approach to performance

testing based on black-box software testing [32]. Their ap-

proach analyzes execution traces to learn rules describing the

computational intensity of a workload based on the input

data. An automated test script then selects test input data

that potentially expose performance bottlenecks (where such

bottlenecks are limited to one or few components). Our

approach is not limited to finding performance bottlenecks and

relies on existing testing infrastructure.

B. Load Test Analysis Using Execution Logs

Jiang et al. mine execution logs to determine the dominant

(expected) behaviour of the application and to flag anomalies

from the dominant behaviour [9]. Their approach is able to

flag <0.01% of the execution log lines for closer analysis.

Our approach does not assume that performance problems are

associated with anomalous behaviour.

Jiang et al. also flag performance issues in specific usage

scenarios by comparing the distribution of response times for

the scenario against a baseline derived from previous tests [2].

Their approach reports scenarios that have performance prob-

lems with few false positives (77% precision). Our approach

does not rely on baselines derived from previous tests.

C. Load Test Analysis Using Performance Counters

Load test researchers have also used performance counters

to detect performance problems and identify the probable

cause of performance regressions [8], [28], [33]–[35].

Foo et al. use association rule mining to extract correlations

between the performance counters collected during a load

test [33]. The authors compare the correlations from one

load test to a baseline to identify performance deviations.

Nguyen et al. use control charts to identify load tests with

performance regressions and detect which component is the

cause of the regression [34], [35]. Malik et al. have used

principle component analysis (PCA) to generate performance

signatures for each component of a system. The authors assess

the pair-wise correlations between the performance signatures

of a load test and a baseline to identify performance deviations

with high accuracy (79% accuracy) [8], [28].

Our approach does not rely on performance baselines de-

rived from previous tests. Further, our approach can pinpoint

the cause of performance problems at a much lower level (i.e.,

execution log level) compared to Nguyen et al. [34], [35] and

Malik et al. [8], [28] (i.e., the component level). Finally, our

approach focuses on diagnosing (i.e., discovering the cause)

memory issues that have already been detected.

In our previous work, we proposed an approach to identify

performance deviations in thread pools using performance

counters [36], [37]. Our approach identified performance de-

viations (e.g., memory leaks) with high precision and recall.

However, we did not make use of execution logs. Hence, we

could not identify the underlying cause of these deviations.

D. Performance Monitoring

Research in automated performance monitoring has devel-

oped application signatures based on performance counters

that can be used to detect changes to the performance of an

application as it evolves over time [38]–[40]. However, these

methodologies require a baseline model of the application’s

performance in order to characterize changes resulting from

software evolution and maintenance.

E. Software Ageing Monitoring

Work in software ageing has developed monitoring tech-

niques to detect the effects of software ageing. Software ageing

is defined as the progressive degradation of a system’s perfor-

mance during its operational lifetime [41]. This degradation

is typically caused by resource exhaustion. Researchers have

noted the importance of memory issues in software ageing;

memory is the most cited cause of software ageing [42]–[50].

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel approach to combine

the information provided by both performance counters and

execution logs. Our approach is intended to help performance

analysts diagnose memory-related performance issues.

We performed three case studies using Hadoop and an

Enterprise System. Each of our case studies investigated a

different memory issue (i.e., memory bloat, memory leak

and memory spike). We have shown that our approach can

correctly diagnose memory issues.

Although our approach performed well in diagnosing mem-

ory issues, we intend to explore our ability to diagnose other

performance issues (e.g., CPU spikes).

ACKNOWLEDGEMENT

We would like to thank BlackBerry for providing access

to the enterprise system used in our case study. The findings

and opinions expressed in this paper are those of the authors

and do not necessarily represent or reflect those of BlackBerry

and/or its subsidiaries and affiliates. Moreover, our results do

not in any way reflect the quality of BlackBerry’s products.

REFERENCES

[1] S. E. Institute, Ultra-Large-Scale Systems: The Software Challenge of

the Future. Carnegie Mellon University, 2006.
[2] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automated

performance analysis of load tests,” in Proceedings of the International

Conference on Software Maintenance, Sep 2009, pp. 125–134.
[3] E. Weyuker and F. Vokolos, “Experience with performance testing of

software systems: issues, an approach, and case study,” Transactions on

Software Engineering, vol. 26, no. 12, pp. 1147–1156, Dec 2000.

[4] “Steve Jobs on MobileMe,” www.arstechnica.com/apple/2008/08/steve-
jobs-on-mobileme-the-full-e-mail/, Last Accessed: 17-Apr-2013.

[5] “Firefox Download Stunt Sets Record For Quickest Meltdown,”
www.siliconbeat.com/2008/06/17/firefox-download-stunt-sets-record-
for-quickest-meltdown/, Last Accessed: 17-Apr-2013.

[6] “IT Downtime Costs $26.5 Billion In Lost Revenue,”
www.informationweek.com/storage/disaster-recovery/it-downtime-
costs-265-billion-in-lost-re/229625441, Last Accessed: 17-Apr-2013.

[7] “The Avoidable Cost of Downtime,” http://www.arcserve.com/us/lpg/
costofdowntime.aspx, Last Accessed: 17-Apr-2013.

[8] H. Malik, “A methodology to support load test analysis,” in Proceedings

of the International Conference on Software Engineering, May 2010, pp.
421–424.

[9] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “Automatic iden-
tification of load testing problems,” in Proceedings of the International

Conference on Software Maintenance, Oct 2008, pp. 307–316.

[10] “Summary of the October 22, 2012 AWS Service Event in the US-
East Region,” http://aws.amazon.com/message/680342/, Last Accessed:
17-Apr-2013.

[11] “PerfMon,” www.technet.microsoft.com/en-us/library/bb490957.aspxx,
Last Accessed: 17-Apr-2013.

[12] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, “An automated
approach for abstracting execution logs to execution events,” Journal of

Software Maintenance and Evolution, vol. 20, no. 4, pp. 249–267, Jul
2008.

[13] I. Frades and R. Matthiesen, “Overview on techniques in cluster analy-
sis,” Bioinformatics Methods In Clinical Research, vol. 593, pp. 81–107,
Mar 2009.

[14] A. Huang, “Similarity measures for text document clustering,” in
Proceedings of the New Zealand Computer Science Research Student

Conference, Apr 2008, pp. 44–56.

[15] N. Sandhya and A. Govardhan, “Analysis of similarity measures with
wordnet based text document clustering,” in Proceedings of the In-

ternational Conference on Information Systems Design and Intelligent

Applications, Jan 2012, pp. 703–714.

[16] P.-N. Tan, M. Steinbach, and V. Kumar, Cluster Analysis: Basic Con-

cepts and Algorithms, 1st ed. Addison-Wesley Longman Publishing
Co., Inc., 2005.

[17] T. Calinski and J. Harabasz, “A dendrite method for cluster analysis,”
Communications in Statistics, vol. 3, no. 1, pp. 1–27, Jan 1874.

[18] R. O. Duda and P. E. Hart, Pattern Classification and Scene Analysis,
1st ed. John Wiley & Sons Inc, 1973.

[19] G. W. Milligan and M. C. Cooper, “An examination of procedures for
determining the number of clusters in a data set,” Psychometrika, vol. 50,
no. 2, pp. 159–179, Jun 1985.

[20] R. Mojena, “Hierarchical grouping methods and stopping rules: An
evaluation,” The Computer Journal, vol. 20, no. 4, pp. 353–363, Nov
1977.

[21] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of Computational and Applied

Mathematics, vol. 20, no. 1, pp. 53–65, Nov 1987.

[22] “Hadoop,” www.hadoop.apache.org/, Last Accessed: 17-Apr-2013.

[23] J. Dean and S. Ghemawat, “MapReduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
Jan 2008.

[24] “MapReduce Tutorial,” http://hadoop.apache.org/docs/stable/
mapred tutorial.html, Last Accessed: 17-Apr-2013.

[25] “HadoopMapReduce,” http://wiki.apache.org/hadoop/HadoopMapReduce,
Last Accessed: 17-Apr-2013.

[26] “TextInputFormat,” http://hadoop.apache.org/docs/stable/api/org/apache
/hadoop/mapred/TextInputFormat.html, Last Accessed: 17-Apr-2013.

[27] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, Jul
1978.

[28] H. Malik, Z. M. Jiang, B. Adams, A. E. Hassan, P. Flora, and
G. Hamann, “Automatic comparison of load tests to support the per-
formance analysis of large enterprise systems,” in Proceedings of the

European Conference on Software Maintenance and Reengineering, Mar
2010, pp. 222–231.

[29] S. P. Reiss, “Efficient monitoring and display of thread state in java,” in
Proceedings of the International Workshop on Program Comprehension,
May 2005, pp. 247–256.

[30] ——, “Controlled dynamic performance analysis,” in Proceedings of

the International Workshop on Software and Performance, Jun 2008,
pp. 43–54.

[31] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and
R. Koschke, “A systematic survey of program comprehension through
dynamic analysis,” Transactions on Software Engineering, vol. 35, no. 5,
pp. 684–702, Sep 2009.

[32] M. Grechanik, C. Fu, and Q. Xie, “Automatically finding performance
problems with feedback-directed learning software testing,” in Proceed-

ings of the International Conference on Software Engineering, Jun 2012,
pp. 156–166.

[33] K. C. Foo, Z. M. Jiang, B. Adams, A. E. Hassan, Y. Zou, K. Martin,
and P. Flora, “Mining performance regression testing repositories for
automated performance analysis,” in Proceedings of the International

Conference on Quality Software, Jul 2010, pp. 32–41.
[34] T. H. D. Nguyen, “Using control charts for detecting and understanding

performance regressions in large software,” in Proceedings of the In-

ternational Conference on Software Testing, Verification and Validation,
Apr 2012, pp. 491–494.

[35] T. H. D. Nguyen, B. Adams, Z. M. Jiang, A. E. Hassan, M. Nasser, and
P. Flora, “Automated verification of load tests using control charts,” in
Proceedings of the Asia-Pacific Software Engineering Conference, Dec
2011, pp. 282–289.

[36] M. D. Syer, B. Adams, and A. E. Hassan, “Industrial case study on
supporting the comprehension of system behaviour,” in Proceedings of

the International Conference on Program Comprehension, jun 2011, pp.
215–216.

[37] ——, “Identifying performance deviations in thread pools,” in Proceed-

ings of the International Conference on Software Maintenance, sep 2011,
pp. 83–92.

[38] L. Cherkasova, K. Ozonat, N. Mi, J. Symons, and E. Smirni, “Anomaly?
application change? or workload change? towards automated detection
of application performance anomaly and change,” in Proceedings of the

International Conference on Dependable Systems and Networks, Jun
2008, pp. 452–461.

[39] ——, “Automated anomaly detection and performance modeling of
enterprise applications,” Transactions on Computer Systems, vol. 27,
no. 3, pp. 6:1–6:32, Nov 2009.

[40] N. Mi, L. Cherkasova, K. Ozonat, J. Symons, and E. Smirni, “Analysis
of application performance and its change via representative application
signatures,” in Proceedings of the Symposium on Network Operations

and Management, Apr 2008, pp. 216–223.
[41] D. L. Parnas, “Software aging,” in Proceedings of the international

conference on Software engineering, May 1994, pp. 279–287.
[42] S. Garg, A. van Moorsel, K. Vaidyanathan, and K. S. Trivedi, “A method-

ology for detection and estimation of software aging,” in Proceedings of

the International Symposium on Software Reliability Engineering, Nov
1998, pp. 283–292.

[43] G. Carrozza, D. Cotroneo, R. Natella, A. Pecchia, and S. Russo,
“Memory leak analysis of mission-critical middleware,” Journal of

Systems and Software, vol. 83, no. 9, pp. 1556–1567, Sep 2010.
[44] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi, “Analysis of

software aging in a web server,” Transactions on Reliability, vol. 55,
no. 3, pp. 411–420, Sep 2006.

[45] M. Grottke, R. Matias, and K. S. Trivedi, “The fundamentals of software
aging,” in Proceedings of the International Workshop on Software Aging

and Rejuvenation, Nov 2008, pp. 1–6.
[46] A. Macedo, T. B. Ferreira, and R. Matias, “The mechanics of memory-

related software aging,” in Proceedings of the International Workshop

on Software Aging and Rejuvenation, Nov 2010, pp. 1–5.
[47] R. Matias, B. Evangelista, and A. Macedo, “Monitoring memory-related

software aging: An exploratory study,” in Proceedings of the Interna-

tional Symposium on Software Reliability Engineering Workshops, Nov
2012, pp. 247–252.

[48] R. Matias and P. J. F. Filho, “An experimental study on software aging
and rejuvenation in web servers,” in Proceedings of the International

Computer Software and Applications Conference, Sep 2006, pp. 189–196.
[49] Q. Ni, W. Sun, and S. Ma, “Memory leak detection in sun solaris os,” in

Proceedings of the International Symposium on Computer Science and

Computational Technology, Dec 2008, pp. 703–707.
[50] M. Shereshevsky, J. Crowell, B. Cukic, V. Gandikota, and Y. Liu, “Soft-

ware aging and multifractality of memory resources,” in Proceedings of

the International Conference on Dependable Systems and Networks, Jun
2003, pp. 721–730.

