
Load Testing Large-Scale Software Systems
Zhen Ming (Jack) Jiang

Software Construction, AnaLysis and Evaluation (SCALE) Lab
Department of Electrical Engineering and Computer Science

York University Toronto, ON, Canada
Email: zmjiang@cse.yorku.ca

Abstract—Large-scale software systems (e.g., Amazon and
Dropbox) must be load tested to ensure that they can service
thousands or millions of concurrent requests every day. In this
technical briefing, we will describe the state of research and
practices in the area of load testing. We will focus on the
techniques used in the three phases of a load test: (1) designing
a load test, (2) executing a load test, and (3) analyzing the
results of a load test. This technical briefing is targeted at
load testing practitioners and software engineering researchers
interested in testing and analyzing the behavior of large-scale
software systems.

I. INTRODUCTION

Large-scale software systems ranging from e-commerce
websites (e.g., Amazon) to telecommunication infrastructures
(e.g., BlackBerry) must support concurrent access to thousands
or millions of users. Failure to scale would cause catastrophic
problems and unfavorable media coverage (e.g., the launch
of HealthCare.gov [8] and the IPO of Facebook [5]). To
ensure the quality of these systems, load testing is a required
testing procedure in addition to conventional functional testing
procedures like unit testing and integration testing.

Load testing, in general, refers to the practice of assessing
the system behavior under load. A load is the rate of the
incoming requests to the system [4]. A typical load test uses
one or more load drivers that simultaneously send hundreds or
thousands of requests to the system under test (SUT). During
the course of a load test, the SUT is monitored and large
volumes of system behaviour data (counters and execution
logs) are recorded.

Load testing is a challenging task, as it requires a great
understanding of the SUT [11]. Practitioners face many chal-
lenges such as tooling (choosing and implementing the testing
tools), environments (software and hardware setup) and time
(limited time to design, test and analyze). Due to its critical
importance, industry has invested large amount of resources
into building tools and infrastructures for load testing (e.g.,
Apache JMeter [1] and LoadRunner [2]). There are also an
increasing number of research works done recently in the area
of load testing (e.g., [3], [6], [7], [10], [12]). Load testing
will become more important, as more services (e.g., Microsoft
Office 365 and Salesforce.com) are being offered in the cloud
to millions or even billions of users.

This technical briefing will cover the state of research
and practices in load testing large-scale software systems. It
is targeted at load testing practitioners as well as software
engineering researchers interested in testing and analyzing the

Design a Load Test
Designing Realistic Loads Designing Fault-Inducing Loads

Load Design Optimization and Reduction

Execute the Load Test
Live-User Based
Test Execution

Driver Based
Test Execution

Emulation Based
Test Execution

Analyze the Load Test
Verifying Against

Threshold Values
Detecting Known

Problems
Detecting Anomalous

Behavior

Load Test Objectives

Testing Load

Recorded System

Behavior Data

Test Results

Fig. 1: Overview of the Load Testing Process

behavior of large-scale software systems under load. In the
next section, we will present the outline of this technical
briefing.

II. OUTLINE OF THE TECHNICAL BRIEFING

This technical briefing will consist of five parts. Part One
will provide the background information about load testing.
Part Two, Three and Four will cover the techniques used in
the three phases of a load test as shown in Figure 1. Part Five
will present the challenges and opportunities in conducting
research on load testing.

Part One: Background

In this part, we will cover the background information
about load testing. We will start with the motivation of load
testing. Then we will describe the context and objectives
of load testing by comparing to other types of software
testing (e.g., functional testing, performance testing and stress

testing) and software performance engineering activities (e.g.,
benchmarking and performance tuning).

Part Two: Designing a Load Test

There are two general approaches to design a load test:

1) Designing realistic testing loads aims to design a load
test, which closely resembles the expected usage in the
field.

2) Designing fault-inducing testing loads aims to design a
load test, which is likely to reveal load-related problems.

In this part, we will explain various load design techniques
derived from the above two approaches. In addition, we will
also cover load design optimization and reduction techniques.

Part Three: Executing a Load Test

There are three general approaches to execute a load test:

1) Live-user based test executions hire human testers to
manually generate testing loads;

2) Driver based test executions use load drivers to auto-
matically generate testing loads; and

3) Emulation based test executions execute the load tests
on specialized platforms (e.g., CHESS [9]).

In this part, we will describe the test execution techniques
derived from the aforementioned three approaches.

Part Four: Analyzing a Load Test

During the course of a load test, there are two types of
system behavior data being recorded: metrics and execution
logs. Metrics can be functional related (e.g., number of pass
and failed requests) or performance related (e.g., CPU and
memory utilizations). Execution logs, which are generated
by debug statements embedded in the source code, record
software activities (e.g., item purchased) and runtime errors
(e.g., database connection timeout). There are three general
approaches to analyze the generated system behavior data:

1) Threshold based techniques verify the system behavior
data against some known threshold values (e.g., SLA or
the response time values from previous releases).

2) Pattern based techniques check the system behavior data
against known problems (e.g., analyzing memory usage
data for memory leaks).

3) Anomaly detection based techniques automatically learn
the “normal/expected” behavior from the past tests and
flag suspicious system behavior from the current test.

In this part, we will describe various load test analysis
techniques derived from the above three approaches.

Part Five: Future Directions

In this part, we will present the challenges and opportunities
in the area of load testing large-scale software systems.

III. ABOUT THE PRESENTER

Zhen Ming (Jack) Jiang (http://www.cse.yorku.ca/
∼zmjiang/) is an Assistant Professor at the Department of
Electrical Engineering and Computer Science, York Univer-
sity, Canada. Prior to joining York, he worked at BlackBerry’s
Performance Engineering Team for over half a decade. His
research interests lie within Software Engineering and Com-
puter Systems, with special interests in software performance
engineering, mining software repositories, source code anal-
ysis, software architectural recovery, software visualizations
and debugging and monitoring of distributed systems. Some
of the tools resulted from his research are already adopted
and used in practice on a daily basis to monitor and debug
the health of several large-scale commercial software systems.
He is the co-founder and co-organizer of the annually held
International Workshop on Large-Scale Testing (LT), formally
called International Workshop on Load Testing Large-Scale
Software Systems. He is the recipient of several best paper
awards including ICSE 2013, WCRE 2011 and MSR 2009
(challenge track). He received his PhD from the School of
Computing at the Queen’s University. He received his MMath
and BMath degrees in Computer Science from the University
of Waterloo.

REFERENCES

[1] Apache JMeter. http://jakarta.apache.org/jmeter/, visited 2014-10-08.
[2] HP LoadRunner software. http://www8.hp.com/ca/en/

software-solutions/loadrunner-load-testing/, visited 2014-10-08.
[3] C. Barna, M. Litoiu, and H. Ghanbari. Autonomic load-testing frame-

work. In Proceedings of the 8th ACM International Conference on
Autonomic Computing (ICAC), 2011.

[4] B. Beizer. Software System Testing and Quality Assurance. Van Nostrand
Reinhold, March 1984.

[5] David Benoit. Nasdaq’s Blow-by-Blow on What Hap-
pened to Facebook. http://blogs.wsj.com/deals/2012/05/21/
nasdaqs-blow-by-blow-on-what-happened-to-facebook/, visited 2015-
02-09.

[6] M. Grechanik, C. Fu, and Q. Xie. Automatically finding performance
problems with feedback-directed learning software testing. In Pro-
ceedings of the 34th International Conference on Software Engineering
(ICSE), 2012.

[7] H. Malik, H. Hemmati, and A. E. Hassan. Automatic detection of
performance deviations in the load testing of large scale systems. In
Proceedings of the 2013 International Conference on Software Engi-
neering (ICSE), 2013.

[8] Michael D. Shear and Robert Pear. Obama Admits Web Site Flaws
on Health Law. http://www.nytimes.com/2013/10/22/us/politics/
obama-pushes-health-law-but-concedes-web-site-problems.html,
visited 2014-10-08.

[9] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar, and
I. Neamtiu. Finding and reproducing heisenbugs in concurrent programs.
In Proceedings of the 8th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), 2008.

[10] M. D. Syer, Z. M. Jiang, M. Nagappan, A. E. Hassan, M. Nasser, and
P. Flora. Continuous validation of load test suites. In Proceedings of the
5th ACM/SPEC International Conference on Performance Engineering
(ICPE), 2014.

[11] W. Visser. Who really cares if the program crashes? In Proceedings
of the 16th International SPIN Workshop on Model Checking Software,
Berlin, Heidelberg, 2009. Springer-Verlag.

[12] P. Zhang, S. Elbaum, and M. B. Dwyer. Compositional load test gener-
ation for software pipelines. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis (ISSTA), 2012.

