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Abstract—A key goal of performance testing is the detection
of performance degradations (i.e., regressions) compared to
previous releases. Prior research has proposed the automation of
such analysis through the mining of historical performance data
(e.g., CPU and memory usage) from prior test runs. Nevertheless,
such research has had limited adoption in practice. Working
with a large industrial performance testing lab, we noted that a
major hurdle in the adoption of prior work (including our own
work) is the incorrect assumption that prior tests are always
executed in the same environment (i.e., labs). All too often,
tests are performed in heterogenous environments with each test
being run in a possibly different lab with different hardware
and software configurations. To make automated performance
regression analysis techniques work in industry, we propose to
model the global expected behaviour of a system as an ensemble
(combination) of individual models, one for each successful
previous test run (and hence configuration). The ensemble of
models of prior test runs are used to flag performance deviations
(e.g., CPU counters showing higher usage) in new tests. The
deviations are then aggregated using simple voting or more
advanced weighting to determine whether the counters really
deviate from the expected behaviour or whether it was simply
due to an environment-specific variation. Case studies on two
open-source systems and a very large scale industrial application
show that our weighting approach outperforms a state-of-the-
art environment-agnostic approach. Feedback from practitioners
who used our approach over a 4 year period (across several
major versions) has been very positive.

I. INTRODUCTION

Performance regressions are regressions (defects) caused
by the degradation of system performance compared to prior
releases. Many large-scale systems like Facebook, Google
and the Blackberry infrastructure, which are used by millions
of people worldwide, cannot afford any downtime. A slight
performance degradation can lead to a very large increase
in operating costs [28]. In fact, many field problems in such
systems are performance-related [4], [35]. Hence, to ensure the
quality of these systems, performance regression testing is a
required testing procedure in addition to regular, conventional
functional regression testing.

Performance regression testing detects performance regres-
sions by measuring the system’s performance in field-like
settings [2], [3]. A performance regression test usually runs
from hours to days. During the course of the test run, execution
logs and hundreds of performance counters for the running
system are recorded. The logs describe the high-level actions
performed during each user session, whereas the counters

measure metrics like CPU and memory utilization per time
interval. After the test is completed, performance analysts
need to compare counters against pre-defined thresholds to
flag counters that are at alarming levels. The analysts then
selectively examine other counters in an attempt to uncover
all performance regressions. Analysts commonly use the logs
to investigate the rationale for performance regressions.

Such manual detection of performance regressions is inef-
ficient and error-prone due to the large volume of data that is
analyzed, the limited knowledge of testers about the tested
system, and the time pressure associated with fast release
cycles [23]. Hence, in prior research [17], [23], [25], we
proposed the automation of such analysis through the mining
of historical performance data (e.g., CPU and memory usage)
from prior test runs. By building models based on prior suc-
cessful test runs (either based on the performance counter data
or on the execution logs), we are able to classify new test runs
as either a pass or a failure with high accuracy. Furthermore,
one can also build models to pinpoint the component or node
causing the performance regression.

However, such research has had limited adoption in practice.
A major hurdle is the incorrect assumption that new tests will
always be run in the same environment (e.g., labs with same
configurations) as the prior tests. Since labs are a significant
investment and typically bought through bids, it is impossible
to ensure that all prior tests are run in the same environment.
Furthermore, the different hardware and software upgrade
cycles of test labs lead to heterogenous lab environments at
any moment in time with tests being scheduled in labs based
primarily on lab availability. Finally, for long lived systems,
prior tests are most likely to have been conducted on different
labs than the current ones.

Heterogeneity is a show-stopper from the perspective of
industrial adoption of automated performance regression anal-
ysis. For example, in an e-commerce system, the system
bottleneck may shift from the database to the application
server if the database is upgraded with a faster disk. Hence,
when trying to adopt one of our previous approaches [17]
in an industrial setting, we discovered that our approach per-
formed significantly worse than during our evaluation, which
assumed that all tests were conducted in similar environments.
Analysis techniques that cannot differentiate between actual
performance regressions and performance differences caused
by different environments will lead to incorrect conclusions



being drawn about the quality of a system.
In this paper, we make automated performance regression

analysis work in practice by building ensembles (i.e., groups)
of models, with each model deriving performance rules from a
specific prior test (and, hence, configuration). For example, one
model might produce a rule for a specific version that indicates
that low CPU utilization and high database transaction counts
are associated with high throughput, whereas another model
for a different version indicates that high database transactions
by itself is associated with high throughput. By combining all
models (and their associated rules), then trying to assign more
weights to those models that were run in the environment most
similar to the new test run, we aim to make the detection
of performance regressions resilient to heterogenous environ-
ments. The main contributions of this paper are as follows:
• We use ensemble learning techniques to detect perfor-

mance regressions in heterogeneous environments.
• We empirically validate our ensemble-based techniques

on two major open source and one large enterprise
system. We provide the data used in our open source
studies online to encourage other researchers to replicate
our studies [32].

• We show that ensemble techniques achieve higher pre-
cision and recall than our state-of-the-art environment-
agnostic approach.

II. CURRENT PRACTICE AND RESEARCH

State of Practice. Today, organizations rely on manual (time-
consuming and error-prone) approaches for analyzing perfor-
mance regression tests. Once a performance regression test
is completed, performance analysts use domain knowledge
and the results of prior test runs to manually look for large
deviations of counter values (e.g., higher CPU utilization). If
the analysts conclude that the observed deviations represent
performance regressions, a defect report is filed.

Organizations currently maintain different lab environments
to execute performance tests in parallel. These labs may con-
tain varying hardware configurations, such as different CPUs
and disks, and software configurations, such as different oper-
ating system architectures (e.g., 32-bit and 64-bit) and database
versions. This heterogeneity is partly because of inconsistent
upgrade cycles, but mostly in order to simulate the hetero-
geneous environments in which the system will be deployed.
Since performance tests executed with different configurations
may exhibit different performance behaviour, not being able to
distinguish performance differences caused by heterogeneous
configurations from those caused by performance regressions,
will cause many false alarms, either delaying software release
by several weeks or (in the worst case) reducing the confidence
practitioners have in the performance testing process.

Today, CPU centric-benchmarks (e.g., SPEC and
RPE2 [33]) are often used to map and compare CPU
utilizations between different configurations. However,
such an approach provides no support for practitioners to
understand the rationale for such regressions and cannot be
used to compare other performance counters than CPU (e.g.,
I/O, threading and memory-related performance counters).
Such counters are often more important for enterprise

applications than CPU utilization, which is more relevant for
high-performance computing applications.

State of Research. Unlike functional regression testing, which
has been studied extensively [5], [18], [30], performance
regression testing has received very little research interest
due to the lack of infrastructure and availability of data.
Existing research can be divided into two classes depending on
whether the approaches analyze execution logs or performance
counters. We limit our discussion to performance counters and
refer to [34] for related work on execution logs. Approaches
for analyzing or monitoring performance counters can be
categorized as either supervised or unsupervised, depending
on whether or not the performance counter data is labeled
with the test outcome.

Supervised Approaches: Cohen et al. apply supervised ma-
chine learning techniques to train classifiers on performance
data that is labeled with violations of Service Level Ob-
jectives (SLO), as defined by stakeholders in the system’s
requirements [13], [14]. Bodı́k et al. improve Cohen’s work
by using logistic regression [8], whereas Zhang et al. extend
Cohen’s work to maintain an ensemble of classifiers [37].
When an SLO violation is detected, the most relevant classifier
is selected from the ensemble to report the counters that
correlate with the particular SLO violation. In [26], Malik et al.
presented a wrapper-based supervised approach, which detects
performance problems.

These supervised techniques require counters to explicitly
exceed certain thresholds (e.g., SLOs). In practice, mapping
threshold values to a concrete set of counters is not straight-
forward. Furthermore, threshold violations represent the worst
case scenarios of performance regression. By the time such
violations surface, the actual cause of the violations is hard to
track back, significantly delaying the next software release.

Unsupervised Approaches: Jiang et al. use pair-wise cor-
relations to detect performance problems [21]. Yilmaz et al.
use experimental design techniques to minimize the number
of configurations that a system needs to be tested on [36].
Malik et al. use Principal Component Analysis to recover cor-
relations among performance counters in order to identify the
subsystems causing performance deviations in a new perfor-
mance test run [25]. Similarly, Jiang et al. identify correlating
counters with Normalized Mutual Information [22]. Bulej et al.
cluster the response time counters with the k-means clustering
algorithm such that the performance between two test runs is
detected by comparing their clusters [12]. Breitgand et al. use
statistical modeling to flag performance problems (by flagging
when counters exceed manually set thresholds), however their
approach does not provide support to investigate the rationale
for such problems [10]. In [17], we presented an approach that
uses association rule mining to automatically flag counters that
expose symptoms of performance regressions.

The above studies use some type of supervised or unsuper-
vised model to automatically detect fine-grained performance
degradations in large test data sets. However, they all assume
that tests are run on the same hardware and software environ-
ments. A single model derived from prior test runs, conducted
with multiple environment configurations, will only be able to



capture the correlations that are strong enough to persist across
all test runs, and ignore other, weaker, but possibly important
correlations. The inability to identify which prior test runs
are the most related to a new run risks producing incorrect
conclusions about the performance of the system under test.

We explore ensemble-based techniques as a way to deal
with heterogeneous environments. We enhance our state-of-
the-art association rule mining approach [17] with ensemble
based techniques and compare the performance of the resulting
model to that of the original model on two major open
source systems and one large enterprise system. The next
section discusses the intuition and overview of our techniques,
whereas Section IV presents our case study results.

III. OUR APPROACH

Ensemble-based models consist of multiple individual clas-
sification models. To classify a new instance, the classifi-
cations of all the sub-models are combined through voting
(bagging [9]) or more elaborate composition (stacking [16]).
The key insight here is that each individual model specializes
in one particular area, with the global ensemble model taking
into account the decision of all areas.

In the context of performance regression, the ensemble
model for a particular release consists of individual models,
one for each passed prior test run. Such models summarize
for a given test run, and hence for its particular test envi-
ronment, the major patterns of performance counter values.
When a new test run’s performance counters are available,
they are matched to the patterns in the individual models to
determine deviations between the new test run and the prior
test runs. The final decision about whether the new test run
has passed or failed then needs to aggregate (in decreasing
order of importance) deviations with prior tests having a test
environment: identical/similar/different from the new test run.

A naive bagging approach would blindly pick the counters
deviating in the majority of the individual models, without
distinguishing explicitly between the three groups of models.
If, coincidentally, the majority consists of models from groups
1 and 2, the approach will work well. If group 3 dominates,
the ensemble model will likely yield the wrong result, unless
the new test run violates common behaviour across all test
runs. To make the analysis more clever, we also experimented
with a stacking approach that gives models of groups 1 and
2 a higher weight than those in group 3. Hence, if a new test
run deviates from prior runs with an identical or similar test
environment, those deviations will more likely determine the
fate of the new test run.

To evaluate the performance of these two ensemble tech-
niques, we integrated them into the state-of-the-art approach
for performance regression analysis that we proposed be-
fore [17]. Our resulting ensemble approach has 5 phases, as
shown in Figure 1. We now discuss each phase of our approach
through a running example with four prior tests T1, T2, T3,
T4 and one new test, T5.
Phase 1 – Counter Normalization. First, we must eliminate
irregularities in the collected performance data. Irregulari-
ties can come from the following sources: (1) Clock Skew:
Counters captured by different machines tend to have slightly

Fig. 2. Example association rule.

TABLE I
COUNTERS FLAGGED IN T5 BY MULTIPLE RULE SETS.

Models Counters of T5 flagged as violation

R1 CPU utilization, throughput
R2 Memory utilization, throughput
R3 Memory utilization, throughput
R4 # Database transactions/s

different timestamps due to the large number of machines. (2)
Delay: There may be a delay in the start or end of counter
collection between the machines.

To overcome these irregularities, we extract the portion of
counter data that corresponds to the expected duration of a test.
Then, we divide the time into equal intervals (e.g., every five
seconds). Each interval is represented by a vector containing
the medians of all counters in that interval. The size of the
interval can be adjusted by the analysts depending on how
often the counters are captured. Less interesting execution
phases could be aggregated into longer intervals.

Phase 2 – Counter Discretization. Our association mining
technique (see phase 3) requires categorical data. Therefore,
we must discretize the continuous performance counters. We
choose to use the Equal Width interval binning (EW) algorithm
for our discretization task, because it is relatively easy to
implement and performs well in conjunction with machine
learning techniques [15]. The EW algorithm first sorts the
observed values of a counter, then divides the value range
into k equally sized bins. Each counter value is discretized to
the bin to which it belongs. Note that EW typically does not
lead to uniformly distributed bins.

The width of each bin and the number of bins are deter-
mined by bin width = xmax−xmin

k , where k = max(1, 2 ×
log(u)) and u is the number of unique values of a counter.
To determine the bin width, we apply the EW algorithm
on all values of a particular counter observed in the entire
performance testing repository. For example, the tests in the
training set T1, T2, T3, T4 are first combined to form an
aggregated dataset TA to determine the bin boundaries.

Phase 3 – Association Rule Derivation and Voilation De-
tection. We apply association rule mining to extract a set of
association rules for each historical test run in the training set.
Each rule set is a model describing the performance behaviour
of a prior test. An association rule consists of a premise and
a consequent. The rule states that if the premise holds in a
new test run, then the consequent will also hold with high
probability. Figure 2 shows an example of an association rule
that states “if both the arrival rate and the CPU utilization are
observed to be at the medium level, throughput should also be
at the medium level.”



Fig. 1. Overview of our ensemble-based approach.

The probability with which an association rule holds can be
characterized by its support and confidence measures. Support
measures the ratio of times the rule holds, i.e., the counters
in the premise and consequent are observed together with
the specified values. Low support means that the association
rule may have been found simply due to chance. Confidence
measures the probability that the rule’s premise leads to the
consequent, i.e., how often the consequent holds when the
premise does. For example, if the rule in Figure 2 has a
confidence value close to 1, it means that when arrival rate
and CPU utilization are both medium, one will almost always
observe medium throughput.

To improve the quality of the association rule set, candidate
rules that do not reach the minimum support (0.3) and confi-
dence (0.9) thresholds are pruned. These values are the default
values defined in the data mining package that we use [11]
(yielding good results in our case studies). Lower thresholds
will accept more rules, making it harder for new test runs to
satisfy all the rules (higher chance for detecting deviations).
Higher thresholds yield less rules and make the rule set easier
to match with. Different projects can experiment with different
thresholds for optimal results.

We use the confidence of a rule on a new test run’s
counter values as an indicator of performance regressions.
For example, in Figure 2 a drop in confidence from 0.9 to
0.2 on the new test run’s data would indicate that medium
arrival rate and CPU utilization no longer associate with
medium throughput in most of the cases. As a result, the
throughput counter should be investigated. We measure such
confidence changes using the cosine distance between two
test runs: ∆

confidence
= 1− cosine distance(~V

history
, ~Vnew),

where ~V
history

= (Conf
history

, 1 − Conf
history

), ~V
new

=

(Conf
new

, 1−Conf
new

), where ~V
history

and ~V
new

are the vec-
tor form of the confidence values Conf

history
and Conf

new
in

the historical dataset and the new test run, respectively. Since
cosine distance measures the angle between two vectors, we
had to convert the scalar confidence values into vector form.

The confidence change values ∆
confidence

range between
0 and 1. A value of 1 means that the confidence of a rule
is completely different in the new test run, i.e., the premise
holds, but the consequent does not. If the confidence change
∆

confidence
for a rule is higher than a specified threshold,

we can conclude that the behaviour described by the rule
has changed significantly in the new test run. The counters

TABLE II
# OF MODELS R1 TO R4 THAT FLAGGED EACH COUNTER.

Counters flagged as violation # of times flagged

Throughput 3
Memory utilization 2

CPU utilization 1
Database transactions / second 1

appearing in the rule’s consequent can then be flagged as
a regression. The threshold for confidence change again is
customizable by the performance analyst to control the number
of flagged counters, based on the available analysis time.

Each model contains performance characteristics that are
common across prior test runs as well as behaviours that
are specific to the test run and environment used as training
data. Table I shows an example of counters flagged in T5 as
performance regressions by models R1 to R4. Counters that
are flagged by only a few models may be due to differences
in environments or other specifics of a particular test run.
Phase 4 – Combining Violations with Ensemble Algorithms.
We now combine the counters flagged by each individual
model in Phase 3 using one of the following two ensemble
methods: bagging and stacking. We briefly review these algo-
rithms and present our application of them.
Bagging is one of the earliest and simplest ensemble-based
algorithms [9], yet in some cases it has been shown to
outperform more complex approaches [6], [31]. In bagging,
the prediction of each model is combined by a simple majority
vote to form the final prediction. Hence, in order for a
performance counter to be flagged in our performance report,
we require the counter to be flagged by at least half of the
models. For example, Table II shows the number of times a
counter is flagged for T5 by the 4 models (R1, R2, R3, R4)
in Table I. Bagging will report both throughput and memory
utilization as performance regressions as they are flagged by
at least 2 models.
Stacking is a more general ensemble technique that can use any
selection process to form a final set of predictions. A simple
and effective way to combine the results of individual rule sets
is to create a Breiman’s stacked regression [13], which uses
a linear stacking function s of the form: s(~x) =

∑
i wiRi(~x),

where wi ∈ [0, 1] represents the weight of the violations
reported by rule set Ri (generated from the ith test run in
the repository), and ~x represents the vector of performance



TABLE III
TEST CONFIGURATIONS FOR STACKING.

Performance Test Repository New Test
T1 T2 T5

CPU 2 GHz 2 cores 2 GHz 2 cores 2 GHz 2 cores

Memory 2 GB 1 GB 2 GB

Database Version 2 1 1

Architecture 32 bit 64 bit 64 bit

counter values of the new test run. Ri(~x) yields a violation
vector of 1s and 0s, where a 1 corresponds to a particular
counter showing a performance regression in the new test run
based on Ri. Hence, s(~x) basically is a weighted count of the
number of times each counter is flagged across all prior test
runs. Bagging would consider all weights wi to be 1.

Although performance analysts may specify custom weights
best suited for their test repositories, we define the weight
of each Ri model based on the similarity between the en-
vironments used for the earlier test runs and the new test
run. A prior test run with a very similar environment to the
new test run should receive a larger weight. To compare the
environments between two test runs, we generate a similarity
vector of 1s and 0s to indicate if two test runs share common
components in their environment. Which components exactly
constitute the environment depends on the concrete software
system or deployment, and the degree of detail in which the
environment is specified can be chosen as well.

Since it is difficult to determine the relations between
the system performance and individual components of the
environment, we prefer a simple binary approach to compare
environment configurations. For example, Table III shows
three environments for T1, T2, and T5 (the components shown
here are just examples). The similarity vectors for the (T1,
T5) pair would be (1, 1, 1, 0), because both T1 and T5 share
the same versions of CPU, memory and database, and differ
only in the operating system version. Likewise, for the (T2, T5)
pair, the vector would be (1, 0, 0, 1). More elaborate similarity
vectors could be used to better differentiate between critical
and trivial differences in environments, for example tripling
the total amount of memory versus adding a small hard disk.

To measure the degree of similarity between the new and a
past test run, we use the cartesian length of the similarity
vector (

√
N with N the number of 1s in the vector). For

example, the lengths of (T1, T5) and (T2, T5) equal 1.7 and 1.4
respectively. The longer the length of a similarity vector, the
higher the similarity between prior and new test runs. We can
then calculate the weights as wi = li∑

j
lj

, with lj the length

of the similarity vector of the j-th model. As such, all weights
sum up to 1. For example, the weight w1, for T1 is calculated
as follows: w1 = |(T1,T5)|

|(T1,T5)|+|(T2,T5)| = 1.7
1.7+1.4 = 0.55.

The weight wi essentially is a value that describes the
relative importance of a model for analyzing a specific, new
test run, with the idea that tests having identical or similar
environments as the new test run have the largest weights
(hence weights need to be re-calculated for each new test
run). As such, the weights can be used to produce the set of
counters that most commonly violate the expected behaviour
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Fig. 3. An example of our performance regression report.

from prior test runs. Since the wi sum up to 1 and the Ri(xj)
are either 0 or 1, each element of the s(~x) vector will have a
value between 0 and 1. Performance counters with s(~x) values
greater than 0.5 will be included in the resulting set of counters
as performance regressions, since they are reported by most
of the highly weighted models.
Phase 5 – Report Generation. To help performance analysts
diagnose performance problems, our approach generates a
report like Figure 3. The reports contain important informa-
tion for developers, such as a list of problematic counters,
correlated counters (Figure 3, top), as well as an overview
of the periods in which the performance regressions occur
(Figure 3, bottom). Time intervals coloured in purple indicate
periods during which metrics are part of a violated rule.
Performance analysts can further investigate the periods in
which the performance regressions are detected (Figure 3,
bottom) by clicking on the “Graph” column.

To generate the report, the flagged counters are first ranked
by either the number of models flagging the counters (bagging)
or the aggregated weights s(~x) (stacking). If two counters are
ranked the same, they will be further sorted by the level of
severity as defined in

Severity = # time intervals with flagged counter
total # time intervals

Severity represents the fraction of time intervals (cf. phase
1) that contain the violating counter occurrences in the new
test. Severity ranges between 0 and 1. If there are only a few
intervals where the counter is observed to be problematic, the
severity will be close to 0. On the other hand, if the counters
are violated many times, severity will have a value close to
1. Each counter is linked to the list of association rules that
the counter violates (Figure 3). The rules help the analysts in
investigating the performance regressions.

IV. CASE STUDY

We conducted a series of case studies on two major open
source e-commerce applications (Dell DVD Store and JPet-
Store) and a large enterprise system to compare the two
ensemble-based techniques to our state-of-the-art association



rule mining model [17]. The open source case studies serve
two purposes: 1) they provide a replication package for others
to replicate our work as we cannot publicly release the indus-
trial data, and 2) they enable us to study our approach in a con-
trolled setting with known injected problems, similar to [36].
In particular, in the Dell DVD Store and JPetStore case studies,
we explore whether our ensemble approaches can handle
tests with different hardware (Dell DVD Store) and software
(JPetStore) environments, respectively. In our industrial case
study, we examine whether our ensemble approaches can
detect performance regressions in performance tests conducted
both in different hardware and software environments, based
on a large number of long-running tests.

For the two open source systems, we manually injected
faults into our case studies. For this, we followed the popular
“Siemens-Programs” approach of seeding bugs [20], which
are based on common performance problems. Since we know
which faults were injected, we can assess our approach using
both precision and recall [21]:

Precision =

{
1− mfalse

mtotal
if mtotal > 0

1 if mtotal = 0

Recall =

{
mtotal−mfalse

mexpected
if mexpected > 0

1 if mexpected = 0

where mfalse is the number of counters that are incorrectly
flagged, mtotal is the total number of counters flagged, and
mexpected is the number of counters expected to show per-
formance regressions (including counters that are a side-effect
of the injected fault). A high precision means that few of the
flagged performance regressions are false alarms. A high recall
means that our approach can discover most of the performance
regressions in a new test.

For the large enterprise system, we use the existing per-
formance counters collected by the company’s performance
analysts for historical test runs as the input of our approach.
We compare the results of our approach against the analysts’
reports filed at the time. Since an important motivator of our
work is the tendency of analysts to miss problems due to the
vast amount of data produced by large industrial systems,
we do not blindly use the analysts’ reports as the “gold
standard” for precision and recall. Instead, we carefully re-
verified the existing test reports with the analysts, who noted
any missed problems. For example, using this process, we
found 13 problematic counters in the analysis of the first of
three tests. The differences with the original report of the
analysts strengthens our claim that current manual analysis
practices are not sufficient.

Although we do not know the real number of performance
problems in the enterprise system, we calculate the relative
recall in terms of the union of true performance regressions
identified by the three approaches (original approach and two
ensemble versions).

Finally, we use the F-measure to rank the accuracy of the
three approaches in all three case studies. The F-measure
is the harmonic mean of precision and recall, and outputs
a value between 0 and 1. A high F-measure value means
that a technique has high precision and high recall. Table IV

TABLE IV
PRECISION, RECALL AND F-MEASURE OF THE STUDIED APPROACHES.
THE HIGHEST F-MEASURES ACROSS THE THREE APPROACHES FOR A

PARTICULAR CASE STUDY ARE SHOWN IN bold.

Single Model Bagging Stacking

P R F P R F P R F

D
S2

D4 0 1 0 1 1 1 1 1 1

D
(1)
5

1 0.57 0.73 1 0.57 0.73 1 0.57 0.73

D
(3)
5

1 0.14 0.25 1 0.57 0.73 1 0.57 0.73

JP
S

J3 1 0.5 0.66 1 0.5 0.66 1 0.5 0.66

E
nt

er
pr

is
e E1 1 0.46 0.63 0.72 1 0.84 0.85 0.85 0.92

E2 0.86 0.4 0.55 0.75 1 0.86 0.93 0.87 0.90
E3 1 1 1 0 1 0 1 1 1

Avg. 0.84 0.58 0.55 0.78 0.81 0.69 0.97 0.77 0.85

summarizes the performance of all three approaches in the
case studies. Bold entries highlight the best technique for a
particular test run.

For each case study, we give a description of the system,
methods used for data collection, and analysis of each ap-
proach. The replication package for the open source systems
can be found online [32].

A. Dell DVD Store
The Dell DVD Store (DS2) application [16] is an open

source implementation of an online movie rental website. DS2
consists of a back-end database component, a web application
component and load drivers (simulating user traffic). In this
case study, we have chosen to use DS2’s JSP distribution with
a MySQL database and a Tomcat container.
Data collection: We ran five one-hour performance test runs
(D1 to D5) with the same standard workload. We varied the
CPU and memory capacity of the machine that hosts Tomcat
and MySQL to simulate different hardware environments.
Table V summarizes the hardware setups and expected prob-
lematic counters for this case study. Test run D1 represents a
test run in which the hardware is running at its full capacity.
In test run D2, we throttle the CPU to 50% of the full capacity
to emulate a slower machine. In test run D3, we reduce the
memory from 3.5GB to about 1.5GB. Test runs D1, D2, and
D3 will be used as the test repository for the three approaches.

Test run D4 is a replication of D1 and is used to show that
our approach produces few false positives. In D5, we use an
injected fault from [24] to cause a performance regression. The
injected excessive-database-queries bug simulates the “n+1”
pattern [19]. Prior to each case study, we manually derived
a list of counters that we expect to exhibit performance
regressions because of the injected bug. We use these counters
to calculate the recall of our approach.
Analysis of Test Run D4: Since D4 is run without any
injected bugs, ideally, no counter should be flagged. We use
D4 as a sanity check for the ensemble techniques.

When using our original approach, 4 counters (database
CPU utilization, # database I/O writes/s, # orders/minute and
the response time counter) were flagged. Upon investigation,
we found that the rules of test run D2 flagged the first
3 counters: because less processing power was available in
D2, each request would take longer to complete, resulting
in an increased CPU utilization. Also, less requests could be
completed, leading to a decrease in # database I/O writes/s
and # orders/minute. The violations of the D2 model seem to



TABLE V
SUMMARY OF TEST SETUP FOR DS2.

Run Hardware Setup Fault Description Expected Problematic Metrics

D1 CPU = 100%, Memory = 3.5 GB No fault No problem should be observed.

D2 CPU = 50%, Memory = 3.5 GB No fault No problem should be observed.

D3 CPU = 100%, Memory = 1.5 GB No fault No problem should be observed.

D4 Same as Test D1 No fault No problem should be observed.

D5 Same as Test D1

1. Increase in CPU utilization, and # disk reads/s in database.
Busy loop in browsing logic 2. Increase in # threads, # private bytes, and CPU util. in Tomcat.

3. Increase in response time and # requests/min in application.

indicate that the behaviour of D4 (and hence D1) differs the
most from that of D2. Since no actual fault was injected into
test run D4, we concluded that the four flagged counters were
false positives, leading to a precision of 0. Because we do not
expect any counter to be flagged, recall is equal to 1, based on
the definitions of precision and recall. The F-measure of our
original approach is 0. Note that the new test run (D4) actually
performs better than the old test runs, i.e., the rules did not
flag a regression, but rather a speed-up. Heuristics could be
added to our approach to only flag true regressions.

No counter was flagged by either the bagging or stacking
approach. This can be explained by the fact that separate
models are learned from test runs D1, D2, and D3. In order
for a counter to be considered problematic, the counter must
be flagged by at least two models (to achieve an aggregated
weight of 0.5). Even though three counters (database CPU
utilization, database I/O writes, and # orders/minute) were
flagged by the model generated from test run D2, none of
these counters could be confirmed by the models generated
from test runs D1 or D3. The precision, recall and F-measure
of our ensemble-based approaches are 1.
Analysis of Test Run D5: In test run D5, we injected a
database-related bug that affects the product browsing logic
of the system. Every time a customer performs a search on
the website, the same query will be repeated numerous times,
causing extra workload for the backend database (MySQL)
and application server (Tomcat).

Test Run D1 as Training Data. In this scenario (D(1)
5 in Ta-

ble IV), we want to evaluate the performance of our ensemble
techniques in cases where the new test run and the prior test
run share exactly the same environment.

All three approaches flagged two database counters (#
disk reads/s and CPU utilization), one Tomcat counter (CPU
utilization), and one application-level counter (response time).
The precision and recall of all approaches is 1 and 0.57,
respectively. The F-measure is 0.73. Basically, when only
one test is used as the training data, our ensemble-based
approaches reduce to our original approach.
Test Runs D1, D2 and D3 as Training Data. In this scenario
(D(3)

5 in Table IV), we want to evaluate the ability of our
approaches to detect performance problems when the training
data is produced from heterogeneous environments.

Our original approach flags the response time counter,
which agrees with the nature of the injected fault. Since DS2
must process additional queries for each request, the overall

TABLE VI
SUMMARY OF TEST SETUP FOR JPETSTORE.

Run Hardware
Setup

Fault
Description

Expected Problematic Metrics

J1 MySQL
5.1.45

No fault No problem should be observed

J2 MySQL
5.0.1

No fault No problem should be observed

J3 MySQL
5.0.1

Cache
disabled

Increase of database CPU utiliza-
tion, # threads, # context switches,
# private bytes, and # disk reads
and writes in bytes/s.

response time suffered as a result. The precision and recall of
our original approach are 1 and 0.14 (1/7), respectively, and
the F-measure is 0.25.

Both the bagging and stacking approaches flagged the
same counters: two database counters (# disk reads/s and
CPU utilization), one Tomcat server related counter (# private
bytes), and one application level counter (response time). Upon
inspection, we found that the model generated from test run
D3 also flagged Tomcat’s # threads counter. However, in the
model generated from test run D2, the rules that contained
# threads as the consequent had premises that were never
satisfied in test run D5. As a result, even though the # threads
counter behaved differently in test runs D2 and D5, the #
threads counter was only flagged by the D3 model. Since
4 out of 7 counters were flagged, our bagging and stacking
approaches achieved a precision of 1 and a recall of 0.57. The
F-measure of both ensemble-based approaches is 0.73.

B. JPetStore
JPetStore [7] is a re-implementation of Oracle’s original

J2EE Pet Store. Since JPetStore does not ship with a load
generator, we use an external web testing tool to record and
replay a typical scenario of a user browsing and purchasing
items on the site [27].
Data collection: In this case study, we conducted three one-
hour performance test runs (J1, J2, and J3), all of which
share the same hardware environments and workload. J2 and
J3 use an older version of MySQL (ver. 5.0.1) than test
run J1 (ver. 5.1.45). J1 and J2 are used as training data,
whereas J3 is injected with an environment bug in which
all caching capacities of MySQL are turned off. Such a bug
simulates a typical operator error [29]. Table VI summarizes
the environments used in the three test runs and the 6 counters
expected to show performance regressions in J3.



TABLE VII
SUMMARY OF TEST SETUP FOR THE ENTERPRISE SYSTEM.

Run Performance Analyst’s Report Our Findings

E1 No performance problem
found.

Our approach identified abnormal
behaviours in system arrival rate
and throughput counters.

Arrival rates from two load
generators differ significantly.

Our approach flagged the same
counters as the performance an-
alyst.

E2 Abnormally high Database
transaction rate
High spikes in job queue.

E3 Slight elevation of # database
transactions/s.

No counter flagged.

Analysis of Test Run J3: Our original approach detected a
decrease in memory usage (# private bytes), and an increase
in CPU utilization and # threads in the database. These
observations align with the injected fault, as caching is turned
off in the database, less (caching) memory is used during the
execution of the test. Because of the extra workload of access-
ing the disk, the database in turn must create more threads
to handle the otherwise unchanged workload, increasing CPU
utilization in the process. Our original approach has a precision
of 1 and recall of 0.5 (3/6). The F-measure of our original
approach is 0.66.

Our ensemble approaches flagged the following three coun-
ters: # private bytes, # IO reads/s, and # threads in the
database. Hence, our ensemble approaches achieve the same
performance as our original approach.

C. A Large Enterprise System
Our third case study is conducted on a large scale distributed

enterprise system from our industrial partner. This system is
designed to support millions of concurrent requests across
several hundreds of machines. For each build of the software,
a series of performance regression tests are done to uncover
performance regressions.
Data collection: In this case study, we selected thirteen
comprehensive (i.e., executing the core functionalities) 8-
hour performance regression test runs from the organization’s
performance regression test repository. Most of these tests
were run in labs with varying hardware specifications, and
were conducted for a maintenance release of the system. For
each run, over 2,000 counters were collected.

Out of the pool of 13 test runs, 10 test runs historically
had received a pass status from the performance analysts
(independent of our case study). We use those runs to derive
association rule models. We evaluated the performance of the
3 newest test runs (E1, E2 and E3) in the pool and compared
our findings with the performance analysts’ assessment at the
time (Table VII).
Analysis of Test Run E1: By analyzing the counters flagged
by the union of the three approaches for test run E1, we
found that 13 counters (out of 2,000!) show true performance
regressions. These 13 counters will be used to calculate the
relative recall of our approaches for E1.

Our original approach flagged 6 counters, including 2
throughput counters, 2 arrival rate counters, the # private bytes

counter of the server process and the # database transactions/s
counter. The rules that flagged the counters imply that all
throughput and arrival rate counters should be the same under
normal circumstances. However, upon investigation, we found
that for E1 half of the arrival rates and throughput counters
are high while the other half is low, suggesting that the
performance regression might be due to a mismatch in the
load created by the load generators of Test E1. Our original
approach achieves a precision of 1, a recall of 0.46 (6/13) and
an F-measure of 0.63.

Our bagging approach flagged 18 counters. The counters
flagged included the 4 throughput and arrival rate counters that
were flagged by our original approach. Most of the flagged
counters are side-effects of the mismatch of the arrival rate
counters. For example, the CPU utilization of the system
decreased because fewer requests were made due to a drop
in one of the arrival rate counters. We verified our findings
with a performance analyst, and found that 5 flagged counters
were false positives, bringing the precision and relative recall
of our bagging approach to 0.72 (13/18) and 1, respectively.
The F-measure of our bagging technique is 0.84.

Our stacking approach flagged 13 counters, including the
ones flagged by our original approach. Out of the 13 counters
flagged, the performance analyst and we identified 2 false
positives, bringing both the precision and relative recall of
our stacking approach to 0.85 (11 out 13). The F-measure of
our stacking approach is 0.92.

Analysis of Test Run E2: Our three approaches detected 15
unique counters with performance regressions in test run E2.
These 15 counters will be used to evaluate the relative recall
of each of our approaches.

Our original approach flagged 7 counters in total, 1 of which
was a false positive. The correct performance regressions
flagged included 2 arrival rate and 2 job queue counters,
and the # private bytes and # virtual bytes counters of the
application process. The resulting precision, recall and F-
measure are 0.86, 0.4, and 0.55, respectively.

Our bagging approach flagged 20 counters, 5 of which
were false positives. The remaining 15 counters included the
7 counters that were flagged by our original approach. The
additional counters reported by our bagging approach were
mainly the side-effects of the regression detected in the arrival
rate counters. For example, as one of the load generators
pushed a higher than the expected load, the extra requests
caused the system to read from the disk more often, leading
to an increase in the # disk reads/s. The results of these extra
requests were written to the disk, causing an increase in the #
disk writes/s. Although these side-effects are the result of the
higher testing load, they can help analysts investigate the ripple
effect of the fault. Hence, side-effects should be considered as
true positives. The precision and relative recall of our bagging
approach are 0.75 (15/20) and 1, respectively. The F-measure
of our original approach is 0.86.

Our stacking approach flagged 14 counters, 1 of which was
a false positive. All counters flagged by our original approach
were also flagged by our stacking approach. The precision and
relative recall of our stacking approach are 0.93 (13/14) and



0.87 (13/15). The F-measure for our stacking approach is 0.90.
Analysis of Test Run E3: There are no true positives that
were detected by any of our three approaches.

Our original approach did not flag any rule violation for
this test run. Upon inspection of the historical values for the
counters reported by the performance analyst, we noticed that
the increase of # database transactions/s observed in test run
E3 actually fell within the counter’s historical value range.
Upon discussing with the Performance Engineering team, we
concluded that the increase did not represent a performance
problem, contradictory to the results of the team’s earlier
(manual) analysis. In this test run, our original approach
of using a historical dataset of prior tests is resistant to
fluctuations of counter values. Since no counter was flagged,
the precision, relative recall and the F-measure of our original
approach are 1.

Our bagging approach flagged 8 counters, all of which were
false positives. Two counters flagged by our bagging approach
indicated that one of the load generators output service re-
quests at a higher rate (11%) than the other one. The extra
service requests led to a slight increase in the # disk reads/s
counter. Upon investigation, we do not believe that these two
counters represent significant performance regressions. Hence,
these counters are considered as false positives, leading to a
precision and relative recall of our bagging approach of 0 and
1. The F-measure of our bagging approach is 0.

Since our stacking approach did not flag any counter, the
precision and the relative recall of our stacking approach are
1. The F-measure of our stacking approach is 1.

V. DISCUSSION AND LIMITATIONS

As can be seen in Table IV, our stacking approach improves
over the performance of our original approach and performs
slightly better than our bagging approach. The precision of
the three approaches is similar (the averages are a bit skewed
because of the zero outliers of our original approach and
bagging). Recall-wise, bagging performs the best, since it
aggregates the results of individual models by voting, without
incorporating the environment information of performance test
runs. This recall goes at the expense of a slightly lower
precision. Stacking has the same recall values, except for test
runs E1 and E2. Our original approach behaves sub-par in
significantly heterogeneous environments, i.e., runs D

(3)
5 , E1

and E2. Overall, the combination of high precision and recall
makes stacking the best approach (highest F-values), followed
by bagging, then by our original approach.
Feedback from Practitioners. Over the past 4 years, the
presented approach has been used on a daily basis for the
performance analysis of a very large scale enterprise system.
Analysts (other than the authors) liked that the ensemble
approaches could detect problems that are often missed by
manual analysis (e.g., E1 and E3). A key benefit of our
approach was its support for investigation of the observed re-
gressions by providing information about correlating counters
and by marking periods where the regression occurred (see
Figure 3). Using the marked time periods and the metrics, an
analyst can refer to the logs in these time periods and work
with developers to investigate the noted regressions.

The analysts also liked the upkeep cost of the approach.
When a new test lab is configured, the similarity between
the different environments is measured once using our simple
similarity metric. From there on, no additional intervention is
needed. Interestingly, the practitioners found that the approach
works even better for tests deployed on virtual machines
and cloud systems, since (1) those environments suffer even
more from heterogeneity (since it is very easy to switch
environments), while (2) the similarity in test environment can
be automatically calculated based on the configuration files
describing the virtual machines [1].

Furthermore, for the past 4 years, no changes have been
needed to any of the used thresholds, even though the approach
has been used across several major versions. That said, others
interested in adopting this approach in practice might consider
investigating the thresholds used by us. While we did use the
default thresholds for the association rule mining tool since
they were quite successful for industrial adoption (and in the
two open source case studies), better tuned (i.e., non-default)
thresholds are likely to improve the results, potentially at
the expense of making the approach too specialized for the
particular system. However, our industrial partners noted that
psychologically thresholds lower than 50% are much harder
to sell, e.g., “this passes even though we saw it in just 20%
of the runs”. This is important, since an analyst needs to get
manager and developer buy-in for the results.

Finally, the analysts felt that some type of human inter-
vention will always be needed. In particular, as a system
evolves its performance signature might change considerably
and hence the analysts should be given the option to remove
old tests from the repository. While an ensemble of models
can reduce the impact of outdated performance behaviours by
spreading the weights across models, the performance of our
approach will suffer if we allow the size of the ensemble
to grow unbounded. We have developed a sliding window
approach that discards tests when they no longer reflect the
current system performance. An analyst can also manually
remove old tests, if he felt that a test is not representative.

Limitations. We evaluated our work on three systems. These
numbers seem low and ideally we would like to perform much
larger experiments, yet there are a number of factors to take
into account. First, realistic performance tests are complex to
design and execute, as they require large and distributed labs
with multiple machines, each hosting a different component,
and must be run for extended periods of time. For that reason,
we analyzed not only open source systems, but also an existing
industrial large-scale system. Second, it is hard to get access
to performance counter data for large software systems. In
that sense, our data is rather unique. Third, we had to com-
pare and discuss the enterprise results with the performance
engineering team, as well as explore trends and patterns in
the 2,000 collected counters. Fourth, seeding realistic bugs in
the open source systems is time-consuming since we chose
to implement both programmatic and configuration faults to
simulate common mistakes observed in industry [21], [24].

We have made available a replication package to allow
other researchers to build and expand on our work [32]. For



example, given the many choices for thresholds and algorithms
(e.g., similarity of environments or weight of a model), more
research is needed to explore the configuration state space.
Furthermore, if the behaviour of a new test is radically
different from prior test runs, our ensemble approaches will not
be accurate. Hence, in the future, other ways to automatically
pick the most suitable ensemble of test models from a test
repository should be investigated.

VI. CONCLUSION

The heterogeneity of the test environments has limited the
widespread adoption in practice of performance regression
analysis techniques. In this paper, we propose to use ensemble
models (bagging and stacking) to compose individual models
of the expected behaviour of prior test runs. The composition
tries to take into account those prior test runs with the most
closely related test environment. Case studies on two major
open source systems and one large enterprise system show
that (1) the ensemble techniques outperform our state-of-
the-art environment-agnostic approach, and that (2) stacking
consistently performs better than bagging in terms of precision
and F-measure. Feedback from practitioners has been very
positive.
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