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ABSTRACT
Ultra-Large-Scale (ULS) systems face continuously evolving
field workloads in terms of activated/disabled feature sets,
varying usage patterns and changing deployment configura-
tions. These evolving workloads often have a large impact on
the performance of a ULS system. Hence, continuous load
testing is critical to ensuring the error-free operation of such
systems. A common challenge facing performance analysts
is to validate if a load test closely resembles the current field
workloads. Such validation may be performed by comparing
execution logs from the load test and the field. However,
the size and unstructured nature of execution logs makes
such a comparison unfeasible without automated support.
In this paper, we propose an automated approach to validate
whether a load test resembles the field workload and, if not,
determines how they differ by compare execution logs from
a load test and the field. Performance analysts can then up-
date their load test cases to eliminate such differences, hence
creating more realistic load test cases. We perform three
case studies on two large systems: one open-source system
and one enterprise system. Our approach identifies differ-
ences between load tests and the field with a precision of
≥75% compared to only ≥16% for the state-of-the-practice.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Software Qual-
ity Assurance (SQA)

1. INTRODUCTION
The rise of Ultra-Large-Scale (ULS) systems (e.g., Ama-

zon.com, GMail and AT&T’s telecommunication infrastruc-
ture) poses new challenges for the software performance field
[26]. ULS systems require near-perfect up-time and support
millions of concurrent connections and operations. Failures
in such systems are typically associated with an inability to
scale, than with feature bugs [15,30,47].
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Load testing has become essential in ensuring the problem-
free operation of such systems. Load tests are usually de-
rived from the field (i.e., alpha or beta testing data or actual
production data). The goal of such testing is to examine how
the system behaves under realistic workloads to ensure that
the system performs well in the field. However, ensuring
that load tests are “realistic” (i.e., that they accurately re-
flect the current field workloads) is a major challenge. Field
workloads are based on the behaviour of thousands or mil-
lions of users interacting with the system. These workloads
continuously evolve as the user base changes, as features are
activated or disabled and as user feature preferences change.
Such varying field workloads often lead to load tests that are
not reflective of the field [9, 46], yet these workloads have a
major impact on the performance of the system [15,49].

Performance analysts monitor the impact of field work-
loads on the system’s performance using performance (e.g.,
response time and memory usage) and reliability counters
(e.g., mean time-to-failure). Performance analysts must de-
termine the cause of any deviation in the counter values from
the specified or expected range (e.g., response time exceeds
the maximum response time permitted by the service level
agreements or memory usage exceeds the average historical
memory usage). These deviations may be caused by changes
to the field workloads [15,49]. Such changes are common and
may require performance analysts to update their load test
cases [9, 46]. This has led to the emergence of “continuous
load testing,”where load test cases are continuously updated
and re-run even after the system’s deployment.

A major challenge in the continuous load testing process
is to ensure that load test cases accurately reflect the current
field workloads. However, documentation describing the ex-
pected system behaviour is rarely up-to-date and instrumen-
tation is not feasible due to high overhead [38]. Hence execu-
tion logs are the only data available to describe and monitor
the behaviour of the system under a workload. Therefore, we
propose an automated approach to validate load test cases
by comparing system behaviour across load tests and the
field. We derive system signatures from execution logs, then
use statistical techniques to identify differences between the
system signatures of the load tests and the field.

Such differences can be broadly classified as feature dif-
ferences (i.e., differences in the available features), intensity
differences (i.e., differences in how often each feature is ex-
ercised) and issue differences (i.e., new errors appearing in
the field). These identified differences can help performance
analysts improve their load tests in the following two ways.



Figure 1: An Overview of Our Approach.

First, performance analysts can tune their load tests to more
accurately represent current field workloads. For example,
the test workloads can be updated to better reflect the iden-
tified differences. Second, new field errors, which are not
covered in existing testing, can be identified based on the
differences. For example, a machine failure in a distributed
system may raise new errors that are often not tested.

This paper makes three contributions:

1. We develop an automated approach to validate the
representativeness of load test cases by comparing the
system behaviour between load tests and the field.

2. Our approach identifies important execution events that
best explain the differences between the system’s be-
haviour during a load test and in the field.

3. Through three case studies on two large systems, one
open-source system and one enterprise ULS system,
we show that our approach is scalable and can help
performance analysts validate their load test cases.

1.1 Organization of the Paper
This paper is organized as follows: Section 2 provides a

motivational example of how our approach may be used in
practice. Section 3 describes our approach in detail. Sec-
tion 4 presents our case studies. Section 5 discusses the
sensitivity of our case study results to changes in the statis-
tical measures used by our approach. Section 6 outlines the
threats to validity and Section 7 presents related work. Fi-
nally, Section 8 concludes the paper and presents our future
work.

2. MOTIVATIONAL EXAMPLE
Jack, a performance analyst, is responsible for continu-

ously load testing a ULS system. Given the continuously
evolving field workloads, Jack often needs to update his load
test cases to ensure that the load test workloads match, as
much as possible, the field workloads. Jack monitors the
field workloads using performance counters (e.g., response
time and memory usage). When one or more of these coun-
ters deviates from the specified or expected range (e.g., re-
sponse time exceeds the maximum response time specified
in the requirements or memory usage exceeds the average
historical memory usage), Jack must investigate the cause
of the deviation. He may then need to update his load test
cases.

Although performance counters will indicate if the field
workloads have changed, the only artifacts that Jack can use
to understand how the field workloads have changed, and
hence how his load test cases should be updated, are giga-
bytes of load test and field logs. Execution logs describe the
system’s behaviour, in terms of important execution events,
during the load test and in the field.

Jack monitors the system’s performance in the field and
discovers that the system’s memory usage exceeds the av-
erage historical memory usage. Pressured by time (given
the continuously evolving nature of field workloads), man-
agement (who are keen to boast a high quality system) and
the complexity of log analysis, Jack is introduced to an auto-
mated approach that can validate whether his load test cases
are actually reflective of the field workloads and, if not, de-
termine how his load test cases differ from the field. This
approach automatically derives system signatures from gi-
gabytes of execution logs and compares the signatures from
the load test against the signatures in the field to identify
execution events that differ between a load test and the field.

Using this approach, Jack is shown key execution events
that explain the differences between his load test and field
workloads. Jack then discovers a group of users who are
using a memory-intensive feature more strenuously than in
the past. Finally, Jack is able to update his load test cases
to better reflect the users’ changing feature preferences and
hence the system’s behaviour in the field.

3. APPROACH
This section outlines our approach for validating load test

cases by automatically deriving system signatures from ex-
ecution logs and comparing the signatures from a load test
against the signatures from the field. Figure 1 provides an
overview of our approach, and we describe each phase in
detail below. We also demonstrate our approach with a
working example of a hypothetical chat application.

3.1 Execution Logs
Execution logs record notable events at runtime and are

used by developers (to debug a system) and operators (to
monitor the operation of a system). They are generated
by output statements that developers insert into the source
code of the system. These output statements are triggered
by specific events (e.g., starting, queueing or completing a
job) and errors within the system. Compared with perfor-
mance counters, which usually require explicit monitoring
tools (e.g., PerfMon [5]) to be collected, execution logs are
readily available in most ULS systems to support remote
issue resolution and legal compliance (e.g., the Sarbanes-
Oxley Act [6] requires logging in telecommunication and fi-
nancial systems).

The second column of Table 1 and Table 2 presents the ex-
ecution logs from our working example. These execution logs
contain both static information (e.g,. starts a chat) and
dynamic information (e.g., Alice and Bob) that changes with
each occurrence of an event. Table 1 and Table 2 present the
execution logs from the field and the load test respectively.
The load test has been configured with a simple use case
(from 00:01 to 00:06) which is repeatedly executed at a rate
of one request per second.



Table 1: Abstracting Execution Logs to Execution Events: Execution Logs from the Field
Time User Log Line Execution Event Execution Event ID

00:01 Alice starts a chat with Bob starts a chat with ___ 1
00:01 Alice says ‘hi, are you busy?’ to Bob says ___ to ___ 2
00:17 Bob says ‘yes’ to Alice says ___ to ___ 2
00:05 Charlie starts a chat with Dan starts a chat with ___ 1
00:05 Charlie says ‘do you have file?’ to Dan says ___ to ___ 2
00:08 Dan Initiate file transfer to Charlie Initiate file transfer (to ___) 3
00:12 Dan says ‘got it?’ to Charlie says ___ to ___ 2
00:14 Charlie says ‘thanks’ to Dan says ___ to ___ 2
00:14 Charlie ends the chat with Dan ends the chat with ___ 4
00:18 Alice says ‘ok, bye’ to Bob says ___ to ___ 2
00:18 Bob says ‘bye’ to Alice says ___ to ___ 2
00:20 Alice ends the chat with Bob ends the chat with ___ 4

Table 2: Abstracting Execution Logs to Execution Events: Execution Logs from a Load Test

Time User Log Line Execution Event Execution Event ID

00:01 USER1 starts a chat with USER2 starts a chat with ___ 1
00:02 USER1 says ‘MSG1’ to USER2 says ___ to ___ 2
00:03 USER2 says ‘MSG2’ to USER1 says ___ to ___ 2
00:04 USER1 says ‘MSG3’ to USER2 says ___ to ___ 2
00:05 USER2 says ‘MSG4’ to USER1 says ___ to ___ 2
00:06 USER1 ends the chat with USER2 ends the chat with ___ 5
00:07 USER3 starts a chat with USER4 starts a chat with ___ 1
00:08 USER3 says ‘MSG1’ to USER4 says ___ to ___ 2
00:09 USER4 says ‘MSG2’ to USER3 says ___ to ___ 2
00:10 USER3 says ‘MSG3’ to USER4 says ___ to ___ 2
00:11 USER4 says ‘MSG4’ to USER3 says ___ to ___ 2
00:12 USER3 ends the chat with USER4 ends the chat with ___ 5

3.2 Data Preparation
Execution logs are difficult to analyze because they are

unstructured. Therefore, we abstract the execution logs to
execution events to enable automated statistical analysis.
We then generate system signatures that represent the be-
haviour of the system’s users.

3.2.1 Log Abstraction
Execution logs are not typically designed for automated

analysis. Each occurrence of an execution event results in
a slightly different log line, because log lines contain static
components as well as dynamic information (which may be
different for each occurrence of a particular execution event).
Therefore, we must remove this dynamic information from
the log lines prior to our analysis in order to identify similar
execution events. We refer to the process of identifying and
removing dynamic information from a log line as “abstract-
ing” the log line.

Our technique for abstracting log lines recognizes the static
and dynamic components of each log line using a technique
similar to token-based code clone detection techniques [28].
The dynamic components of each log line are then discarded
and replaced with ___ (to indicate that dynamic informa-
tion was present in the original log line). The remaining
static components of the log lines (i.e., the abstracted log
line) describe execution events.

Table 1 and Table 2 present the execution events and exe-
cution event IDs (a unique ID automatically assigned to each
unique execution event) for the execution logs from the field
and from the load test in our working example. These tables
demonstrate the input (i.e., the log lines) and the output
(i.e., the execution events) of the log abstraction process.
For example, the starts a chat with Bob and starts a

chat with Dan log lines are both abstracted to the starts

a chat with ___ execution event.

3.2.2 Signature Generation
We generate system signatures that characterize a user’s

behaviour in terms of feature usage expressed by the exe-
cution events. Therefore, a system signature represents the
behaviour of one of the system’s users. We use the term
“user” to describe any type of end user, whether a human
or software agent. For example, the end users of a system
such as Amazon.com are both human and software agents
(e.g., “shopping bots” that search multiple websites for the
best prices). Signatures are generated for each user because
workloads are driven by the combined behaviour of the sys-
tem’s users.

System signatures are generated in two steps. First, we
identify all of the unique user IDs that appear in the exe-
cution logs. “User IDs” may include email addresses, device
IDs or IP addresses that uniquely identify a human or soft-
ware agent. The second column of Table 3 presents all of
the unique user IDs identified from the execution logs of our
working example. Second, we generate a signature for each
user ID by counting the number of times that each type of
execution event is attributable to each user ID. For example,
from Table 1, we see that Alice starts one chat, sends two
messages and ends one chat. Table 3 shows the signatures
generated for each user using the events in Tables 1 and 2.

Table 3: System Signatures
(Execution Event ID)

User ID 1 2 3 4

Field Users

Alice 1 2 0 1
Bob 0 2 0 0
Charlie 1 2 0 1
Dan 0 1 1 0

Load Test Users

USER1 1 2 0 1
USER2 0 2 0 0
USER3 1 2 0 1
USER4 0 2 0 0



3.3 Clustering
The second phase of our approach is to cluster the system

signatures into groups of users where a similar set of events
have occurred. The clustering phase in our approach con-
sists of three steps. First, we calculate the dissimilarity (i.e.,
distance) between every pair of system signatures. Second,
we use a hierarchical clustering procedure to cluster the sys-
tem signatures into groups where a similar set of events have
occurred. Third, we convert the hierarchical clustering into
k partitional clusters (i.e., where each system signature is a
member in only one cluster). We have automated the clus-
tering phase using robust and scalable statistical techniques.

3.3.1 Distance Calculation
Each system signature is represented by one point in an

n-dimensional space (where n is the number of unique ex-
ecution events). Clustering procedures rely on identifying
points that are “close” in this n-dimensional space. There-
fore, we must specify how distance is measured in this space.
A larger distance between two points implies a greater dis-
similarity between the system signatures that these points
represent. We calculate the distance between every pair of
system signatures to produce a distance matrix.

We use the Pearson distance (a transform of the Pear-
son correlation [21]), as opposed to the many other distance
measures [1,2,20,21], as the Pearson distance often produces
a clustering that is closer to the true clustering (i.e., a closer
match to the manually assigned clusters) [25, 40]. We find
that the Pearson distance performs well when clustering sys-
tem signatures (see Section 5).

We first calculate the Pearson correlation (ρ) between two
system signatures using Equation 1. This measure ranges
from -1 to +1, where a value of 1 indicates that two signa-
tures are identical, a value of 0 indicates that there is no
relationship between the signatures and a value of -1 indi-
cates an inverse relationship between the signatures (i.e., as
the occurrence of specific execution events increase in one
system signature, they decrease in the other).

ρ =
n
∑n
i xi × yi −

∑n
i xi ×

∑n
i yi√

(n
∑n
i x

2 − (
∑n
i x)2)× (n

∑n
i y

2 − (
∑n
i y)2

(1)

where x and y are two system signatures and n is the
number of execution events.

We then transform the Pearson correlation (ρ) to the Pear-
son distance (dρ) using Equation 2.

dρ =

{
1− ρ for ρ ≥ 0

|ρ| for ρ < 0
(2)

Table 5 presents the distance matrix produced by calculating
the Pearson distance between every pair of system signatures
in our working example.

3.3.2 Hierarchical Clustering
We use an agglomerative, hierarchical clustering proce-

dure to cluster the system signatures using the distance ma-
trix calculated in the previous step. The clustering proce-
dure starts with each signature in its own cluster and pro-
ceeds to find and merge the closest pair of clusters (using
the distance matrix), until only one cluster (containing ev-
erything) is left. Every time two clusters are merged, the
distance matrix is updated. One advantage of hierarchical
clustering is that we do not need to specify the number of
clusters prior to performing the clustering. Further, perfor-
mance analysts can change the number of clusters (e.g., to
produce a larger number of more cohesive clusters) without
having to rerun the clustering phase.

Hierarchical clustering updates the distance matrix based
on a specified linkage criteria. We use the average linkage,
as opposed to the many other linkage criteria [20,45], as the
average linkage is the de facto standard [20,45]. The average
linkage criteria is also the most appropriate when little infor-
mation about the expected clustering (e.g., the relative size
of the expected clusters) is available. We find that the av-
erage linkage criteria performs well when clustering system
signatures (see Section 5).

When two clusters are merged, the average linkage criteria
updates the distance matrix in two steps. First, the merged
clusters are removed from the distance matrix. Second, a
new cluster (containing the merged clusters) is added to the
distance matrix by calculating the distance between the new
cluster and all existing clusters. The distance between two
clusters is the average distance (as calculated by the Pearson
distance) between the system signatures of the first cluster
and the system signatures of the second cluster [20,45].

Figure 2 shows the dendrogram produced by hierarchically
clustering the system signatures using the distance matrix
(Table 5) from our working example.

Table 5: Distance Matrix
Alice Bob Charlie Dan USER1 USER2 USER3 USER4

Alice 0 0.184 0 1.000 0 0.184 0 0.184
Bob 0.184 0 0.184 0.423 0.184 0 0.184 0
Charlie 0 0.184 0 1.000 0 0.184 0 0.184
Dan 1.000 0.423 1.000 0 1.000 0.423 1.000 0.423
USER1 0 0.184 0 1.000 0 0.184 0 0.184
USER2 0.184 0 0.184 0.423 0.184 0 0.184 0
USER3 0 0.184 0 1.000 0 0.184 0 0.184
USER4 0.184 0 0.184 0.423 0.184 0 0.184 0



3.3.3 Dendrogram Cutting
The result of a hierarchical clustering procedure is a hier-

archy of clusters. This hierarchy is typically visualized using
hierarchical cluster dendrograms. Figure 2 is an example of
a hierarchical cluster dendrogram. Such dendrograms are
binary tree-like diagrams that show each stage of the clus-
tering procedure as nested clusters [45].

To complete the clustering procedure, the dendrogram
must be cut at some height. This height represents the max-
imum amount of intra-cluster dissimilarity that will be ac-
cepted within a cluster before that cluster is further divided.
Cutting the dendrogram results in a clustering where each
system signature is assigned to only one cluster. Such a
cutting of the dendrogram is done either by 1) manual (vi-
sual) inspection or 2) statistical tests (referred to as stopping
rules).

Although a visual inspection of the dendrogram is flexible
and fast, it is subject to human bias and may not be reli-
able. We use the Calinski-Harabasz stopping rule [11], as
opposed to the many other stopping rules [11,19,36,37,39],
as the Calinski-Harabasz stopping rule most often cuts the
dendrogram into the correct number of clusters [36]. We
find that the Calinski-Harabasz stopping rule performs well
when cutting dendrograms produced by clustering system
signatures (see Section 5).

The Calinski-Harabasz stopping rule is a pseudo-F-statistic,
which is a ratio reflecting within-cluster similarity and between-
cluster dissimilarity. The optimal clustering will have high
within-cluster similarity (i.e., the system signatures within a
cluster are similar) and a high between-cluster dissimilarity
(i.e., the system signatures from two different clusters are
dissimilar).

The dotted horizontal line in Figure 2 shows where the
Calinski-Harabasz stopping rule cut the hierarchical cluster
dendrogram from our working example into three clusters
(i.e., the dotted horizontal line intersects with solid vertical
lines at three points in the dendrogram). Cluster A contains
one user (Dan), cluster B contains four users (Alice, Char-
lie, USER1 and USER3) and cluster C contains three users
(Bob, USER2 and USER4).
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Figure 2: Sample Dendrogram.

3.4 Cluster Analysis
The third phase in our approach is to identify the execu-

tion events that correspond to the differences between the
load test and field signatures. The cluster analysis phase of
our approach consists of two steps. First, outlying clusters
are detected. Second, the key execution events of the outly-
ing clusters are identified. We refer to these execution events
as “signature differences”. Knowledge of these signature dif-
ferences may lead performance analysts to update their load
test cases. “Event A occurs 10% less often in the load test
relative to the field” is an example of a signature difference
that may lead performance analysts to update a load test
case such that Event A occurs more frequently in the load
test. We use robust and scalable statistical techniques to
automate this step.

3.4.1 Outlier Detection
We identify outlying clusters using z-stats. Z-stats mea-

sure an anomaly’s deviation from the majority (expected)
behaviour [31]. Larger z-stats indicate an increased proba-
bility that the majority behaviour is the expected behaviour.
Hence, as the z-stat of a particular cluster increases, the
probability that the cluster is an outlying cluster also in-
creases. Equation 3 presents how the z-stat of a particular
cluster is calculated.

z(m,n) =
m
n − po

po×(1−po)
n

(3)

where m is the number of system signatures from the load
test or the field (whichever is greater) in the cluster, n is the
total number of system signatures in the cluster and po is
the probability of the errors (by convention, po is typically
assigned a value of 0.9 [31]).

Table 6 presents the size (i.e., the number of system signa-
tures in the cluster), breakdown (i.e., the number of system
signatures from the load test and the field) and z-stat for
each cluster in our working example (i.e., each of the clus-
ters that were identified when the Calinski-Harabasz stop-
ping rule was used to cut the dendrogram in Figure 2).

Table 6: Identifying Outlying Clusters
# Signatures from:

Cluster Size Field Load Test z-stat
A 1 1 0 1.111
B 4 2 2 -17.778
C 3 1 2 -18.889

From Table 6, we identify Cluster A as an outlying cluster
because its z-stat (1.111) is larger than the z-stats of Cluster
B (-17.778) or Cluster C (-18.889).



3.4.2 Signature Difference Detection
We identify the differences between system signatures in

outlying clusters and the average (“normal”) system signa-
ture by performing an influence analysis on the signatures.
This analysis quantifies the importance of each execution
event in differentiating a cluster. Knowledge of these events
may lead performance analysts to update their load test
cases.

First, we calculate the centre of the outlying clusters and
the universal centre. These centres represent the location,
in an n-dimensional space (where n is the number of unique
execution events), of each of the outlying clusters, as well
as the average (“normal”) system signature. The centre of
a cluster is the average count for each unique event across
either 1) all of the signatures in the cluster (for the centre
of an outlying cluster) or 2) all of the signatures in all of the
clusters (for the universal centre).

Table 7 presents the universal centre and cluster A centre.

Table 7: Universal Centre and Cluster A Centre
System Signatures

(Execution Event ID)

1 2 3 4

Universal Centre 0.5 1.875 0.125 0.5
Cluster A Centre 0 1 1 0

Second, we calculate the Pearson distance (dρ) between
the centre of the outlying cluster and the universal centre.
This“baseline”distance quantifies the difference between the
system signatures in outlying clusters and the universal av-
erage system signature. The Pearson distance between the
centre of Cluster A and the Universal Centre is 0.625.

Third, we calculate the change in the baseline distance be-
tween the outlying cluster’s centre and the universal centre
with and without each execution event. This quantifies the
influence of each event. When an overly influential event is
removed, the outlying cluster becomes more similar to the
universal average system signature (i.e., closer to the uni-
versal centre) hence these events will have a negative ∆dρ.

Table 8 presents the change in the distance between the
centre of Cluster A and the Universal Centre when each
event is removed from the distance calculation.

Table 8: Identifying Influential Execution Events
Event ID ∆dρ
1 0.0613
2 0.375
3 -0.625
4 0.0613

µ∆dρ -0.0320
σ∆dρ 0.422

Finally, we identify the influential events as any execution
event that, when removed from the distance calculation, de-
creases the distance between the outlying cluster and the
universal centre by more than twice the standard deviation
less than the average. Decreasing the distance between two
clusters indicates that they have become more similar. This
analysis is similar to how dfbeta residuals are used to iden-

tify observations that have a disproportionate influence on
the estimated coefficient values in a regression model [14,17].

From Table 8, the average change in distance (µ∆dρ) is
−0.0320 and the standard deviation of the changes in dis-
tance (σ∆dρ) is 0.422. Therefore, no execution events are
identified as outliers because no change in distance is more
than two standard deviations less than the average change in
distance (i.e., no ∆dρ value is ≤ µ∆dρ−2×σ∆dρ = −0.877).
For the purposes of this example, we use one standard de-
viation (as opposed to two standard deviations). Therefore,
we identify execution event 3 (i.e., initiating a file transfer)
as overly influential.

Our approach identifies one system signature (i.e., the sys-
tem signature representing the user Dan) as a key difference
between the load test and the field. In particular, we iden-
tify one execution event (i.e., initiating a file transfer) that
is not well represented in the load test (in fact it does not
occur at all). Performance analysts should then adjust the
load intensity of the file transfer functionality in the load
test.

In our simple working example, performance analysts could
have examined how many times each execution event had
occurred during the load test and in the field and identified
events that occur much more frequently in the field com-
pared to the load test. However, in practice, data sets are
considerably larger. For example, our first enterprise case
study contains over 1,400 different types of execution events
and over 17 million log lines. Further, some execution events
have a different impact on the system’s behaviour based on
the manner in which the event is executed. For example, our
second enterprise case study identifies an execution event
that only causes errors when over-stressed by an individual
user (i.e., one user executing the event 1,000 times has a
different impact on the system’s behaviour than 100 users
each executing the event 10 times). Therefore, in practice
performance analysts cannot simply examine occurrence fre-
quencies.

4. CASE STUDIES
This section outlines the setup and results of our case

studies. First, we present a case study using a Hadoop ap-
plication. We then discuss the results of two case studies
using an enterprise system. Table 9 outlines the systems
and data sets used in our case studies.

Our case studies aim to determine whether our approach
can detect system signature differences due to 1) feature
differences, 2) intensity differences and 3) issue differences
between a load test and the field. Our case studies include
systems whose users are either human (Enterprise System)
or software (Hadoop) agents.

We compare our results with the current state-of-the-practice.
Currently, performance analysts validate load test cases by
comparing the number of times each execution event has
occurred during the load test compared to the field and in-
vestigating any differences. Therefore, we rank the events
based on the difference in occurrence frequency between the
load test and the field. We then investigate the events with
the largest differences. In practice, performance analysts do
not know how many of these events should be investigated.
Therefore, we examine the minimum number of events such
that the state-of-the-practice approach identifies the same
problems as our approach. We then compare the precision
of our approach to the state-of-the-pratice.



Table 9: Case Study Subject Systems.
Hadoop Enterprise System

Application domain Data processing Telecom
License Open-source Enterprise

Load Test Data
# Log Lines 10,145 17,128,625 11,590,898
Notes Load test driven by a standard

Hadoop application.
Use-case load test driven by a
load generator.

Load test driven by a replay
script.

Field Data
Execution Events 15,516 8,194,869 11,745,435
Notes The system experienced a ma-

chine failure in the field.
System experts confirmed that
there were no errors in the field.

The system experienced a crash
in the field.

Type of Differences Issue difference Intensity and differences Intensity difference
State-of-the-Practice Approach (Best Results)

Influential Events 4 17 4
Precision 75% 100% 100%

Our Approach
Influential Events 9 25 19
Precision 56% 60% 16%

4.1 Hadoop Case Study

4.1.1 The Hadoop Platform
Our first system is an application that is built on Hadoop.

Hadoop is an open-source distributed data processing plat-
form that implements MapReduce [3, 16].

MapReduce is a distributed data processing framework
that allows large amounts of data to be processed in parallel
by the nodes of a distributed cluster of machines [16]. The
MapReduce framework consists of two steps: a Map step,
where the input data is divided amongst the nodes of the
cluster, and a Reduce step, where the results from each of
the nodes is collected and combined.

Operationally, a Hadoop application may contain one or
more MapReduce steps (each step is a “Job” ). Jobs are
further broken down into “tasks,” where each task is either
a Map task or a Reduce task. Finally, each task may be
executed more than once to support fault tolerance within
Hadoop (each execution is an “attempt”).

4.1.2 The WordCount Application
The Hadoop application used in this case study is the

WordCount application [4]. The WordCount application is
a standard example of a Hadoop application that is used to
demonstrate the Hadoop platform. The WordCount appli-
cation reads one or more text files (a corpus) and counts the
number of times each unique word occurs within the corpus.

Load test: We load test the Hadoop WordCount applica-
tion on a cluster by attempting to count the number of times
each unique word occurs in 3.69 gigabytes of text files. The
cluster contains five machines, each with dual Intel Xeon
E5540 (2.53GHz) quad-core CPUs, 12GB memory, a Giga-
bit network adaptor and SATA hard drives.

Field workload: We monitor the performance of the Hadoop
WordCount application in the field. We find that the through-
put (completed attempts/sec) is much lower than the through-
put specified in the system’s requirements. We also find that
the average network IO (bytes/sec transfered between the
nodes of the cluster) is considerably lower than the average
historical network IO.

4.1.3 Applying Our Approach
We apply our approach to the execution logs collected

from the WordCount application during the load test and
from the field. We generate a system signature for each at-
tempt because these attempts are the “users” of the Hadoop
platform. Our approach identifies the following system sig-
nature differences (i.e., execution events that best describe
the differences between the load test and the field):

INFO org.apache.hadoop.hdfs.DFSClient: Abandoning

block blk_id

INFO org.apache.hadoop.hdfs.DFSClient: Exception

in createBlockOutputStream java.io.IOException:

Bad connect ack with firstBadLink ip_address

WARN org.apache.hadoop.hdfs.DFSClient: Error Recov-

ery for block blk_id bad datanode_id ip_address

INFO org.apache.hadoop.mapred.TaskTracker:

attempt_id progress

4.1.4 Results
Our approach flags only four execution events (out of

25,661 log lines that occur during the load test or in the field)
for expert analysis. These execution events indicate that
the WordCount application 1) cannot retrieve data from
the Hadoop File System (HFS), 2) has a “bad” connection
with the node at ip_address and 3) cannot reconnect to the
datanode (data nodes store data in the HFS) at ip_address.
Made aware of this issue, performance analysts could update
their load tests to test how the system responds to machine
failures and propose redundancy in the field.

The last execution event is a progress message. This
execution event occurs less frequently than expected be-
cause some attempts in the field cannot retrieve data from
the Hadoop File System (therefore these attempts make no
progress). However, system experts do not believe that this
is a meaningful difference between the system’s behaviour
during the load test and in the field. Hence, we have cor-
rectly identified 3 events out of the 4 flagged events. The
precision of our approach (i.e., the percentage of correctly
identified execution events) is 75%.



We also use the state-of-the-practice approach (outlined in
Section 4) to identify the execution events with the largest
occurrence frequency difference between the load test and
the field. In order to produce the same results as our ap-
proach and identify the differences between the load test
and the field, performance analysts must examine the top 6
events. Although examining the top 6 events will result in
the same results as our approach, the precision is only 50%
(compared to 75% for our approach).

4.2 Enterprise System Case Study
Although our Hadoop case study was promising, we per-

form two case studies on an enterprise system to examine the
scalability of our approach. We note that these data sets are
much larger than our Hadoop data set (see Table 9).

4.2.1 The Enterprise System
Our second system is a ULS enterprise software system

in the telecommunications domain. For confidentiality rea-
sons, we cannot disclose the specific details of the system’s
architecture, however the system is responsible for simulta-
neously processing millions of client requests and has very
high performance requirements.

Performance analysts perform continuous load testing to
ensure that the system continuously meets its performance
requirements. Therefore, analysts must continuously ensure
that the load test cases used during load testing accurately
represent the current conditions in the field.

4.2.2 Comparing Use-Case Load Tests to the Field
Our first enterprise case study describes how our approach

was used to validate a use-case load test (i.e., a load test
driven by a load generator) by comparing the system be-
haviour during the load test and in the field. A load gen-
erator was configured to simulate the individual behaviour
of thousands of users by concurrently sending requests to
the system based on preset use-cases. The system had re-
cently added several new clients. To ensure that the existing
use-cases accurately represent the workloads driven by these
new clients, we use our approach to compare a use-case load
test to the field.

We use our approach to generate system signatures for
each user within the use-case load test and in the field. We
then compare the system signatures generated during the
use-case load test to those generated in the field. Our ap-
proach identifies 17 executions events, that differ between
the system signatures of the use-case load test and the field.

These results were then given to performance analysts and
system experts who confirmed:

1. Nine events are under-stressed in the use-case load test
relative to the field.

2. Six events are over-stressed in the use-case load test
relative to the field.

3. Two events are artifacts of the load test (i.e., these
events correspond to functionality used to setup the
load test cases) and are not important differences be-
tween the load test and the field.

In summary, our approach correctly identifies 15 execu-
tion events (88% precision) that correspond to differences
between the system’s behaviour during the load test and in
the field. Such results can be used to improve the use-case
load tests in the future (i.e., by tuning the load generator
to more accurately reflect the field conditions). In contrast,
using the state-of-the-practice approach, performance ana-
lysts must examine the top 25 execution events in order to
uncover the same 17 events that our approach has identified.
However, the precision for the top 25 events is 60%, whereas
the precision of our approach is 88%.

4.2.3 Comparing Replay Load Tests to the Field
Our second enterprise case study describes how our ap-

proach was used to validate a replay load test (i.e., a load
test driven by a replay script) by comparing the system be-
haviour across a load test and the field.

Replay scripts record the behaviour of real users in the
field then playback the recorded behaviour during a replay
load test, where heavy instrumentation of the system is fea-
sible. In theory, replay scripts can be used to perfectly repli-
cate the conditions in the field during a replay load test [32].
However, replay scripts require complex software to concur-
rently simulate the millions of users and billions of requests
captured in the field. Therefore, replay scripts do not scale
well and use-case load tests that are driven by load genera-
tors are still the norm [35].

Performance analysts monitoring the system’s behaviour
in the field observed a spike in memory usage followed by
a system crash. To understand the cause of this crash, and
why it was not discovered during load testing, we use our ap-
proach to generate and compare system signatures for each
user in the replay load test and the field. Our approach
identifies 4 influential execution events that differ between
the system signatures of the replay load test and the field.

These results were given to performance analysts who con-
firmed that four events are under-stressed in the replay load
test relative to the field. Using this information, perfor-
mance analysts update their load test cases. They then see
the same behaviour during load testing as in the field.

In summary, our approach correctly identifies 4 influen-
tial execution events that correspond to differences between
the system’s behaviour during the load test and in the field.
Such results provide performance analysts with a very con-
crete recommendation to help diagnose the cause of this
crash.

We also compare our approach to the state-of-the-practice.
In order to produce the same results as our approach and
identify the differences between the load test and the field,
performance analysts must examine the top 19 events. How-
ever, the precision of the state-of-the-practice approach is
only 16% (compared to 100% for our approach).

The state-of-the-practice approach has an average
precision of 44%. However, performance analysts must
examine an unknown number of events. Our approach
flags events with an average precision of 88%.



5. SENSITIVITY ANALYSIS
The clustering phase of our approach relies on three sta-

tistical measures: 1) a distance measure (to determine the
distance between each system signature), 2) a linkage cri-
teria (to determine which clusters should be merged during
the hierarchical clustering procedure) and 3) a stopping rule
(to determine the number of clusters by cutting the hier-
archical cluster dendrogram). To complement the existing
literature, we verify that these measures perform well on our
data and evaluate the sensitivity of our results to changes
in these measures. We also determine the optimal distance
measure, linkage criteria and stopping rule using our Hadoop
case study data (similar results hold for our enterprise case
study data).

5.1 The Optimal Distance Measure
The hierarchical clustering procedure begins with each

system signature in its own cluster and proceeds to iden-
tify and merge clusters that are “close.” The “closeness” of
two clusters is measured by some distance measure. The
optimal distance measure will result in a clustering that is
closest to the true clustering.

We determine the optimal distance measure by comparing
the results obtained by our approach (i.e., the execution
events that we flag) when different distance measures are
used. Table 10 presents how the number of flagged events,
the precision (the percentage of correctly flagged events) and
the recall (the percentage of true events that are flagged) is
impacted by each of the distance measures in [2, 21]. We
calculate recall using the best results in Table 10.

Table 10: Identifying the Optimal Distance Measure

Distance Measure #Events Precision Recall
Pearson distance 4 75% 100%
Cosine distance 2 50% 33%
Euclidean distance 2 50% 33%
Jaccard distance 2 50% 33%
Kullback-Leibler Divergence 2 50% 33%

From Table 10, we find that the Pearson distance pro-
duces results with higher precision and recall than any other
distance measure. In addition, all five distance measures
identify the same two events (the Pearson distance correctly
identifies two additional events).

5.2 The Optimal Linkage Criteria
The hierarchical clustering procedure takes a distance ma-

trix and produces a dendrogram (i.e., a hierarchy of clus-
ters). The abstraction from a distance matrix to a dendro-
gram results is some loss of information (i.e., the distance
matrix contains the distance between each pair of system
signatures, whereas the dendrogram presents the distance
between each cluster). The optimal linkage criteria will en-
able the hierarchical clustering procedure to produce a den-
drogram with minimal information loss.

We determine the optimal linkage criteria by using the
cophenetic correlation. The cophenetic correlation measures
how well a dendrogram preserves the information in the dis-
tance matrix [13]. The cophenetic correlation varies between
0 (the information in the distance matrix is completely lost)

and 1 (the information is perfectly preserved). The optimal
linkage criteria will have the highest cophenetic correlation.
Table 11 presents the cophenetic correlation for a dendro-
gram built using each of the four main linkage criteria de-
scribed in [20,45].

Table 11: Identifying the Optimal Linkage Criteria
Linkage Criteria Cophenetic Correlation
Average 0.782
Single 0.522
Ward 0.516
Complete 0.495

From Table 11, we find that the average linkage criteria
produces a dendrogram that best represents the distance
matrix. We also determine the optimal linkage criteria by
applying the cluster analysis phase of our approach (see Sub-
section 3.4) on a dendrogram that has been built using each
of these linkage criteria. Similar to our analysis of the opti-
mal distance measure, Table 12 presents how the number of
flagged events, the precision and the recall is impacted by
using each of these linkage criteria.

Table 12: Identifying the Optimal Linkage Criteria
Distance Measure #Events Precision Recall
Average 4 75% 100%
Single 6 50% 100%
Ward 2 50% 33%
Complete 3 33% 33%

From Table 12 we find that the average linkage criteria
has the highest precision and recall. This is not surprising as
the average linkage criteria also had the highest cophenetic
correlation. Therefore, the cophenetic correlation may be
used in the future to ensure that the average linkage criteria
continues to perform well.

5.3 The Optimal Stopping Rule
To complete the clustering procedure, dendrograms must

be cut at some height so that each system signature is as-
signed to only one cluster. Too few clusters will not allow
outliers to emerge (i.e., they will remain nested in larger
clusters) while too many clusters will lead to over-fitting
and many false positives.

We determine the optimal stopping rule measure by apply-
ing the cluster analysis phase of our approach (see Subsec-
tion 3.4) on a dendrogram that has been cut using different
stopping rules are used. Similar to our analysis of the opti-
mal distance measure, Table 13 presents how the number of
flagged events, the precision and the recall is impacted by
the top 10 automated stopping rules in [36].

From Table 13, we find that the C-Index and Cubic Clus-
tering Criterion stopping rules have 100% recall, but poor
precision compared to the Calinski-Harabasz or Gamma stop-
ping rules (75% precision and 75% recall). We select the
Calinski-Harabasz stopping rule because the Gamma stop-
ping rule is computationally intensive and does not scale
well [12].



Table 13: Identifying the Optimal Stopping Rule

Distance Measure #Events Precision Recall
Calinski-Harabasz 4 75% 75%
Duda and Hart 0 0% 0%
C-Index 7 57% 100%
Gamma 4 75% 75%
Beale 1 0% 0%
Cubic Clustering Criterion 7 57% 100%
Point-Biserial 1 0% 0%
G(+) 1 0% 0%
Davies and Bouldin 2 50% 25%
Stepsize 1 0% 0%

6. THREATS TO VALIDITY

6.1 Threats to Construct Validity

Evaluation
We have evaluated our approach by determining the pre-
cision with which our approach flags execution events that
differ between the system signatures of a load test and the
field. While performance analysts have verified these results,
we do not have a gold standard data set. Further, complete
system knowledge would be required to exhaustively enu-
merate every difference between a particular load test and
the field. Therefore, we cannot calculate the recall of our
approach. However, our approach is intended to help per-
formance analysts identify differences between a load test
and the field by flagging execution events for further anal-
ysis (i.e., to provide performance analysts with a starting
point). Therefore, our goal is to maximize precision so that
analysts have confidence in our approach. In our experience
working with industry experts, performance analysts agree
with this view [23, 24, 27, 43]. Additionally, we were able to
identify at least one execution event that differed between
the load test and the field in all of our case studies. Hence
we were able to evaluate the precision of our approach in all
three case studies.

6.2 Threats to Internal Validity

Execution Log Quality/Coverage
Our approach generates system signatures by characteriz-
ing a user’s behaviour in terms of feature usage expressed
by the execution events. However, it is possible that there
are no execution logs to indicate when certain features are
used. Therefore, our approach is incapable of identifying
these features in the event that their usage differs between a
load test and the field. However, this is true for all execution
log based analysis, including manual analysis.

This threat may be mitigated by using automated instru-
mentation tools that would negate the need for developers
to manually insert output statements into the source code.
However, we leave this to future work as automated instru-
mentation imposes a heavy overhead on the system [34].
Further, Shang et al. report that execution logs are a rich
source of information that are used by developers to con-
vey important information about a system’s behaviour [41].
Hence, automated instrumentation tools may not provide
as deep an insight into the system’s behaviour as execution
logs.

Defining Users for Signature Generation
In our experience, ULS systems are typically driven by hu-
man agents. However, users may be difficult to define in
ULS systems that are driven by software agents (e.g., web
services [22]) or when users are allowed to have multiple IDs.
Defining the users of a particular system is a task for the sys-
tem experts. However, such a determination only needs to
be made the first time our approach is used, afterwards this
definition is reused.

6.3 Threats to External Validity

Generalizing Our Results
The studied software systems represent a small subset of the
total number of Ultra-Large-Scale software systems. There-
fore, it is unclear how our results will generalize to additional
software systems, particularly systems from other domains
(e.g., e-commerce). However, our approach does not assume
any particular architectural details. Hence, there is no bar-
rier to our approach being applied to other ULS systems.
Further, we have evaluated our approach on two different
systems: 1) an open-source distributed data processing sys-
tem and 2) an enterprise telecommunications system that is
widely used in practice.

Our approach may not perform well on small data sets
(where we cannot generate many system signatures) or data
sets where one set of execution logs (either the load test
or field logs) is much larger than the other. However, the
statistical measures that we have chosen are invariant to
scale. Further, we have evaluated our approach on small
data sets (10,145 load test log lines in our Hadoop study)
and data sets where one set of execution logs is much larger
than the other (the load test logs are twice as large as the
field logs in our first Enterprise case study).

7. RELATED WORK
This paper presented an automated approach to validate

load test cases by comparing execution logs from a load test
and the field. Load test case design and log analysis are the
most closely related areas of research to our work.

7.1 Load Test Case Design
Much of the work in load testing has focused on the auto-

matic generation of load test cases [7,8,10,18,48]. A survey
of load testing (and load test cases) may be found in [27].
Our approach may be used to validate load test cases by
comparing the load tests performed with these test cases to
the field. We intend to explore how the results of our ap-
proach may be used to automatically update load test cases.

7.2 Log Analysis
Shang et al. flag deviations in execution sequences mined

from the execution logs of a test deployment and a field de-
ployment of a ULS system [42]. Their approach reports de-
viations with a comparable precision to traditional keyword
search approaches (23% precision), but reduces the number
of false positives by 94%. Our approach does not rely on
mining execution sequences. We also do not require any in-
formation regarding the timing of events within the system,
which may be unreliable in distributed systems [33].



Jiang et al. flag performance issues in specific usage sce-
narios by comparing the distribution of response times for
the scenario against a baseline derived from previous tests
[30]. Their approach reports scenarios that have perfor-
mance problems with few false positives (77% precision). To
overcome the need for a baseline, Jiang et al. mine execution
logs to determine the dominant (expected) behaviour of the
system and flag anomalies from the dominant behaviour [29].
Their approach is able to flag <0.01% of the execution log
lines for closer analysis by system experts. Our approach is
interested in highlighting the differences between a load test
and the field, as opposed to just anomalous behaviour. How-
ever, our approach can identify anomalous behaviour if such
behaviour occurs primarily in the field (Subsection 4.2.3).

In our previous work, we proposed an approach to identify
performance deviations in thread pools using performance
counters [43, 44]. This approach is able to identify perfor-
mance deviations (e.g., memory leaks) with high precision
and recall. However, this approach did not make use of
execution logs. Therefore, we could not identify the under-
lying cause of these performance deviations. The approach
presented in this paper is concerned with highlighting the
differences between a load test and the field, as opposed to
just performance issues.

8. CONCLUSIONS AND FUTURE WORK
This paper presents an automated approach to validate

load test cases by comparing system signatures from load
tests and the field using execution logs. Our approach iden-
tifies differences between load tests and the field that per-
formance analysts can use to update their load test cases to
more accurately represent the field workloads.

We performed three case studies on two systems: one
open-source system and one enterprise system. Our case
studies explored how our approach can be used to identify
feature differences, intensity differences and issue differences
between load tests and the field. Performance analysts and
system experts have confirmed that our approach provides
valuable insights that help to validate their load tests and
to support the continuous load testing process.

Although our approach performed well, we intend to ex-
plore how well our approach performs when comparing addi-
tional data sets as well as data sets from other ULS systems.
We also intend to assess whether updating a load test case
based on our approach results in the system’s performance
during the load test becoming more aligned with the sys-
tem’s performance in the field.
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