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Abstract— Load testing is crucial to uncover functional and 

performance bugs in large-scale systems. Load tests generate 

vast amounts of performance data, which needs to be 

compared and analyzed in limited time across tests. This helps 

performance analysts to understand the resource usage of an 

application and to find out if an application is meeting its 

performance goals. The biggest challenge for performance 

analysts is to identify the few important performance counters 

in the highly redundant performance data.  In this paper, we 

employed a statistical technique, Principal Component 

Analysis (PCA) to reduce the large volume of performance 

counter data, to a smaller, more meaningful and manageable 

set. Furthermore, our methodology automates the process of 

comparing the important counters across load tests to identify 

performance gains/losses. A case study on load test data of a 

large enterprise application shows that our methodology can 

effectively guide performance analysts to identify and compare 

top performance counters across tests in limited time. 
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I.  INTRODUCTION  

As modern software systems grow larger and more 
complex, periodic maintenance of these systems is required 
to satisfy the high business demands on system quality, 
availability and responsiveness. Classic approaches to 
system maintenance fail, when applied to large scale 
systems, i.e., Google, Facebook or Amazon [20]. While new 
approaches to maintain such large-scale software systems are 
popping up, load testing still remains the most integral part 
of testing the performance of large scale systems.  

Load Testing assesses how a system performs under a 
given load [2]. Load is the rate at which transactions are 
submitted to a system [1]. Once maintenance activities 
(corrective, perfective and adaptive) are completed, load 
testing helps to uncover residual functional and performance 
problems. Functional problems are bugs such as deadlocks 
and memory leaks that slipped through the functional tests. 
Performance problems manifest themselves as system 
freezes, crashes and becoming unresponsive during the 
course of a load test and are related to symptoms such as 
high response time and low throughput under load. 

During load testing, a series of load tests are conducted 
that may span from a few hours to many days. Often, one or 
more load generators are used to imitate committing 

thousands of concurrent transactions to an application on 
behalf of users. During the course of a load test, the 
application under test is closely monitored, resulting in a 
huge amount of logging data as performance counters. The 
performance counter log contains a plethora of usage 
information such as CPU utilization, disk I/O, memory 
consumption and network traffic. Such information is of vital 
interest to performance analysts as it helps them to observe 
system behavior under load. 

The most frustrating challenge of load test faced by 
system analysts is the time spent and complexity involved in 
isolating the required information distributed across 
thousands of correlated performance counters. The modern 
hardware and advance applications used in large systems can 
publish large sets of counters for monitoring their 
performance [2], which further increases the complexity 
involve in analyzing load test. As a consequence, analysts 
are overwhelmed by thousands of performance counters 
obtained during load tests, making performance analysis 
laborious and results vague. Existing research on load testing 
focuses on the automatic generation of load test suites [1] 
and automated performance analysis of load tests based on 
execution logs [10][11]. Even though load testing has been 
extensively studied, little is known on how to do it for large 
scale systems with thousands of performance counters 
generating terabytes of log data. Our paper is the first to 
study such an industrial sized system and to develop methods 
to handle the information overload. To summarize, the paper 
makes the following contributions: 
C1.  We apply statistical methods to reduce the 

dimensionality of the observed performance counter 

set. 

C2.    We automate the ranking of counters according to 

their importance for load tests. 

C3. We empirically validate our proposed approach 

through a large case study on a real-world industrial 

software system. 
The rest of the paper is organized as follows: Section 2 
highlights the problems associated with load testing. We 
present our solution to these problems in section 3 along a 
step by step explanation of our methodology. In section 4, 
we present our case study. Section 5 explains the threats to 
our validity. Related work is presented in section 6, followed 
by our conclusion and future work in section 7. 
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Figure 1: Steps involved in proposed methodology to identify the important performance counters in a load test. 

Table 1: Sample of observations before data preparation 

 Observations 
Var Tot Mis Avail Mini Max Mean Std. Dev 

Q 599 0 599 246.18 1946.11 754.654 292.00 

R 599 0 599 009.59 0063.46 023.427 011.14 

S 0 0 0 000.00 0000.00 000.000 000.00 

T 599 2 597 001.00 0117.11 0030.90 018.99 

            

Table 2: Sample of observations after data preparation 

 Observations 

Var Tot Mis Avail Mini Max Mean Std. Dev 

Q 599 0 597 -13.37 000.07 0.00 1.00 

R 599 0 597 -00.71 006.52 0.00 1.00 

T 597 0 597 -1.694 001.46 0.00 1.00 

 

II. PROBLEM DESCRIPTION 

Large enterprise applications must be load tested to 
ensure satisfactory performance under load. Many issues in 
load testing remain unsolved. 

1) Cloud of Performance Counters.  
Size:  Load tests can last from couple of hours to several 

days. It generates performance logs that can be of several 
terabytes in size. Even logging all counters on a typical 
machine at 1Hz generates about 86.4 million values in a 
single week. A cluster of 12 machines would generate 13 TB 
of performance counter data per week, assuming a 64 bit 
representation for each counter value [15]. Analysis of such 
large counter logs is still a big challenge in load test. 

Redundant counter traffic: During load testing, the large 
number of processing elements generates a large number of 
performance counter data, most of which contains 
unnecessary and overlapping information. Evaluation of the 
system performance depends upon the merit of collected 
counter data. Such mixes of redundant counter data act as 
noise, reducing the accuracy of performance evaluation. 

2) Time Limitations.  
Production constraints: In a production environment, 

performance analysts must react in limited time to complete 
diagnostics on performance counter logs and to make 
necessary configuration changes. 

Tight schedules: Load testing comes in to the picture 
after the successful completion of functional and user 
interface testing. It is usually the last step in an already tight 
and usually delayed release schedule. Hence, managers are 
always eager to reduce the time allocated for performance 
testing. 

3) Ad hoc checking of counter values.  
Manual analysis: Most performance engineers manually 

analyze the counters. For example, they look at memory 
usage trend to flag memory leaks.  In some cases they have 

custom scripts to cover a few key scenarios based on domain 
knowledge by comparing counters against an informal 
baseline [11]. 

Complex tools: Few analysis tools have been developed 
for performance counters [16]. These tools are either too 
complex or are hard to integrate with existing systems. This 
makes analysis laborious and extremely time-consuming 
[26]. 

Our proposed solution addresses the aforementioned load 
test challenges. 1) It reduces the observed number of 
counters by removing redundant counter traffic; 2) it 
automatically identifies and compares important 
performance counters across load tests to reduce the analysis 
time; 3) It can be easily integrated with other systems and 
requires no expertise to operate. 

III. PROPOSED SOLUTION 

This section discusses our methodology in action, using a 

real world performance counter log consisting of 18 

performance counters. We explicitly choose a small 

performance counter set in this instructive section as the 

small data size makes it easier to follow the statistical 

techniques in our methodology. Figure 1 show all steps 

involved in our methodology to obtain the top performance 

counters from a performance log. 

A.  Data Preparation.  

 Performance log data needs to be prepared to make it 
suitable for the statistical techniques employed by our 
methodology. The effectiveness of the suggestions generated 
by our methodology greatly depends on data preparation. 
The two steps involved in data preparation are: 

1) Data sanitization:  
Performance logs need to be filtered from noise i.e., 

missing counter data or an empty performance counter. 
Counter data is missing when performance monitor fails to 
record an instance of a performance counter. A counter is 
empty when a resource cannot start the service. Table 1 
shows a sample of our real world performance counters for a 
load test before the data preparation step is applied.  Counter 
„T‟ belongs to the missing counter data category, whereas „S‟ 
is an empty counter. A Total of 599 observations were 
required for each performance counter. Monitoring tool 
recorded only 597 observations for performance counter „T‟. 
To deal with this kind of problem (incomplete data) we 
employed list wise deletion. If the i

th
 observation for counter 

„T‟ is missing, list wise deletion will delete the 
corresponding i

th
 observation of all the counters. 
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Table 3: Principal Component Analysis 

No PC Eigen-

Value 

Difference Variability 

(%) 

Cumulative 

Variability (%) 

1 PC1 11.431 8.684 63.506 63.506 

2 PC2 2.747 1.027 15.260 78.765 

3 PC3 1.720 0.794 9.554 88.319 

4 PC4 0.926 0.476 5.143 93.463 

5 PC5 0.449 0.129 2.497 95.960 

6 PC6 0.320 0.160 1.780 97.740 

7 PC7 0.160 0.023 0.890 98.630 

8 PC8 0.138 0.058 0.764 99.394 

9 PC9 0.080 0.052 0.442 99.836 

10 PC10 0.027 0.027 0.153 99.989 

11 PC11 0.001 0.000 0.008 99.997 

12 PC12 0.001 0.000 0.003 100.00 

 

Table 4: Association between counters and components 

 Loadings 
Var PC1 PC2 PC3 PC4 

A 0.399 -0.142 -0.075 0.859 

E 0.933 -0.253 -0.068 -0.145 

F -0.154 0.112 -0.888 0.025 

I 0.000 -0.135 0.912 -0.005 

J 0.623 0.752 0.053 0.050 

K 0.624 0.751 0.066 0.050 

L 0.864 -0.267 0.221 0.154 

M 0.972 0.019 -0.046 -0.134 

N 0.974 0.015 -0.043 -0.130 

O 0.889 -0.245 0.022 0.160 

P 0.944 -0.167 -0.065 -0.164 

Q 0.946 -0.168 -0.064 -0.160 

R 0.966 -0.146 -0.043 -0.047 

 
Empty counters such as „S‟ and counters that have more 

than 2% of the data missing are removed during the 
sanitization process. Table 2 shows the performance counters 
after data sanitization. 
 

2) Pre-treatment: 
Pre-treatment converts the data into a format that is 

understood by the data reduction technique, i.e., Principal 
Component Analysis (PCA). PCA is a maximum variance 
projection method [12].  This means that PCA identifies 
those variables that have large data spread (variance), 
ignoring variables with low variance [3]. Performance 
counters have different ranges of numerical values; they have 
different variance. To eliminate PCA bias towards variables 
with a larger variance, we standardized the performance 
counters via Unit Variance scaling (UV scaling). For each 
performance counter, we standardized the performance 
counter by dividing the observations of each counter by the 
counter‟s standard deviation. Each scaled counter then has 
equal (unit) variance. 

Table 2 shows the counters after pre-treatment. Each 
counter has mean of 0 and Standard deviation of 1. Scaled 
performance counter data is then further mean centered to 
reduce the risk of collinearity. With mean-centering, the 
average value of each performance counter is calculated then 
subtracted from its respective counter data. 

B. Data Verification.  

The second step of our methodology verifies if there 
exists enough association among performance counter data 
to proceed with the data reduction. In order to apply PCA, 
the KMO (Kaiser-Meyer-Olkin) measure [13] should be 
greater than 0.6 [4]. This measure tests the amount of 
variance within data that can be explained by a given 
measure. The KMO measure for our performance counter 
data is 0.789, which indicates PCA is appropriate to apply. 

C. Dimension Reduction 

We consider the elimination of redundant performance 
counters as a dimensionality reduction (DR) problem, where 
each counter corresponds to a dimension. Many different DR 
techniques exists, for example based on statistics clustering 
(factor analysis, alpha, un-weighted least-square) or machine 
learning (Maximum likelihood, Feature selection, cross 
entropy, etc.,) [32]. Among statistical techniques clustering 
algorithms have been widely used and perform reasonably 
well on datasets of low dimension, with “low” defined as 
less than fifteen [33].  Unfortunately, we expect to have 
dimensions over 1000 in our test data sets and in the field 
environment. Several authors have pointed out that the 
clustering method is not fully effective when clustering high 
dimensional data [33][34][35].  Maximum likelihood 
algorithms belonging to machine learning class are well 
known for dimension reduction. However, maximum 
likelihood procedures are limited in their ability to accurately 
estimate the population mean and SD when the percent of 
concealed data is large and sample size is small [36]. 
Towards this end, we used statistical technique, Principal 
Component Analysis (PCA), known to reduce the sheer 
volume of performance counters and are both; robust and 
scalable [12]. What PCA does is to synthesize new variables 
called 'Principal Components' (PC). Every PC is independent 
and uncorrelated with other PCs.We used custom R files and 
the FactoMineR package dedicated for data mining and 
multivariate analysis to perform the PCA analysis [27]. The 
result of applying PCA on our performance counter data set 
can be seen from Table 3. The 18 counters have been 
reduced into 12 Principal components (PC) thereby 
achieving a 33.3% reduction. 

Because of the pre-processing phase the variance of each 
counter = 1.0. PCA groups the data of the 18 counters into 
components, each of which explains a particular amount of 
variance of the original data. This means that the total 
variance of our counter data can be explained as 18. The first 
component PC1 has eigen-value = 11.431, which means it 
explains more variance than a single counter, indeed 11.431 
times as much, and it accounts for 63.60% of the variability 
of entire counter data set. The second and third components 
have eigen-values 2.74 and 1.720 respectively. The rest of 
the components explain less variance than a single counter. 

D. Top_k Components 

Many performance counters have little information value 
but hamper effective analysis by adding noise. In cases, few 
outliers may group together to form a component. These 
outliers may be of interest to analyst in understanding 



extremes and identifying anomalies but add no value towards 
identifying the top_k performance counters and hence such 
PC needs to be discarded from analysis.  

Unfortunately the methods known today, does not 
provide any reliable and automated techniques to identify 
appropriate top_k principal components. [4] [18] [13] [24]. 
We found it more practical to use „% Cumulative 
Variability‟ in selecting the number of top_k component. The 
Table 3 shows that 4 PCs account for 90% of cumulative 
Variability. A Cumulative variability of 90% is adequate to 
explain most of data with minimal loss in information [12]. 
Using ‘% Cumulative Variability’ we achieved 66% data 
reduction by selecting first four PCs from total of 12 as 
shown in Table 3. 

E. Top_k Counters 

Performance analysts are interested in performance 
counters not principal components. In this step we 
decompose principal components using eigen vector 
decomposition technique to map the PCs back to counters 
[6]. For each performance counter we measure its association 
to each top_k components. This measure of association is 
called as ‘Loadings’. Table 4 shows the measure of 
association (loadings) for few of our performance counters. 
The loading value ranges from ± (0 to 1). The counters „N‟ 
and „M‟ with higher loading values confirm strong 
association with PC1, whereas counters like „I‟ and „F‟ 
confirm weak association with PC1.  

In order to remove weakly associated counters (add no 
value to the PCs) and to identify and rank the top_k counters 
our methodology performs the following two sub steps

1) Counter elimination: 
In this step, the counters that do not have significant 

association with their respective top_k dimension are 
removed.   A Norman cut-off criterion [12] is utilized to 
decide on the level of importance of a variable to 
corresponding dimension: 

Cut off = 5.152  SQRT n − 2   , 

 Where the loading value is considered 5.152 only if we 

have more than 100 samples and N represents number of 

samples. 

2) Counter  Ranking :  
In this step, the important top_k counters belonging to 

the top_k PC are identified and ranked. Identifying important 
variables has been made possible in the literature by 
exploiting loading values in a strict manner.  
In past literature loading value of 0.7 is used as cutoff 

criteria to obtain important counters [5]. Hair et al. call 

loadings above .6 "high" and those below .4 "low" to rank 

important variables [22]. Raubenheimer pointed out 0.4 for 

the central PC and 0.25 for the other PC [8].  
We believe the cut-off level to identify the top_k 

counters should not be fixed. It should be tunable on the 
basis of domain demands. If an analyst is tight on time 
he/she may want our methodology to suggest few top_k 
performance counters. In a situation where an analyst wants 
to conduct any fine grained analysis, analyst may require our 
methodology to increase the span of top_k counter in its 

suggestion. To server this purpose, we incorporated loading 
as tunable parameter in our second step. We have found 
while conducting our case study that loading value of 0.9 or 
higher works wonder in identifying important performance 
counters; just enough in count that can be easily managed by 
human for conducting analysis. 

 
Table 5: Top_k performance counters 

Rank PC Counters Loadings 

1 F1 N 0.974 

2 F1 M 0.972 

3 F1 R 0.966 

4 F1 Q 0.946 

5 F1 P 0.944 

6 F1 E 0.933 

7 F2 I 0.912 

 
With the loading parameter value set to 0.9, our 

methodology identifies 7 out of 18 important performance 
counters along different dimensions, thereby achieving a 
61% data reduction. Table 5 shows the important 
performance counters ranked in the order of importance.  

IV. CASE STUDY 

To find out the performance and reliability of our 
approach we did a case study based on the performance 
counters logs obtained from the load and stress tests of a 
large enterprise application. Our case study is built on our 
intuition to seek answers for our two major concerns: 

 
Q1. How sensitive is our methodology to changes in 

counter data? 
Q2. How much data reduction can be achieved by our 

methodology? 
 
While investigating our two research concerns, we came 
across more research questions: 
 

Q3. Can our methodology indentify test with varying 
workload intensity? 

Q4. Can we identify different phases in a load test?  
 
  The Figure 2 shows our test environment. The enterprise 
application runs on a cluster and utilizes a database server to 
store its data. An external load emulator mimics user‟s 
interaction with the application, whereas, the internal load 
generator places load on the database by emulating large 
transactions.  
 

 

 

 

 

 

 

 

 
Figure 2: Component of test environment 
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Q1.  How resilient is our methodology to small 

fluctuations in a load test data?  

Motivation: Each added feature in an application requires 

conducting various performance tests. Performance analysts 

compare the result of a test with similar other tests across 

various builds and versions of an application. This helps 

them to identify the performance gain/loss. A test repeated 

in a controlled environment may not produce 100% 

identical results. Statistical techniques are highly sensitive 

to minute fluctuation in data [24][12]. We incorporated 

statistical techniques in our methodology, which raise our 

concerns 1) is our methodology robust enough to provide 

consistent set of counter recommendation. 2) Statistically, 

how identical are the recommendations. To date, there is no 

previous study suggesting PCA as a stable technique to 

accommodate small variations in data. However, work 

conducted by Ahn and Vetter suggests that PCA is an 

appropriate technique that can deal with large volume of 

correlated performance counter (hardware) data, as 

compared to machine learning techniques [37]. 

Approach: We conducted an experiment consisting of four 

runs of same test scenario with constant workload. We used 

the frame work of Thakkar et al. to automate the tests and to 

ensure the environment remains constant [29]. Each test ran 

for two hours. We expected these four runs of test to be 

similar.Domain experts provided us with 25 performance 

counters of their own choice from the test. We applied our 

methodology on the set of these 25 performance counters. 

Findings: Our methodology suggested 15 important 

counters among them. This is a 40% reduction. Domain 

experts agreed with the recommendation set.  Among the 10 

removed counters, 7 of them were found to be redundant 

and 3 of them were removed by our methodology as noise. 

More importantly, our methodology suggested the same set 

of performance counters for all four tests. We then plotted a 

line and a bar chart to compare the loadings of important 

performance counter across all four tests as shown in Figure 

3. Visual comparison of all four tests reveals them to be 

analogous. We statistically evaluate the performance of our 

approach using spearman correlation between tests. Table 6 

shows the result of the spearman correlation as a correlation 

matrix. It is based on the importance of variables at 

significance level alpha = 0.05.  Tests 1 & 3 are found 

highly correlated. The spearman correlation coefficients in 

Table 6 are greater than 0.993 indicating that there is very 

strong correlation between the results of our approach for all 

four tests. 

 

 

 

 

 

Q2.  Can our methodology identify tests with varying 

workload intensity?  

Motivation: Large systems need to be tested against odds 

and unforeseen of field deployment. Performance engineers 

conduct stress tests to measure the performance of a system 

under extremes i.e., application halting, malfunctioning, 

noticeable degradation or crashing.  
Table 6: Correlation among tests 

 Test-1 Test-2 Test-3 Test-4 

Test-1 1 0.999 1.000 0.996 

Test-2  1 0.999 0.993 

Test-3   1 0.996 

Test-4    1 
 

Table 7: Work load Intensity 

Type Ext. Load Int. Load # of tot transactions/min  

1-X 1000 10 (%) 4800 

2-X 2000 20 (%) 6000 

4-X 4000 40 (%) 8400 

8-X 8000 80 (%) 13200 
 

Table 8: Correlation among X Loads. 

 1X Load 2X Load 4X Load 8X Load 

1X Load 1    

2X Load 0.703 1   

4X Load 0.570 0.957 1  

8X Load 0.219 0.462 0.513 1 

 

 

 
Figure 3: Consistency among tests 

One way to stress test a system is by pushing more load 

beyond its expectation. The rationale behind such kind of 

performance test is that some performance bugs in system 

only manifest under certain workload intensity.  

Our methodology has already identified tests repeated over 

similar scenario to be identical. Now, we are interested to 

find out if we can work our methodology a step further i.e., 

to identify test generated by same workloads mix but with 

varying intensity.  

We illustrate what we mean by this. For example, the load 

of an e-commerce website would contain information such 

as: browsing (40%) with a min/average/max rate of 5/10/20 

requests/sec, and purchasing (40%) with a min/average/max 

rate of 2/3/5 requests/sec. In our experiment, we keep the 

workload mix (browsing (40%) and purchasing (40%)) 

constant, but we vary the workload intensity, i.e., rate 

(request/sec).  

Approach: We conducted our second experiment based on 

the stress tests. For these tests the workload mix was kept 

constant; however we varied the load intensity to induce 

additional stress on the system. The Table 7 lists the 

intensity of our stress tests. 
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Our methodology based on PCA is resilient to small 

variations in performance counter data. 
 

 



 
Figure 4: Stress test  

 

 
Figure 5: Evolution of performance counter importance 

For each stress test 1X, 2X, 4X and 8X, we doubled the 

external load intensity i.e., the number of transactions 

generated by external load generator per minute. For 

internal load the user activities on the enterprise application 

is doubled as shown in Table 7. The „# of tot 

transactions/min‟ lists the number of total transaction 

processed by the enterprise application for each type of 

stress test. We marked the important performance counters 

obtained from 1X stress test as our base counters and 

compared their values across the other X stress tests, like a 

performance analyst would do to compare the performance 

of a new load test to the performance of an old load test. 

Findings: Figure 4 shows that by visualization one can 

easily identify that 1X, 2X and 4X stress tests are similar in 

nature, i.e., they share similar underlying patterns of counter 

importance. The 8X stress test has a high deviation from the 

others stress tests as seen in Figure 4 and Table 8. Under 8X 

stress load we noticed that the system shows abnormal 

behavior and produce an intolerable transaction response 

time. We believe a system under such stress is unable to 

reach a stable state resulting in a performance counter log 

with lot of noise.  

 

 

 

 
Figure 6: 8X running segments Vs stress tests 

Q3.  How does the ranking of a performance counter 

evolve over time?  

Motivation: 8X stress test had high deviation from other X 

stress tests in our previous experiment. One way to under- 

stand the rationale of such distinction across tests is to study 

the evolution of the performance counter importance over 

time. 

Approach: We compare the evolution of the important 

performance counters of 8X to that of 1X test (most stable 

test in experiment 2).  The performance counter logs are 

divided into multiple running segments over time to study 

the performance counter evolution. Each running segment is 

built on top of the previous accumulative segments, i.e., the 

segment 1X-a consists of the performance counters 

collected during the first 20 minutes of the stress test. 1X-b 

consists of counters collected during the first 40 minutes of 

stress test, 1X-c for the first 60 minutes and so on. 

The 8X stress test has 2 more running segments than the 1X 

stress test. This is because the 8X stress test took 25% more 

time than 1X to finish, even when the load generators were 

stopped at the same point of time for both tests. The reason 

for this is that, 8X stress have extreme load intensity than 

1X. This extreme load intensity caused intense users 

requests queues build-up at the enterprise application. It 

took more time for the enterprise application to process 

pending users requests in the queues and route them to the 

database server to commit transactions. 

 The figure 5 shows the evolution of performance counter 

importance for both 1X and the 8X.  

Findings: The Interesting findings for this experiment are: 

a. All the segments of 1-X follow the same line trajectory 

in Figure 5. No abrupt spike is seen for any 

performance counter in all segments. This confirms that 

the evolution of a performance counter importance is a 

gradual process in load test.   

b. The long ramp-down phase was responsible for the 

divergence of 8X from other X tests. The ramp-down 

phase is also known as cool-down phase when pushing 

of the load is stopped and the load for an application 

slowly releases. In Figure 5, the line trajectory of 8X-f 

starts to noticeably depart from previous running 

segments. In parallel, the decrease in the importance of 

performance counters is observed. The segment 8X-f 

marks the time when the load generators were stopped. 
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Our methodology can help performance analysts to 
identify and compare load tests with different load 
intensities. 
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As the ramp down or cool down period of 8X 

progresses, the counter importance in subsequent 

segments 8X-g and 8X-h gradually declines.  The ramp 

down phase of 8X is 75% larger than other 1X test.  

Once the domain experts saw the visualization of the 

evolution of counter importance in Figure 5, they were 

immediately able to understanding why 8-X was way 

off as compared to other X-test in experiment 2. 

We plotted running segments 8X- a, b, c and d (the first 100 

minutes to eliminate ramp-down segments) along with the 

other X stress tests.  The line trajectory of the 8X running 

segments and X stress test complimented each other to a 

level where they can visually be identified as similar as 

shown in Figure 6. Despite the system under extreme stress 

we were able to identify the load/stress test of similar nature 

(same workload mix) by filtering out the ramp down 

segments. 

 

 

 

 

 

 

 

 

Q4.  Can we identify different phases of load test?  

Motivation:  From experiment 3, it was concluded that 

phases of a load test have a different impact on the 

importance of performance counters. Performance analysts 

are interested to know which counters are important at the 

three phase of the test i.e., 1) Warm-up (ramp-up) phase: 

During which the application is being subjected to the 

workload. The workload is not at its full strength, but is 

building up towards the designated workload intensity. 2) 

Steady-state phase: When the environment is well 

configured and the application can sustain the workload. 

During this phase, the performance counters are normally 

distributed with respect to their average data values. 3) 

Cool-down (ramp-down) phase: During which the load 

generator gradually stops injecting the workload and the 

resource utilizations gradually drop as the workload is 

winding down. Performance analysts are interested to know 

the important counters during warm-up phase that cause the 

resource saturation, whereas they are also interested to know 

the important counters during the cool down stage, as this 

helps them to understand how quickly the system can 

recover from stress. 

 Approach: We took the performance counter log for our 1-

X stress test and divided it into six equal segments. Each 

segment of the test spanned exactly 20 minutes and is not a 

running segment. Our intuition was to check the importance 

of the counters for all segments and find out if the 

importance values vary. We named the segments as 1X-a, b, 

c, d, e & f respectively as shown in figure 7. 

 
Figure 7: Equal segments of performance counter log 

  
Performance Counter 

Figure 8: Segment patterns at time 

We applied our methodology to rank important counters for 

each of the test segment. Our methodology recommended 

the same 15 counters across all segments; therefore, we did 

not have to establish a base- line segment. We compared the 

importance of performance counter across all six segments 

as shown in Figure 7 

Findings: At first we were surprised by the diversity of the 

results (line trajectories), which confirms the findings of Q3. 

We grouped together the segments that had similar counter 

importance pattern (line trajectory). Figure 8 shows that we 

were able to distil the two distinct patterns from all 

segments.  We observed that the harmonized patterns shown 

in Figure 8 (a) belong to the segments where the system 

stabilized against the induced load. The two similar patterns 

in Figure 8 (b) belonging to segments 1X-a and 1X-f 

correspond to the ramp up phase, when the stress load was 

gradually being built up by external load generator and ramp 

down phase when the stress load is being released from the 

system. The 1-X stress load with small load intensity as 

compared to other X stress tests did not create any user‟s 

requests queue at application server; hence the stress load 

from application server was released nearly in same 

proportional to its built-up. Therefore, we find that both the 

line trajectory of 1X-a and IX-f in Figure 8 (b) are similar. 

We also notice from the figure that the line patterns diverge 

considerably at two points. In start of the trend i.e., at 

counter „C‟ there is a „V‟ shape dip and towards the end of 

line pattern for performance counter „N‟ and „O‟. 

Performance counter „C‟ is enterprise application‟s „Disk 

Transfer/sec‟. Which is the combination of disk reads and 

writes. We found out that when the stress load is being 

ramped up, the enterprise application starts to receive an 

increasing number of request from the internal load 

generator and the utilization of disk „Writes‟ to store the 
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 The evolution of performance counter importance 
during the load test is a gradual process.  Different 
phases of test bias the overall importance of 
performance counter. Tests should be compared 
across their corresponding phases.  

 



request increase. Whereas, „Reads‟ from disk to process 

these request is not rapid as compared to ‟Writes‟ at that 

ramp up phase. Thus, we see a sharp decrease in „Disk 

Transfer/sec‟ counter. Vice-versa, for segment 1X-f, we see 

a sharp decrease in counter „C‟ importance. On the other 

hand, the same effect is seen on the database server side in 

terms of counters „N‟ and „O‟ which represent the database 

server server‟s „Total Disk Writes/sec‟ and „(Total) % 

Processor Time‟.  

 

 

 

 

Q5.  How does our methodology performs with large set 

of performance counters? 

Motivation: Performance of many DR techniques decreases 

as the number of data dimensions increase. In a large 

enterprise system, we expect to have performance logs 

consisting of hundreds of performance counters. Therefore, 

we want to know how well our methodology performs with 

a large set of performance counter logs. 

Approach: We extracted the performance logs of 5 load 

tests from a large scale enterprise system. Three load tests 

were marked to be of similar nature by domain experts, i.e., 

load tests A, B and C. Each load test generated 5 separate 

counter logs produced by subcomponents of the system that 

were geographically separated. Each test was 10 hours long. 

The test monitoring systems ensures that the starting, 

sampling and stopping of performance counters follow the 

test requirements. For each load test we combined the 

respective performance counter logs based on their sampling 

frequency. This resulted into 632 performance counters for 

each load test. We applied our methodology on the 

performance counter log of load test-B and it recommended 

73 important counters. Our methodology showed an 

improved performance on large set of performance counter 

data of 88% counter reduction. We treated the important 

performance counters from load test-B as our base-line 

counters and compared them across other load tests. 

Findings: Our methodology found load tests A, B and C to 

be similar to each other. Figure 9 shows that the importance 

of performance counters of load tests A, B and C is similar. 

 

 
Figure 9: Important performance counters for large logs 

 

Table 9: Correlation between load tests 

 Test-A Test-B Test-C Test-D Test-E 

Test-A 1 0.9409 0.9162 0.37418 0.1790 

Test-B  1 0.9778 0.45823 0.1359 

Test-C   1 0.42581 0.1392 

Test-D    1 0.2305 

Test-E     1 

 

    Table 9 provides statistical evidence of this. Tests A, B 

and C with correlation values greater than 0.91 are highly 

correlated with each other. However, for the load Test-A, 

we noticed sudden sharp spikes of decreased importance for 

a few counters. We investigated this issue by looking at the 

raw counter data. We found out that there were 5 cases 

where the performance monitor failed to start sampling the 

counters. There was also one case where the counters only 

sampled 15 counter instances and perhaps got stuck. Our 

methodology successfully removed out that problem counter 

as its data was 98% less that the required counter data. 

When comparing these problem counters (removed) in load 

test-A with base-line counter of load test-B, their value is 

substituted as 0 by our methodology. This caused those 

sudden spikes of decreased counter importance. The number 

of recommended counters can be further decreased by 

tweaking the tunable loading parameter in the top_k counter 

selection step of our methodology. 

 

 

 

 

 

V. THREATS TO VALIDITY 

In addition to addressing the challenges described in section 

2, we identified the following threats to the validity or our 

research. 

 Generalization. As case study subjects, we used various 

stress tests and load tests performance logs of a large 

enterprise system. We tried to generate the performance 

counter logs under various stress intensity to avoid 

potential bias in our data reduction. We were able to 

achieve an 88% counter reduction. However, the 

counter reduction rate is dependent on the correlation 

among the performance counters, may vary for 

performance counter logs per domain. 

 Robustness of results. Our data reduction model is 

based on principal component analysis. The results 

produced were up to the satisfaction of the enterprise 

experts. Using more complex techniques such as to 

employ Naïve bays classifier and factor analysis may 

yield further improvement in the suggestions provided 

by our methodology, but are trivial to implement. 

Nevertheless, we plan to explore these techniques and 

take into account supplementary variables along with 

quantitative counters in future. 
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Our methodology can distil different phases of a load 

test.  

 

Our methodology performs well on the large set of 

performance counter logs and achieves 88% of data 

reduction.  



VI. RELATED WORK 

We discuss the two areas of related work. 

Data Reduction 
Data management and reduction have been widely 

studied in many areas, including medical data analysis [21], 
financial time series prediction [14], and biological data 
sampling [35]. Data reduction strategies chiefly rely on 
statistical techniques such as averaging, variance, covariance 
matrices, sampling, and principal component analysis (PCA). 
In the area of application performance monitoring and 

analysis, event throttling [23] prevents the generation of 

large data volumes. However, it sacrifices a consistent view 

of application behaviour. Dynamic clustering [19] identifies 

clusters of processors with similar performance metric 

curves and then selects one processor from each cluster to 

represent that cluster, thus reducing the number of 

processors and performance data. Statistical sampling [17] 

allows the analysis to focus on subsets of processors or 

metrics, thus reducing the data to be collected. However its 

usage is limited to simple cases such as estimating average 

load and finding free nodes. Another approach that is 

similar to our data reduction strategy is correlation 

elimination [15], which identifies a relevant statistically 

interesting subset of system metrics. More specifically, 

correlation elimination [15] diminishes the volume of 

performance data by grouping metrics with high correlation 

coefficient into clusters and only picking one metric for 

each cluster as a representative. Our Methodology further 

improves the elimination process by considering the extent 

of variance accounted by variable when trying to eliminate 

variables from principal components. 

 

Automated Performance monitoring and Analysis of 

enterprise systems 
A performance data mining framework for large-scale 

parallel computing tries to manage data complexity by using 
techniques such as clustering and dimensionality reduction 
[9]. This data mining framework utilizes random liner 
projection and PCA to reduce performance data. The 
framework only reduces the performance data to Principal 
component but doesn‟t achieve fine-grain analysis like us by 
decomposing the PC. The work of Sandeep et al. is closest to 
ours [25]. They employed principal feature analysis (PFA) to 
achieve data reduction. The main difference between their 
approach and ours is that they utilize machine learning to 
distil the large counter set into smaller sets to describe the 
workload. Also, their work is partially automated and 
requires continuous training to produce accurate results. 
Cohen et al. [7]  develop application signatures based on the 
various system metrics (like CPU, memory). Jiang et al. 
automates the performance analysis of load test [11]. Unlike 
our work they relied on execution logs, which require 
domain knowledge to understand them.  

VII. CONCLUSION AND FUTURE WORK 

In this paper we presented our methodology to automate 
the comparison of performance counters across tests. Our 
methodology uses Principal Component Analysis, a 
statistical technique, which achieves an 88% reduction in 
performance counter data set. In load test of an enterprise 
system a domain expert can uncover important performance 
counters and calculate performance gains/loss. However, in 
such large environments domain experts are usually busy or 
hard to find. Our methodology is not a substitute for domain 
experts however it can guide the performance analyst and 
domain expert when new features are added into 
application/system resulting into new performance counters 
produced during load test. A large case study on a real-world 
industrial software system provides empirical evidence on 
the ability of our methodology to uncover the discrepancy in 
performance among load tests. 

In future work, we plan to compare our DR methodology 
i.e., principal component with other DR techniques such as 
factor analysis and Naive bayes classifiers. We also plan to 
strengthen our methodology to identify anomalous behavior 
of an application during load test. 
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