
Automatic Comparison of Load Tests to Support the

Performance Analysis of Large Enterprise Systems

Haroon Malik, Zhen Ming Jiang, Bram Adams,

Ahmed E. Hassan

School of Computing

 Queen‟s University

Kingston, Canada

{malik, zmjiang, bram, ahmed}@cs.queensu.ca

Parminder Flora and Gilbert Hamann

Performance Engineering

Research In Motion (RIM)

Waterloo, ON, Canada

Abstract— Load testing is crucial to uncover functional and

performance bugs in large-scale systems. Load tests generate

vast amounts of performance data, which needs to be

compared and analyzed in limited time across tests. This helps

performance analysts to understand the resource usage of an

application and to find out if an application is meeting its

performance goals. The biggest challenge for performance

analysts is to identify the few important performance counters

in the highly redundant performance data. In this paper, we

employed a statistical technique, Principal Component

Analysis (PCA) to reduce the large volume of performance

counter data, to a smaller, more meaningful and manageable

set. Furthermore, our methodology automates the process of

comparing the important counters across load tests to identify

performance gains/losses. A case study on load test data of a

large enterprise application shows that our methodology can

effectively guide performance analysts to identify and compare

top performance counters across tests in limited time.

 Keywords-Load Test; Performance Counters; PCA

I. INTRODUCTION

As modern software systems grow larger and more
complex, periodic maintenance of these systems is required
to satisfy the high business demands on system quality,
availability and responsiveness. Classic approaches to
system maintenance fail, when applied to large scale
systems, i.e., Google, Facebook or Amazon [20]. While new
approaches to maintain such large-scale software systems are
popping up, load testing still remains the most integral part
of testing the performance of large scale systems.

Load Testing assesses how a system performs under a
given load [2]. Load is the rate at which transactions are
submitted to a system [1]. Once maintenance activities
(corrective, perfective and adaptive) are completed, load
testing helps to uncover residual functional and performance
problems. Functional problems are bugs such as deadlocks
and memory leaks that slipped through the functional tests.
Performance problems manifest themselves as system
freezes, crashes and becoming unresponsive during the
course of a load test and are related to symptoms such as
high response time and low throughput under load.

During load testing, a series of load tests are conducted
that may span from a few hours to many days. Often, one or
more load generators are used to imitate committing

thousands of concurrent transactions to an application on
behalf of users. During the course of a load test, the
application under test is closely monitored, resulting in a
huge amount of logging data as performance counters. The
performance counter log contains a plethora of usage
information such as CPU utilization, disk I/O, memory
consumption and network traffic. Such information is of vital
interest to performance analysts as it helps them to observe
system behavior under load.

The most frustrating challenge of load test faced by
system analysts is the time spent and complexity involved in
isolating the required information distributed across
thousands of correlated performance counters. The modern
hardware and advance applications used in large systems can
publish large sets of counters for monitoring their
performance [2], which further increases the complexity
involve in analyzing load test. As a consequence, analysts
are overwhelmed by thousands of performance counters
obtained during load tests, making performance analysis
laborious and results vague. Existing research on load testing
focuses on the automatic generation of load test suites [1]
and automated performance analysis of load tests based on
execution logs [10][11]. Even though load testing has been
extensively studied, little is known on how to do it for large
scale systems with thousands of performance counters
generating terabytes of log data. Our paper is the first to
study such an industrial sized system and to develop methods
to handle the information overload. To summarize, the paper
makes the following contributions:
C1. We apply statistical methods to reduce the

dimensionality of the observed performance counter

set.

C2. We automate the ranking of counters according to

their importance for load tests.

C3. We empirically validate our proposed approach

through a large case study on a real-world industrial

software system.
The rest of the paper is organized as follows: Section 2
highlights the problems associated with load testing. We
present our solution to these problems in section 3 along a
step by step explanation of our methodology. In section 4,
we present our case study. Section 5 explains the threats to
our validity. Related work is presented in section 6, followed
by our conclusion and future work in section 7.

A

Figure 1: Steps involved in proposed methodology to identify the important performance counters in a load test.

Table 1: Sample of observations before data preparation

 Observations
Var Tot Mis Avail Mini Max Mean Std. Dev

Q 599 0 599 246.18 1946.11 754.654 292.00

R 599 0 599 009.59 0063.46 023.427 011.14

S 0 0 0 000.00 0000.00 000.000 000.00

T 599 2 597 001.00 0117.11 0030.90 018.99

Table 2: Sample of observations after data preparation

 Observations

Var Tot Mis Avail Mini Max Mean Std. Dev

Q 599 0 597 -13.37 000.07 0.00 1.00

R 599 0 597 -00.71 006.52 0.00 1.00

T 597 0 597 -1.694 001.46 0.00 1.00

II. PROBLEM DESCRIPTION

Large enterprise applications must be load tested to
ensure satisfactory performance under load. Many issues in
load testing remain unsolved.

1) Cloud of Performance Counters.
Size: Load tests can last from couple of hours to several

days. It generates performance logs that can be of several
terabytes in size. Even logging all counters on a typical
machine at 1Hz generates about 86.4 million values in a
single week. A cluster of 12 machines would generate 13 TB
of performance counter data per week, assuming a 64 bit
representation for each counter value [15]. Analysis of such
large counter logs is still a big challenge in load test.

Redundant counter traffic: During load testing, the large
number of processing elements generates a large number of
performance counter data, most of which contains
unnecessary and overlapping information. Evaluation of the
system performance depends upon the merit of collected
counter data. Such mixes of redundant counter data act as
noise, reducing the accuracy of performance evaluation.

2) Time Limitations.
Production constraints: In a production environment,

performance analysts must react in limited time to complete
diagnostics on performance counter logs and to make
necessary configuration changes.

Tight schedules: Load testing comes in to the picture
after the successful completion of functional and user
interface testing. It is usually the last step in an already tight
and usually delayed release schedule. Hence, managers are
always eager to reduce the time allocated for performance
testing.

3) Ad hoc checking of counter values.
Manual analysis: Most performance engineers manually

analyze the counters. For example, they look at memory
usage trend to flag memory leaks. In some cases they have

custom scripts to cover a few key scenarios based on domain
knowledge by comparing counters against an informal
baseline [11].

Complex tools: Few analysis tools have been developed
for performance counters [16]. These tools are either too
complex or are hard to integrate with existing systems. This
makes analysis laborious and extremely time-consuming
[26].

Our proposed solution addresses the aforementioned load
test challenges. 1) It reduces the observed number of
counters by removing redundant counter traffic; 2) it
automatically identifies and compares important
performance counters across load tests to reduce the analysis
time; 3) It can be easily integrated with other systems and
requires no expertise to operate.

III. PROPOSED SOLUTION

This section discusses our methodology in action, using a

real world performance counter log consisting of 18

performance counters. We explicitly choose a small

performance counter set in this instructive section as the

small data size makes it easier to follow the statistical

techniques in our methodology. Figure 1 show all steps

involved in our methodology to obtain the top performance

counters from a performance log.

A. Data Preparation.

 Performance log data needs to be prepared to make it
suitable for the statistical techniques employed by our
methodology. The effectiveness of the suggestions generated
by our methodology greatly depends on data preparation.
The two steps involved in data preparation are:

1) Data sanitization:
Performance logs need to be filtered from noise i.e.,

missing counter data or an empty performance counter.
Counter data is missing when performance monitor fails to
record an instance of a performance counter. A counter is
empty when a resource cannot start the service. Table 1
shows a sample of our real world performance counters for a
load test before the data preparation step is applied. Counter
„T‟ belongs to the missing counter data category, whereas „S‟
is an empty counter. A Total of 599 observations were
required for each performance counter. Monitoring tool
recorded only 597 observations for performance counter „T‟.
To deal with this kind of problem (incomplete data) we
employed list wise deletion. If the i

th
 observation for counter

„T‟ is missing, list wise deletion will delete the
corresponding i

th
 observation of all the counters.

Data

Preparation

1. Sanitization

2. Pre-Treatment

-

Data Verification

 KMO Test

-

Dimension

Reduction

Principal Component

Analysis

-

Top_k Component

Extraction

Cumulative Variability

(%)
-

Top_k Counter

Selection

1. Counter

elimination

2. Counter ranking

-

Suggestions

 Important

Performance

counters

Table 3: Principal Component Analysis

No PC Eigen-

Value

Difference Variability

(%)

Cumulative

Variability (%)

1 PC1 11.431 8.684 63.506 63.506

2 PC2 2.747 1.027 15.260 78.765

3 PC3 1.720 0.794 9.554 88.319

4 PC4 0.926 0.476 5.143 93.463

5 PC5 0.449 0.129 2.497 95.960

6 PC6 0.320 0.160 1.780 97.740

7 PC7 0.160 0.023 0.890 98.630

8 PC8 0.138 0.058 0.764 99.394

9 PC9 0.080 0.052 0.442 99.836

10 PC10 0.027 0.027 0.153 99.989

11 PC11 0.001 0.000 0.008 99.997

12 PC12 0.001 0.000 0.003 100.00

Table 4: Association between counters and components

 Loadings
Var PC1 PC2 PC3 PC4

A 0.399 -0.142 -0.075 0.859

E 0.933 -0.253 -0.068 -0.145

F -0.154 0.112 -0.888 0.025

I 0.000 -0.135 0.912 -0.005

J 0.623 0.752 0.053 0.050

K 0.624 0.751 0.066 0.050

L 0.864 -0.267 0.221 0.154

M 0.972 0.019 -0.046 -0.134

N 0.974 0.015 -0.043 -0.130

O 0.889 -0.245 0.022 0.160

P 0.944 -0.167 -0.065 -0.164

Q 0.946 -0.168 -0.064 -0.160

R 0.966 -0.146 -0.043 -0.047

Empty counters such as „S‟ and counters that have more

than 2% of the data missing are removed during the
sanitization process. Table 2 shows the performance counters
after data sanitization.

2) Pre-treatment:
Pre-treatment converts the data into a format that is

understood by the data reduction technique, i.e., Principal
Component Analysis (PCA). PCA is a maximum variance
projection method [12]. This means that PCA identifies
those variables that have large data spread (variance),
ignoring variables with low variance [3]. Performance
counters have different ranges of numerical values; they have
different variance. To eliminate PCA bias towards variables
with a larger variance, we standardized the performance
counters via Unit Variance scaling (UV scaling). For each
performance counter, we standardized the performance
counter by dividing the observations of each counter by the
counter‟s standard deviation. Each scaled counter then has
equal (unit) variance.

Table 2 shows the counters after pre-treatment. Each
counter has mean of 0 and Standard deviation of 1. Scaled
performance counter data is then further mean centered to
reduce the risk of collinearity. With mean-centering, the
average value of each performance counter is calculated then
subtracted from its respective counter data.

B. Data Verification.

The second step of our methodology verifies if there
exists enough association among performance counter data
to proceed with the data reduction. In order to apply PCA,
the KMO (Kaiser-Meyer-Olkin) measure [13] should be
greater than 0.6 [4]. This measure tests the amount of
variance within data that can be explained by a given
measure. The KMO measure for our performance counter
data is 0.789, which indicates PCA is appropriate to apply.

C. Dimension Reduction

We consider the elimination of redundant performance
counters as a dimensionality reduction (DR) problem, where
each counter corresponds to a dimension. Many different DR
techniques exists, for example based on statistics clustering
(factor analysis, alpha, un-weighted least-square) or machine
learning (Maximum likelihood, Feature selection, cross
entropy, etc.,) [32]. Among statistical techniques clustering
algorithms have been widely used and perform reasonably
well on datasets of low dimension, with “low” defined as
less than fifteen [33]. Unfortunately, we expect to have
dimensions over 1000 in our test data sets and in the field
environment. Several authors have pointed out that the
clustering method is not fully effective when clustering high
dimensional data [33][34][35]. Maximum likelihood
algorithms belonging to machine learning class are well
known for dimension reduction. However, maximum
likelihood procedures are limited in their ability to accurately
estimate the population mean and SD when the percent of
concealed data is large and sample size is small [36].
Towards this end, we used statistical technique, Principal
Component Analysis (PCA), known to reduce the sheer
volume of performance counters and are both; robust and
scalable [12]. What PCA does is to synthesize new variables
called 'Principal Components' (PC). Every PC is independent
and uncorrelated with other PCs.We used custom R files and
the FactoMineR package dedicated for data mining and
multivariate analysis to perform the PCA analysis [27]. The
result of applying PCA on our performance counter data set
can be seen from Table 3. The 18 counters have been
reduced into 12 Principal components (PC) thereby
achieving a 33.3% reduction.

Because of the pre-processing phase the variance of each
counter = 1.0. PCA groups the data of the 18 counters into
components, each of which explains a particular amount of
variance of the original data. This means that the total
variance of our counter data can be explained as 18. The first
component PC1 has eigen-value = 11.431, which means it
explains more variance than a single counter, indeed 11.431
times as much, and it accounts for 63.60% of the variability
of entire counter data set. The second and third components
have eigen-values 2.74 and 1.720 respectively. The rest of
the components explain less variance than a single counter.

D. Top_k Components

Many performance counters have little information value
but hamper effective analysis by adding noise. In cases, few
outliers may group together to form a component. These
outliers may be of interest to analyst in understanding

extremes and identifying anomalies but add no value towards
identifying the top_k performance counters and hence such
PC needs to be discarded from analysis.

Unfortunately the methods known today, does not
provide any reliable and automated techniques to identify
appropriate top_k principal components. [4] [18] [13] [24].
We found it more practical to use „% Cumulative
Variability‟ in selecting the number of top_k component. The
Table 3 shows that 4 PCs account for 90% of cumulative
Variability. A Cumulative variability of 90% is adequate to
explain most of data with minimal loss in information [12].
Using ‘% Cumulative Variability’ we achieved 66% data
reduction by selecting first four PCs from total of 12 as
shown in Table 3.

E. Top_k Counters

Performance analysts are interested in performance
counters not principal components. In this step we
decompose principal components using eigen vector
decomposition technique to map the PCs back to counters
[6]. For each performance counter we measure its association
to each top_k components. This measure of association is
called as ‘Loadings’. Table 4 shows the measure of
association (loadings) for few of our performance counters.
The loading value ranges from ± (0 to 1). The counters „N‟
and „M‟ with higher loading values confirm strong
association with PC1, whereas counters like „I‟ and „F‟
confirm weak association with PC1.

In order to remove weakly associated counters (add no
value to the PCs) and to identify and rank the top_k counters
our methodology performs the following two sub steps:

1) Counter elimination:
In this step, the counters that do not have significant

association with their respective top_k dimension are
removed. A Norman cut-off criterion [12] is utilized to
decide on the level of importance of a variable to
corresponding dimension:

Cut off = 5.152 SQRT n − 2 ,

 Where the loading value is considered 5.152 only if we

have more than 100 samples and N represents number of

samples.

2) Counter Ranking :
In this step, the important top_k counters belonging to

the top_k PC are identified and ranked. Identifying important
variables has been made possible in the literature by
exploiting loading values in a strict manner.
In past literature loading value of 0.7 is used as cutoff

criteria to obtain important counters [5]. Hair et al. call

loadings above .6 "high" and those below .4 "low" to rank

important variables [22]. Raubenheimer pointed out 0.4 for

the central PC and 0.25 for the other PC [8].
We believe the cut-off level to identify the top_k

counters should not be fixed. It should be tunable on the
basis of domain demands. If an analyst is tight on time
he/she may want our methodology to suggest few top_k
performance counters. In a situation where an analyst wants
to conduct any fine grained analysis, analyst may require our
methodology to increase the span of top_k counter in its

suggestion. To server this purpose, we incorporated loading
as tunable parameter in our second step. We have found
while conducting our case study that loading value of 0.9 or
higher works wonder in identifying important performance
counters; just enough in count that can be easily managed by
human for conducting analysis.

Table 5: Top_k performance counters

Rank PC Counters Loadings

1 F1 N 0.974

2 F1 M 0.972

3 F1 R 0.966

4 F1 Q 0.946

5 F1 P 0.944

6 F1 E 0.933

7 F2 I 0.912

With the loading parameter value set to 0.9, our

methodology identifies 7 out of 18 important performance
counters along different dimensions, thereby achieving a
61% data reduction. Table 5 shows the important
performance counters ranked in the order of importance.

IV. CASE STUDY

To find out the performance and reliability of our
approach we did a case study based on the performance
counters logs obtained from the load and stress tests of a
large enterprise application. Our case study is built on our
intuition to seek answers for our two major concerns:

Q1. How sensitive is our methodology to changes in

counter data?
Q2. How much data reduction can be achieved by our

methodology?

While investigating our two research concerns, we came
across more research questions:

Q3. Can our methodology indentify test with varying
workload intensity?

Q4. Can we identify different phases in a load test?

 The Figure 2 shows our test environment. The enterprise
application runs on a cluster and utilizes a database server to
store its data. An external load emulator mimics user‟s
interaction with the application, whereas, the internal load
generator places load on the database by emulating large
transactions.

Figure 2: Component of test environment

Internal

Load

Generator

Ext. Load

Generator

Performance Monitoring Tool

Clustered

Enterprise

Application

Database

System

Q1. How resilient is our methodology to small

fluctuations in a load test data?

Motivation: Each added feature in an application requires

conducting various performance tests. Performance analysts

compare the result of a test with similar other tests across

various builds and versions of an application. This helps

them to identify the performance gain/loss. A test repeated

in a controlled environment may not produce 100%

identical results. Statistical techniques are highly sensitive

to minute fluctuation in data [24][12]. We incorporated

statistical techniques in our methodology, which raise our

concerns 1) is our methodology robust enough to provide

consistent set of counter recommendation. 2) Statistically,

how identical are the recommendations. To date, there is no

previous study suggesting PCA as a stable technique to

accommodate small variations in data. However, work

conducted by Ahn and Vetter suggests that PCA is an

appropriate technique that can deal with large volume of

correlated performance counter (hardware) data, as

compared to machine learning techniques [37].

Approach: We conducted an experiment consisting of four

runs of same test scenario with constant workload. We used

the frame work of Thakkar et al. to automate the tests and to

ensure the environment remains constant [29]. Each test ran

for two hours. We expected these four runs of test to be

similar.Domain experts provided us with 25 performance

counters of their own choice from the test. We applied our

methodology on the set of these 25 performance counters.

Findings: Our methodology suggested 15 important

counters among them. This is a 40% reduction. Domain

experts agreed with the recommendation set. Among the 10

removed counters, 7 of them were found to be redundant

and 3 of them were removed by our methodology as noise.

More importantly, our methodology suggested the same set

of performance counters for all four tests. We then plotted a

line and a bar chart to compare the loadings of important

performance counter across all four tests as shown in Figure

3. Visual comparison of all four tests reveals them to be

analogous. We statistically evaluate the performance of our

approach using spearman correlation between tests. Table 6

shows the result of the spearman correlation as a correlation

matrix. It is based on the importance of variables at

significance level alpha = 0.05. Tests 1 & 3 are found

highly correlated. The spearman correlation coefficients in

Table 6 are greater than 0.993 indicating that there is very

strong correlation between the results of our approach for all

four tests.

Q2. Can our methodology identify tests with varying

workload intensity?

Motivation: Large systems need to be tested against odds

and unforeseen of field deployment. Performance engineers

conduct stress tests to measure the performance of a system

under extremes i.e., application halting, malfunctioning,

noticeable degradation or crashing.
Table 6: Correlation among tests

 Test-1 Test-2 Test-3 Test-4

Test-1 1 0.999 1.000 0.996

Test-2 1 0.999 0.993

Test-3 1 0.996

Test-4 1

Table 7: Work load Intensity

Type Ext. Load Int. Load # of tot transactions/min

1-X 1000 10 (%) 4800

2-X 2000 20 (%) 6000

4-X 4000 40 (%) 8400

8-X 8000 80 (%) 13200

Table 8: Correlation among X Loads.

 1X Load 2X Load 4X Load 8X Load

1X Load 1

2X Load 0.703 1

4X Load 0.570 0.957 1

8X Load 0.219 0.462 0.513 1

Figure 3: Consistency among tests

One way to stress test a system is by pushing more load

beyond its expectation. The rationale behind such kind of

performance test is that some performance bugs in system

only manifest under certain workload intensity.

Our methodology has already identified tests repeated over

similar scenario to be identical. Now, we are interested to

find out if we can work our methodology a step further i.e.,

to identify test generated by same workloads mix but with

varying intensity.

We illustrate what we mean by this. For example, the load

of an e-commerce website would contain information such

as: browsing (40%) with a min/average/max rate of 5/10/20

requests/sec, and purchasing (40%) with a min/average/max

rate of 2/3/5 requests/sec. In our experiment, we keep the

workload mix (browsing (40%) and purchasing (40%))

constant, but we vary the workload intensity, i.e., rate

(request/sec).

Approach: We conducted our second experiment based on

the stress tests. For these tests the workload mix was kept

constant; however we varied the load intensity to induce

additional stress on the system. The Table 7 lists the

intensity of our stress tests.

0.7

0.75

0.8

0.85

0.9

0.95

1

A B C D E F G H I J K L M N O

C
o

u
n

te
r

Im
p

o
rt

n
ac

e

Performance Counter

Test-1 Test-2 Test-3 Test-4

Our methodology based on PCA is resilient to small

variations in performance counter data.

Figure 4: Stress test

Figure 5: Evolution of performance counter importance

For each stress test 1X, 2X, 4X and 8X, we doubled the

external load intensity i.e., the number of transactions

generated by external load generator per minute. For

internal load the user activities on the enterprise application

is doubled as shown in Table 7. The „# of tot

transactions/min‟ lists the number of total transaction

processed by the enterprise application for each type of

stress test. We marked the important performance counters

obtained from 1X stress test as our base counters and

compared their values across the other X stress tests, like a

performance analyst would do to compare the performance

of a new load test to the performance of an old load test.

Findings: Figure 4 shows that by visualization one can

easily identify that 1X, 2X and 4X stress tests are similar in

nature, i.e., they share similar underlying patterns of counter

importance. The 8X stress test has a high deviation from the

others stress tests as seen in Figure 4 and Table 8. Under 8X

stress load we noticed that the system shows abnormal

behavior and produce an intolerable transaction response

time. We believe a system under such stress is unable to

reach a stable state resulting in a performance counter log

with lot of noise.

Figure 6: 8X running segments Vs stress tests

Q3. How does the ranking of a performance counter

evolve over time?

Motivation: 8X stress test had high deviation from other X

stress tests in our previous experiment. One way to under-

stand the rationale of such distinction across tests is to study

the evolution of the performance counter importance over

time.

Approach: We compare the evolution of the important

performance counters of 8X to that of 1X test (most stable

test in experiment 2). The performance counter logs are

divided into multiple running segments over time to study

the performance counter evolution. Each running segment is

built on top of the previous accumulative segments, i.e., the

segment 1X-a consists of the performance counters

collected during the first 20 minutes of the stress test. 1X-b

consists of counters collected during the first 40 minutes of

stress test, 1X-c for the first 60 minutes and so on.

The 8X stress test has 2 more running segments than the 1X

stress test. This is because the 8X stress test took 25% more

time than 1X to finish, even when the load generators were

stopped at the same point of time for both tests. The reason

for this is that, 8X stress have extreme load intensity than

1X. This extreme load intensity caused intense users

requests queues build-up at the enterprise application. It

took more time for the enterprise application to process

pending users requests in the queues and route them to the

database server to commit transactions.

 The figure 5 shows the evolution of performance counter

importance for both 1X and the 8X.

Findings: The Interesting findings for this experiment are:

a. All the segments of 1-X follow the same line trajectory

in Figure 5. No abrupt spike is seen for any

performance counter in all segments. This confirms that

the evolution of a performance counter importance is a

gradual process in load test.

b. The long ramp-down phase was responsible for the

divergence of 8X from other X tests. The ramp-down

phase is also known as cool-down phase when pushing

of the load is stopped and the load for an application

slowly releases. In Figure 5, the line trajectory of 8X-f

starts to noticeably depart from previous running

segments. In parallel, the decrease in the importance of

performance counters is observed. The segment 8X-f

marks the time when the load generators were stopped.

0.6

0.7

0.8

0.9

1

A B C D E F G H I J K L M N OC
o

u
n

te
r

Im
p

o
rt

an
ce

Performance Counter

1X Load 2X Load
4X Load 8X Load

0.6

0.7

0.8

0.9

1

A B C B E F G H I J K L M N O
Performance Counter

8X-a 8X-b 8X-c 8X-d
8X-e 8X-f 8X-g 8X-h

0.6

0.7

0.8

0.9

1

A B C D E F G H I J K L M N O
Performance Counter

1X-a 1X-b 1X-c
1X-d 1X-e 1X-f

0.7

0.8

0.9

1

A B C D E F G H I J K L M N O

C
o

u
n

te
r

im
p

o
rt

an
ce

Performance Counter

1X Load 2X Load 4X Load
8X-a 8X-b 8X-c
8X-d

Our methodology can help performance analysts to
identify and compare load tests with different load
intensities.

8X

C
o
u
n

te
r

Im
p

o
rt

an
ce

1X

As the ramp down or cool down period of 8X

progresses, the counter importance in subsequent

segments 8X-g and 8X-h gradually declines. The ramp

down phase of 8X is 75% larger than other 1X test.

Once the domain experts saw the visualization of the

evolution of counter importance in Figure 5, they were

immediately able to understanding why 8-X was way

off as compared to other X-test in experiment 2.

We plotted running segments 8X- a, b, c and d (the first 100

minutes to eliminate ramp-down segments) along with the

other X stress tests. The line trajectory of the 8X running

segments and X stress test complimented each other to a

level where they can visually be identified as similar as

shown in Figure 6. Despite the system under extreme stress

we were able to identify the load/stress test of similar nature

(same workload mix) by filtering out the ramp down

segments.

Q4. Can we identify different phases of load test?

Motivation: From experiment 3, it was concluded that

phases of a load test have a different impact on the

importance of performance counters. Performance analysts

are interested to know which counters are important at the

three phase of the test i.e., 1) Warm-up (ramp-up) phase:

During which the application is being subjected to the

workload. The workload is not at its full strength, but is

building up towards the designated workload intensity. 2)

Steady-state phase: When the environment is well

configured and the application can sustain the workload.

During this phase, the performance counters are normally

distributed with respect to their average data values. 3)

Cool-down (ramp-down) phase: During which the load

generator gradually stops injecting the workload and the

resource utilizations gradually drop as the workload is

winding down. Performance analysts are interested to know

the important counters during warm-up phase that cause the

resource saturation, whereas they are also interested to know

the important counters during the cool down stage, as this

helps them to understand how quickly the system can

recover from stress.

 Approach: We took the performance counter log for our 1-

X stress test and divided it into six equal segments. Each

segment of the test spanned exactly 20 minutes and is not a

running segment. Our intuition was to check the importance

of the counters for all segments and find out if the

importance values vary. We named the segments as 1X-a, b,

c, d, e & f respectively as shown in figure 7.

Figure 7: Equal segments of performance counter log

Performance Counter

Figure 8: Segment patterns at time

We applied our methodology to rank important counters for

each of the test segment. Our methodology recommended

the same 15 counters across all segments; therefore, we did

not have to establish a base- line segment. We compared the

importance of performance counter across all six segments

as shown in Figure 7

Findings: At first we were surprised by the diversity of the

results (line trajectories), which confirms the findings of Q3.

We grouped together the segments that had similar counter

importance pattern (line trajectory). Figure 8 shows that we

were able to distil the two distinct patterns from all

segments. We observed that the harmonized patterns shown

in Figure 8 (a) belong to the segments where the system

stabilized against the induced load. The two similar patterns

in Figure 8 (b) belonging to segments 1X-a and 1X-f

correspond to the ramp up phase, when the stress load was

gradually being built up by external load generator and ramp

down phase when the stress load is being released from the

system. The 1-X stress load with small load intensity as

compared to other X stress tests did not create any user‟s

requests queue at application server; hence the stress load

from application server was released nearly in same

proportional to its built-up. Therefore, we find that both the

line trajectory of 1X-a and IX-f in Figure 8 (b) are similar.

We also notice from the figure that the line patterns diverge

considerably at two points. In start of the trend i.e., at

counter „C‟ there is a „V‟ shape dip and towards the end of

line pattern for performance counter „N‟ and „O‟.

Performance counter „C‟ is enterprise application‟s „Disk

Transfer/sec‟. Which is the combination of disk reads and

writes. We found out that when the stress load is being

ramped up, the enterprise application starts to receive an

increasing number of request from the internal load

generator and the utilization of disk „Writes‟ to store the

0.7

0.8

0.9

1

A B C B E F G H I J K L M N O

C
o

u
n

te
r

Im
p

o
rt

n
ac

e

Performance Counter

1X-a
1X-b
1X-c
1X-d
1X-e
1X-f

0.7

0.75

0.8

0.85

0.9

0.95

1

A B C D E F G H I J K L M N O

C
o

u
n

te
r

im
p

o
rt

n
ac

e

1X-b

1X-c

1X-d

1X-e 0.7

0.75

0.8

0.85

0.9

0.95

1

A B C D E F G H I J K L M N O

1X
-a

 The evolution of performance counter importance
during the load test is a gradual process. Different
phases of test bias the overall importance of
performance counter. Tests should be compared
across their corresponding phases.

request increase. Whereas, „Reads‟ from disk to process

these request is not rapid as compared to ‟Writes‟ at that

ramp up phase. Thus, we see a sharp decrease in „Disk

Transfer/sec‟ counter. Vice-versa, for segment 1X-f, we see

a sharp decrease in counter „C‟ importance. On the other

hand, the same effect is seen on the database server side in

terms of counters „N‟ and „O‟ which represent the database

server server‟s „Total Disk Writes/sec‟ and „(Total) %

Processor Time‟.

Q5. How does our methodology performs with large set

of performance counters?

Motivation: Performance of many DR techniques decreases

as the number of data dimensions increase. In a large

enterprise system, we expect to have performance logs

consisting of hundreds of performance counters. Therefore,

we want to know how well our methodology performs with

a large set of performance counter logs.

Approach: We extracted the performance logs of 5 load

tests from a large scale enterprise system. Three load tests

were marked to be of similar nature by domain experts, i.e.,

load tests A, B and C. Each load test generated 5 separate

counter logs produced by subcomponents of the system that

were geographically separated. Each test was 10 hours long.

The test monitoring systems ensures that the starting,

sampling and stopping of performance counters follow the

test requirements. For each load test we combined the

respective performance counter logs based on their sampling

frequency. This resulted into 632 performance counters for

each load test. We applied our methodology on the

performance counter log of load test-B and it recommended

73 important counters. Our methodology showed an

improved performance on large set of performance counter

data of 88% counter reduction. We treated the important

performance counters from load test-B as our base-line

counters and compared them across other load tests.

Findings: Our methodology found load tests A, B and C to

be similar to each other. Figure 9 shows that the importance

of performance counters of load tests A, B and C is similar.

Figure 9: Important performance counters for large logs

Table 9: Correlation between load tests

 Test-A Test-B Test-C Test-D Test-E

Test-A 1 0.9409 0.9162 0.37418 0.1790

Test-B 1 0.9778 0.45823 0.1359

Test-C 1 0.42581 0.1392

Test-D 1 0.2305

Test-E 1

 Table 9 provides statistical evidence of this. Tests A, B

and C with correlation values greater than 0.91 are highly

correlated with each other. However, for the load Test-A,

we noticed sudden sharp spikes of decreased importance for

a few counters. We investigated this issue by looking at the

raw counter data. We found out that there were 5 cases

where the performance monitor failed to start sampling the

counters. There was also one case where the counters only

sampled 15 counter instances and perhaps got stuck. Our

methodology successfully removed out that problem counter

as its data was 98% less that the required counter data.

When comparing these problem counters (removed) in load

test-A with base-line counter of load test-B, their value is

substituted as 0 by our methodology. This caused those

sudden spikes of decreased counter importance. The number

of recommended counters can be further decreased by

tweaking the tunable loading parameter in the top_k counter

selection step of our methodology.

V. THREATS TO VALIDITY

In addition to addressing the challenges described in section

2, we identified the following threats to the validity or our

research.

 Generalization. As case study subjects, we used various

stress tests and load tests performance logs of a large

enterprise system. We tried to generate the performance

counter logs under various stress intensity to avoid

potential bias in our data reduction. We were able to

achieve an 88% counter reduction. However, the

counter reduction rate is dependent on the correlation

among the performance counters, may vary for

performance counter logs per domain.

 Robustness of results. Our data reduction model is

based on principal component analysis. The results

produced were up to the satisfaction of the enterprise

experts. Using more complex techniques such as to

employ Naïve bays classifier and factor analysis may

yield further improvement in the suggestions provided

by our methodology, but are trivial to implement.

Nevertheless, we plan to explore these techniques and

take into account supplementary variables along with

quantitative counters in future.

0.5

0.6

0.7

0.8

0.9

1.0

1 5 9

1
3

1
7

2
1

2
5

2
9

3
3

3
7

4
1

4
5

4
9

5
3

5
7

6
1

6
5

6
9

7
3

C
o

u
n

te
r

Im
p

o
rt

an
ce

Performance Counter

Test- A Test-B Test-C
Test-E Load Test-D

Our methodology can distil different phases of a load

test.

Our methodology performs well on the large set of

performance counter logs and achieves 88% of data

reduction.

VI. RELATED WORK

We discuss the two areas of related work.

Data Reduction
Data management and reduction have been widely

studied in many areas, including medical data analysis [21],
financial time series prediction [14], and biological data
sampling [35]. Data reduction strategies chiefly rely on
statistical techniques such as averaging, variance, covariance
matrices, sampling, and principal component analysis (PCA).
In the area of application performance monitoring and

analysis, event throttling [23] prevents the generation of

large data volumes. However, it sacrifices a consistent view

of application behaviour. Dynamic clustering [19] identifies

clusters of processors with similar performance metric

curves and then selects one processor from each cluster to

represent that cluster, thus reducing the number of

processors and performance data. Statistical sampling [17]

allows the analysis to focus on subsets of processors or

metrics, thus reducing the data to be collected. However its

usage is limited to simple cases such as estimating average

load and finding free nodes. Another approach that is

similar to our data reduction strategy is correlation

elimination [15], which identifies a relevant statistically

interesting subset of system metrics. More specifically,

correlation elimination [15] diminishes the volume of

performance data by grouping metrics with high correlation

coefficient into clusters and only picking one metric for

each cluster as a representative. Our Methodology further

improves the elimination process by considering the extent

of variance accounted by variable when trying to eliminate

variables from principal components.

Automated Performance monitoring and Analysis of

enterprise systems
A performance data mining framework for large-scale

parallel computing tries to manage data complexity by using
techniques such as clustering and dimensionality reduction
[9]. This data mining framework utilizes random liner
projection and PCA to reduce performance data. The
framework only reduces the performance data to Principal
component but doesn‟t achieve fine-grain analysis like us by
decomposing the PC. The work of Sandeep et al. is closest to
ours [25]. They employed principal feature analysis (PFA) to
achieve data reduction. The main difference between their
approach and ours is that they utilize machine learning to
distil the large counter set into smaller sets to describe the
workload. Also, their work is partially automated and
requires continuous training to produce accurate results.
Cohen et al. [7] develop application signatures based on the
various system metrics (like CPU, memory). Jiang et al.
automates the performance analysis of load test [11]. Unlike
our work they relied on execution logs, which require
domain knowledge to understand them.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented our methodology to automate
the comparison of performance counters across tests. Our
methodology uses Principal Component Analysis, a
statistical technique, which achieves an 88% reduction in
performance counter data set. In load test of an enterprise
system a domain expert can uncover important performance
counters and calculate performance gains/loss. However, in
such large environments domain experts are usually busy or
hard to find. Our methodology is not a substitute for domain
experts however it can guide the performance analyst and
domain expert when new features are added into
application/system resulting into new performance counters
produced during load test. A large case study on a real-world
industrial software system provides empirical evidence on
the ability of our methodology to uncover the discrepancy in
performance among load tests.

In future work, we plan to compare our DR methodology
i.e., principal component with other DR techniques such as
factor analysis and Naive bayes classifiers. We also plan to
strengthen our methodology to identify anomalous behavior
of an application during load test.

ACKNOWLEDGMENTS

We are grateful to Research In Motion (RIM) for providing

access to the enterprise applications used in our case study.

The findings and opinions expressed in this paper are those

of the authors and do not necessarily represent or reflect

those of RIM and/or its subsidiaries and affiliates.

Moreover, our results do not in any way reflect the quality

of RIM‟s software products.

REFERENCES

[1] Avritzer. A., Larson. B., “Load testing software using

deterministic state testing”, In Proceedings of the ACM

SIGSOFT international symposium on Software, 1993.

[2] Beizer. B., “Software System Testing and Quality

Assurance”‟ Van Nostrand Reinhold, March 1984.

[3] Box. M. J., Box. R. M., “Computation of the Variance

Ratio Distribution”, The Computer Journal,

pp. 277-278, 1969.

[4] Brace, N., Kemp, R., Snelgar, R., “SPSS for

Psychologists: Palgrave Macmillan”, 2003.

[5] Bruce Thompson., “Exploratory and Confirmatory Factor

Analysis: Understanding Concepts and Applications”,

ISBN: 1-59147-093-5.

[6] Chatterjee, C., Roychowdhury, V.P., Ramos, J., and

Zoltowski, M.D., "Self-organizing algorithms for

generalized eigen-decomposition," Neural Networks

IEEE Transactions, vol.8, no.6, pp.1518-1530, Nov 1997.

[7] Cohen, I., Zhang, S.,. Goldszmidt, M., Symons, J., Kelly,

T., “Capturing, indexing, clustering, and retrieving system

history”, In Proceedings of the twentieth ACM

symposium on Operating systems principles, 2005.

[8] Hair, J.F., Jr.l Anderson, R. E.; Tatham, R. L.; and Black,

W. C. (1998). “Multivariate data analysis with readings”,

5th ed.. Englewood Cliffs, NJ: Prentice-Hall.

[9] Huck, K.A.; Malony, A.D., "PerfExplorer: A Performance

Data Mining Framework For Large-Scale Parallel

Computing," Supercomputing, 2005. Proceedings of the

ACM/IEEE SC 2005 Conference, vol., no., pp. 41-41,

2005.

[10] Jiang, Z. M., Hassan, A. E., “Automatic identification of

load testing problems”. In Proceedings of the 24th IEEE

International Conference on Software Maintenance

(ICSM), 2008.

[11] Jiang, Z. M., Hassan, A. E., Hamann, G., Flora, P.,

Automated Performance Analysis of Load Tests. In

Proceedings of the 25th IEEE International Conference on

Software Maintenance (ICSM) 2009, Edmonton, Canada,

September 20-26, 2009.

[12] Jolliffe IT., “Principal Component Analysis”, Second

Edition. New York, Springer-Verlag; (Springer Series in

Statistics), 2002.

[13] Kaiser, H. F., "An Index of Factorial Simplicity,"

Psychometrika, vol. 39, pp. 31-36, 1974.

[14] Lendasse, A., Lee, J., Bodt, E.d., Wertz, V. and Verleyen,

M., “Input Data Reduction for the Prediction of Financial

Time series”, 2000.

[15] M.W. Knop, J.M. Schopf and P.A. Dinda, “Windows

performance monitoring and data reduction using watch

tower”, Workshop on Self-Healing, Adaptive and self-

MANaged Systems (SHAMAN), 2002.

[16] May, J. M., “Software for multiplexing hardware

performance counters in multithreaded programs”.

Proceedings of 2001 International Parallel and Distributed

Processing Symposium, April 2001.

[17] Mendes, C.L. and Reed, D.A., “Monitoring Larger

Systems Via Statistical Sampling”, Proceedings of the

LACSI Symposium, Santa Fe, 2002.

[18] Montanelli, R.G. Jr., and Humphreys, L. G., “Latent roots

of random data correlation matrices with squared multiple

correlations on the diagonal: A monte carlo study”,

Psychometrika , pp. 341–348, 1976.

[19] Nickolayev, O.Y., Roth, P.C. and Reed, D.A., “Real-Time

Statistical Clustering For Event Trace Reduction”, The

International Journal of Supercomputer Applications and

High Performance Computing, pp 144-159, 1997.

[20] Parets, J., and Torres, J.C., "Software Maintenance

versus Software Evolution: An Approach to Software

Systems Evolution", Workshop on Engineering of

Computer Based Systems (ECBS'96), pp. 134, 1996.

[21] Qu, Y., Adam, B.l., Thornquist, M., Potter, J.D.,

Thompson, M.L., Yasui, Y., Davis, J., Schellhammer, P.,

Cazares, L., Clements, M., Jr., G.L.W. and Feng, Z.,

“Data Reduction Using a Discrete Wavelet Transform in

Discriminant Analysis of Very High Dimensionality

Data”, Biometrics, 2003.

[22] Raubenheimer, J. E., “An item selection procedure to

maximize scale reliability and validity”. South African

Journal of Industrial Psychology, 30 (4), 59-64, 2004.

[23] Reed, D.A., Aydt, R.A., Noe, R.J., Roth, P.C., Shields,

K.A., Schwartz, B.W. and Travera, L.F., “Scalable

Performance Analysis: The pablo Performance Analysis

Environment”. Proceedings of the Scalable Parallel

Libraries Conference, 1993.

[24] Ringberg, H., Soule, A., Rexford, J., Diot, C., “Sensitivity

of PCA for traffic anomaly detection”, In ACM

SIGMETRICS,San Diego, CA, USA, 2007.

[25] Sandeep, S. Ratna., Swapna, M, Thirumale Niranjan., Sai

Susarla., Siddhartha Nandi., “CLUEBOX: A Performance

Log Analyzer for Automated Troubleshooting”‟ WASL,

2008.

[26] Schwartz. Jeffry. A., “Utilizing performance monitor

counters to effectively guide windows and SQL server

tuning efforts”‟, pp. 933-944, 2006.

[27] Sébastien Lê., Julie J., François Husson., “FactoMineR:

An R Package for Multivariate Analysis”, Journal of

Statistical Software, pp.1-18, 2008.

[28] Sprunt, B., "The basics of performance-monitoring

hardware," Micro, IEEE , vol.22, no.4, pp. 64-71, Jul

2002.

[29] Thakkar, D., Hassan, A.E Hamann, G., Flora, P., “A

framework for measurement based performance

modeling”. In WOSP ‟08: Proceedings of the 7th

international workshop on Software and performance,

pages 55–66, New York, NY, USA, 2008.

[30] The R Foundation for Statistical Computing., “R Project

for Statistical Computing”‟ http://www.r-project.org,

2007.

[31] Yoccoz, N.G., J. D. Nichols and Boulinier, T.,

“Monitoring of Biological Diversity in space and time,

Trends in Ecology and Evolution”, 2001.

[32] Rencher, A. C. Methods of Multivariate Analysis. Wiley,

New York, 1995.

[33] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.

When is “nearest neighbor” meaningful? In Lecture Notes

in Computer Science, volume 1540, pages 217–235, 1999.

[34] A. Hinneburg, C. Aggarwal, and D. Keim. What is the

nearest neighbor in high dimensional spaces? In The

VLDB Journal, pages 506–515, 2000.

[35] B. Milenova and M. Campos. O-cluster: Scalable

clustering of large high dimensional data sets. Oracle

Corporation, 2002.

[36] Limitations of Maximum Likelihood Estimation

Procedures When a Majority of the Observations Are

Below the Limit of Detection Ram B. Jain, Richard Y.

Wang Analytical Chemistry 2008 80 (12), 4767-4772

[37] Ahn. D., and J. Vetter., „Scalable analysis techniques for

microprocessor performance counter metrics‟. In

Proceedings of Supercomputing, 2002.

http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/n/Niranjan:Thirumale.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/n/Nandi:Siddhartha.html
http://www.informatik.uni-trier.de/~ley/db/conf/osdi/wasl2008.html#SandeepSNSN08
http://www.informatik.uni-trier.de/~ley/db/conf/osdi/wasl2008.html#SandeepSNSN08
http://www.informatik.uni-trier.de/~ley/db/conf/cmg/cmg2006.html#Schwartz06

