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Abstract

MANY software systems must be load tested to ensure that they can scale up un-

der high load while maintaining functional and non-functional requirements.

Studies show that field problems are often related to systems not scaling to

field workloads instead of feature bugs. To assure the quality of these systems, load testing

is a required testing procedure in addition to conventional functional testing procedures,

such as unit and integration testing. Current industrial practices for checking the results

of a load test remain ad-hoc, involving high-level manual checks. Few research efforts are

devoted to the automated analysis of load testing results, mainly due to the limited access

to large scale systems for use as case studies. Approaches for the automated and systematic

analysis of load tests are needed, as many services are being offered online to an increasing

number of users. This dissertation proposes automated approaches to assess the quality of

a system under load by mining some of the recorded load testing data (execution logs).

Execution logs, which are readily available yet rarely used, are generated by output state-

ments which developers insert into the source code. Execution logs are hard to parse and

analyze automatically due to their free-form structure. We first propose a log abstraction

approach that uncovers the internal structure of each log line. Then we propose auto-

mated approaches to assess the quality of a system under load by deriving various models

(functional, performance and reliability models) from the large set of execution logs. Case

studies show that our approaches scale well to large enterprise and open source systems

and output high precision results that help load testing practitioners effectively analyze the

quality of the system under load.
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CHAPTER 1

Introduction

1.1 Motivation

M
ANY SYSTEMS ranging from e-commerce websites to telecommunication infras-

tructures must support concurrent access by thousands or millions of users.

Studies show that many problems reported in the field are not related to fea-

ture bugs, but to systems not scaling well to field workloads [38, 242]. The inability to

scale causes catastrophic failures and unfavorable media coverage. Today, there are many

instances of service providers not fully load testing or planning their resources carefully for

heavy traffic before the launch of their new products (e.g., MobileMe [27]) or new releases

(e.g., Firefox website [7]).

The goal of a load test is to assess the quality of a system under load. The objective of

analyzing a load test is to assess and quantify the quality of a system under load. The quality

assessment involves activities like checking the results of a load test to detect functional and

non-functional problems (e.g., performance) or to provide an overall estimate on the system

quality under load (e.g., reliability). Analyzing the results of a load test is difficult, due to

1
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the following challenges:

1. No Documented System Behavior: Correct and up-to-date documentation of the

behavior of a system rarely exists [212].

2. Monitoring Overhead: Monitoring or profiling a system has a high overhead on a

system and is not suitable for a load test.

3. Time Pressure: Load testing is usually the last step in an already delayed release

schedule. The time allocated to analyze a test is even more limited, as running a load

test usually takes a long time.

4. Large Volume of Data: A load test records metrics and logs that are usually hundreds

of megabytes or even larger. This data must be analyzed thoroughly to uncover any

problems in the load test making in-depth manual analysis not feasible.

Below we briefly describe the related research and practices on load testing:

1.1.1 State of Research on the Analysis of Load Testing Results

Unlike functional testing (e.g., unit testing or integration testing), which focuses on testing

a system based on a small number of users, load testing studies the behavior of a system

by simulating thousands or millions of users performing tasks at the same time. A typical

load test uses one or more load generators that simultaneously send requests to the system

under test. A load test can last from several hours to a few days, during which system

behavior data like execution logs and various metrics are collected. Execution logs record

software activities (e.g., “User authentication successful”) and errors (e.g., “Fail to retrieve

customer profile”). Execution logs are generated by debug statements that developers insert

into the source code to record the run time behavior of the system under test. Metrics can

be functional-related (e.g., number of passed/failed requests) or performance-related (e.g.,

resource usage information like CPU utilization, memory, disk I/O and network traffic or
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the end-to-end response time). Some metrics are collected periodically by monitoring tools

like PerfMon [21] (for the resource usage metrics). Some other metrics are collected at the

end of the tests (e.g., number of passed or failed requests).

A load test consists of three phases: (1) designing a proper load, (2) executing a load

test, and (3) analyzing the results of a load test. Most existing load testing research focuses

on the first two phases [153]. There is very few work on systematic approaches to automati-

cally analyze the load testing data for assessing the quality of a system under load. Yet, load

testing analysis is an important problem, as many field problems are load-related [242]. It

would be preferable that load-related problems can be caught early on (i.e., before the

system is deployed in the field).

We believe that the current limited research on load testing analysis is mainly due to

two reasons: first, there is limited access to large scale multi-user systems and load testing

infrastructure, as many of such systems are developed in-house in commercial settings.

Second, scalability is not as big of a concern for most prototype systems developed by

researchers. However, as more and more services are offered in the cloud for millions of

users, research on the analysis of load testing results has become essential.

1.1.2 State of Industrial Practices on the Analysis of Load Testing Results

Current industrial practices for load testing analysis remain ad-hoc, involving high-level

manual checks due to the large volume of resulting system behavior data (execution logs

and metrics).

– Analyzing Functional Behavior Under Load

Load testing practitioners first check whether the system has crashed, restarted or

hung during the load test. Then, they perform a more in-depth analysis by grepping

through the log files for specific keywords like “failure” or “error”. Load testing practi-

tioners analyze the context of the matched log lines to determine whether these lines
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indicate problems or not.

There are two limitations in current practices for checking functional correctness:

First, not all log lines containing terms like “error” or “failure” are worth investigating.

A log such as “Failure to locate item in the cache” is likely not a bug. Second, not all

errors are indicated in the log file using the terms “error” or “failure”. For example,

even though the log line “Internal queue is full” does not contain the words “error”

or “failure”, it might be worthwhile investigating, as newly arriving items are possibly

being dropped.

– Analyzing Non-Functional Behavior Under Load

The main focus of non-functional quality-related analysis is to ensure that the system

performance under load is satisfactory. Load testing practitioners first use domain

knowledge to check the average response time of a few key scenarios. Then, load

testing practitioners examine performance metrics for specific patterns (e.g., memory

leaks). Finally, they compare these performance data with prior releases to assess

whether there are significant increases in the utilization of system resources.

We believe that current practices of non-functional analysis are not efficient, since

it takes hours of manual analysis. Current practices are sufficient either for the fol-

lowing three reasons: First, checking the average response time does not provide a

complete picture of the end user experience, as it is not clear how the response time

evolves over time or how response time varies according to load. Second, merely

reporting symptoms like “system is slowing down” or “high resource utilization” does

not provide enough context for developers to reproduce and diagnose the problems.

Third, other non-functional quality-related aspects (e.g., reliability) are not assessed.
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1.2 Research Hypothesis

Two types of artifacts are recorded during a load test: execution logs and metrics. In this

thesis, we focus on mining the collected execution logs to assess the quality of a system

under load. We focus on execution logs rather than metrics for two reasons:

1. Availability: Execution logs are widely available both in the testing and field en-

vironment for large enterprise systems, as logs are used to support problem diag-

nosis [124], remote issue resolution [250] and to cope with legal acts such as the

“Sarbanes-Oxley Act of 2002” [23].

2. Lack of Research: Compared to the work done in automated analysis of metrics

from load tests [115, 185, 186, 187, 210], there is little work dedicated to analyzing

execution logs to uncover load-related problems [153].

Our underlying research hypothesis is as follows:

�




�

	

Historical load test repositories, which consists of execution logs from prior load testing, con-

tain valuable, readily available and rarely explored information for the effective and automated

analysis of load test results.

The goal of this thesis is to show the validity of this hypothesis through studying histor-

ical load test repositories to assess the quality of a system under load. This thesis will be

useful for load testing practitioners and software engineering researchers with interest in

testing large scale software systems.

1.3 Thesis Overview

In this section, we present an overview of the works presented in this thesis. This thesis

has five main chapters. Since each chapter is geared towards a specific problem, we aim
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to make each chapter self-contained, so that readers can read each chapter independently

based on their interests. Therefore, despite our efforts to minimize the repetitions in each

chapter, some repetition may exist between the various chapters. Related works to each

specific problem are examined in the corresponding chapter of the thesis.

– Chapter 2: A Survey on Load Testing Large Scale Software Systems

Unlike many other software testing mechanisms which focus on testing the system

based on a small number (one or two) of users; load testing examines the system’s

behavior based on concurrent access by a large number (thousands or millions) of

users. In this chapter, we survey the state of the art literature on load testing research

and practice. We compare and contrast current techniques used in the three phases of

a load test: (1) designing a proper load, (2) executing a load test, and (3) analyzing

the results of a load test. We find that very little test analysis work has been proposed,

especially on automated analysis of large volume of load testing data to assess the

quality of a system under load.

Based on this finding, we explore our research hypothesis in the following four chap-

ters as illustrated in Figure 1.1.

– Chapter 3: Automated Abstraction of Execution Logs

Execution logs, generated by output statements that developers insert into the source

code, usually use ad-hoc non-standardized logging formats. Automated analysis of

such logs is complex due to the loosely-defined structure and a large non-standardized

vocabulary of words. The large volume of logs, produced by large software systems,

limits the usefulness of manual analysis techniques. Thus, automated techniques are

needed to uncover the structure of execution logs. Using the uncovered structure,

sophisticated analysis (e.g., statistical or artificial intelligence based analysis), which

usually operates on the abstracted data, can be performed. In this chapter, we propose
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Figure 1.1: Our Approach for Automated Analysis of Load Testing Results

a log abstraction technique that recognizes the execution event of each log line. Using

the recovered execution events, log lines can be easily summarized and categorized to

help comprehend and investigate the complex behavior of large software applications.

As a system handles concurrent client requests, log lines from different scenarios are

intermixed with each other in the execution logs. In the next three chapters, we

use different abstract representations (i.e., event pairs, event sequences and system

states) for scenarios formed by the execution events to assess various aspects of the

system quality under load (i.e., functional, performance and reliability).

– Chapter 4: Automated Detection of Functional Problems

Functional problems in a load test can be caused by problems in the load environ-

ment, the load generators, or the application under test. It is important to identify and

address these problems to ensure that load testing results are correct and that these

problems are resolved before field deployment. It is difficult to detect functional prob-

lems in a load test due to the large amount of data that must be examined. Current
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industrial practices mainly involve time-consuming manual checks which, for exam-

ple, grep the logs of the application for error messages. In this chapter, we present an

approach, which mines the execution logs of an application to uncover the dominant

behavior (i.e., the expected behavior) for the application and flags anomalies (i.e.,

deviations) from the dominant behavior.

– Chapter 5: Automated Detection of Performance Problems

Performance problems in a load test refer to the situations where a system suffers

from unexpectedly high response time or low throughput. It is difficult to detect

performance problems in a load test due to limited in-depth knowledge of system be-

havior, the absence of formally-defined performance objectives and the large amount

of data that must be examined. In addition, we cannot derive the dominant perfor-

mance behavior from just one load test as we did in the previous chapter: while the

non-constant load would still lead to consistent sequences of events, it does not lead

to consistent response time throughput a test. A typical workload, which is applied

across load tests, usually consists of periods simulating peak usage and periods simu-

lating off-hours usage. In this chapter, we present an approach, which automatically

analyzes the execution logs of a load test by systematically comparing against prior

tests in order to uncover performance problems.

– Chapter 6: Automated Estimation of System Reliability

In previous chapters, we analyze the results of load tests to detect functional and

non-functional problems. In this chapter, we use data from several prior runs to

obtain an overall quality index. Software reliability is defined as the probability of

failure-free operation for a period of time, under certain conditions. The reliability

under field load is an important concern for the deployment of large scale mission-

critical systems. Reliability estimates must be produced whenever a new version of
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a mission-critical system is released. These reliability estimates help customers de-

termine whether a system meets their reliability requirements. However, the general

software reliability estimates provided are usually derived from synthetic benchmark

workload runs, which is not representative of the actual field usage. An accurate field

reliability estimate needs to incorporate data from the actual customer field usage and

the system failure scenarios. In this chapter, we propose an approach, which estimates

system reliability based on mining the repository of execution logs.

1.4 Thesis Contributions

The major contributions of this thesis are:

1. A Systematic Survey of the State of Research in Load Testing

We present a survey of the state of the art literature on load testing research. To

the best of our knowledge, we are the first to systemically compare and contrast

the techniques used in all three phases of a load test: (1) designing a load test, (2)

executing a load test, and (3) analyzing the results of a load test.

2. Approaches for Abstracting Execution Logs

The abstracted execution events form the basis of enabling the automated analysis of

execution logs. Our log event abstraction and sequence recovery techniques can also

be used for other types of research like mining customer profiles [231], or analyzing

the evolution of software systems [220].

3. A General Methodology for the Automated Analysis of the Quality of a System

under Load

We propose methods to infer functional, performance and reliability models from the

large volume of load testing data. These methods can be used to systematically assess
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the quality of a system under load. Some of our research results (Chapters 3, 4, and 5)

are already adopted in practice.

1.5 Thesis Organization

This thesis is organized as follows: Chapter 2 presents our survey on load testing large scale

software systems. Chapter 3 explains our log abstraction approach. Chapters 4 and 5 de-

scribe our automated approaches for detecting functional and performance problems under

load, respectively. Chapter 6 explains our automated approach for estimating the reliability

of a system. Chapter 7 concludes the thesis and outlines avenues for future work.



CHAPTER 2

A Survey on Load Testing Large Scale Software Systems

Many software systems must service thousands or millions of concurrent requests. These systems
must be load tested to ensure that they can function correctly under load (the rate of the requests
submitted to a system). In this chapter, we survey the state of the art literature on load testing
research. We compare and contrast current techniques used in the three phases of a load test: (1)
designing a proper load, (2) executing a load test, and (3) analyzing the results of a load test. We
find that very little work is done on the analysis of load testing results, especially on automated
analysis of large volume of load testing data to assess the quality of a system under load.

2.1 Introduction

M
ANY SYSTEMS ranging from e-commerce websites to telecommunication infras-

tructures must support concurrent access from thousands or millions of users.

Studies show that failures in these systems tend to be caused by inability to

scale to meet user demands, as opposed to feature bugs [38, 242]. The failure to scale

results in catastrophic failures and unfavorable media coverage (e.g., the meltdown of the

Firefox website [7] and the botched launch of Apple’s MobileMe [27]). To ensure the qual-

ity of these systems, load testing is a required testing procedure in addition to conventional

functional testing procedures, like the unit testing and integration testing.

A large scale software system contains thousands or millions of lines of code and possibly

11
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many commercial off-the-shelf components interacting with each other. It is challenging to

ensure the quality of such systems, and careful and rigorous cycles of software testing (e.g.,

unit testing, integration testing, configuration testing and load testing) are required.

This chapter surveys the state of the art literature in load testing research. This survey

will be useful for load testing practitioners and software engineering researchers with inter-

ests in testing and analyzing large scale software systems. Unlike functional testing, where

we have a clear objective (pass/fail criteria), load testing can have one or more functional

and non-functional objectives. Based on the typical three phases of load testing illustrated

in Figure 2.1, we proposed the following three research questions:

1. How is a proper load designed?

The Load Design phase defines the load that will be placed on the system during test-

ing based on the test objectives (e.g., detecting functional and performance problems

under load). There are two main schools of load designs: (1) designing a realistic

load, which simulates a load that may occur in the field; or (2) designing a fault-

inducing load, which may expose load-related problems. Once the load is designed,

some optimization and reduction techniques could be applied to further improve var-

ious aspects of the load (e.g., reducing the duration of a load test). In this research

question, we will discuss various load test case design techniques and explore load

design optimization and reduction techniques.

2. How is a load test executed?

In this research question, we will explore the techniques and practices used in the

Load Test Execution phase. There are three different test execution approaches: (1)

using live-users to manually generate load, (2) using load drivers to automatically

generate and terminate load, and (3) deploying and executing the load test on special

platforms (e.g., a platform which enables deterministic test executions). The Load

Test Execution phase can be further broken down into three aspects: (1) setup, which
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includes deploying the system and configuring the test infrastructure and the test envi-

ronment, (2) generating the load and terminating the load once the test is completed,

and (3) monitoring the test and recording system behavior to be analyzed in the test

analysis phase. The three load test execution approaches share some commonalities

and differences in the aforementioned three aspects.

3. How are the results of a load test analyzed?

The system behavior recorded during the test execution phase needs to be analyzed

to determine if there are any load-related functional or non-functional problems in

the Load Test Analysis phase. There are three general load test analysis approaches:

(1) verifying against known thresholds (e.g., detecting system reliability problems),

(2) checking for known problems (e.g., memory leak detection), and (3) inferring

anomalous system behavior.

The structure of this chapter is organized as follows: Section 2.2 provides a background

about load testing. Then, based on the flow of a load test, we discuss the techniques

used in designing a load (Section 2.3), in executing a load (Section 2.4), and in analyzing

the results of a load test (Section 2.5), respectively. Section 2.6 concludes our survey.

Appendix A describes our paper selection process.

2.2 Background

Contrary to functional testing, which has clear testing objectives (pass/fail criteria), Ho et

al. [145, 146] found that load testing objectives (e.g., performance requirements) are not

clear in the early development stages and are often defined later on a case-by-case basis.

There are many different interpretations of load testing, both in the context of academic

research and industrial practices (e.g., [53, 67, 126, 190]). In addition, the term load

testing is often used interchangeably with two other terms: performance testing (e.g., [103,
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191, 192]) and stress testing (e.g., [66, 67, 247]). In this section, we provide a definition

of load testing by contrasting among various interpretations of load, performance and stress

testing.

2.2.1 Definitions of Load Testing, Performance Testing and Stress Testing

Table 2.1 outlines the interpretations of load testing, performance testing and stress testing

in the existing literature. The table breaks down various interpretations of load, perfor-

mance and stress testing along the following dimensions:

– Objectives refer to the goals that a test is trying to achieve (e.g., detecting perfor-

mance problems under load);

– Stages refer to the applicable software development stages (e.g., design, implemen-

tation or testing), when these tests occur;

– Terms refer to the terminologies used in the relevant literature (e.g., load testing and

performance testing);

– Is It Load Testing? indicates whether we consider such cases (performance or stress

testing) to be load testing based on our definition of load testing. The criteria for

deciding load, performance and stress testing is presented later (Section 2.2.2).

We find that these three types of testing share some common aspects, yet they have their

own area of focuses. In the rest of this section, we first summarize the various definitions

of the testing techniques. Then we illustrate their relationship with respect to each other.

Finally, we present our definition of load testing. Our load testing definition unifies the

existing load testing interpretations as well as performance testing and stress testing works,

which are also about load testing.
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Table 2.1: Interpretations of Load Testing, Performance Testing and Stress Testing

Objectives Stages Terms Is It
Load

Testing?

Detecting functional prob-
lems under load

Testing (After Conven-
tional Functional Test-
ing)

Load Testing [31, 40, 48, 54, 55, 62,
63, 103, 150, 177, 247, 219, 253],
Stress Testing [39, 58, 77, 131, 150,
206, 247]

Yes

Detecting performance
problems under load

Testing (After Conven-
tional Functional Test-
ing)

Load Testing [53],
Performance Testing [53, 238, 242],
Stress Testing [87, 161, 251] Yes

Detecting reliability prob-
lems under load

Testing (After Conven-
tional Functional Test-
ing)

Load Testing [48, 53, 54, 55, 161],
Reliability Testing [53]

Yes

Detecting stability prob-
lems under load

Testing (After Conven-
tional Functional Test-
ing)

Load Testing [53],
Stability Testing [53]

Yes

Detecting robustness prob-
lems under load

Testing (After Conven-
tional Functional Test-
ing)

Load Testing [53],
Stress Testing [39, 53]

Yes

Measuring and/or evaluat-
ing system performance un-
der load

Implementation Performance Testing [141, 142, 143,
144]

Maybe

Testing (After Conven-
tional Functional Test-
ing)

Performance Testing [52, 60, 74, 125,
126, 190, 191, 192, 197, 215, 245],
Load Testing [191, 196],
Stress Testing [86, 161, 171, 172,
251, 252]

Maybe

Maintenance (Regres-
sion Testing)

Performance Testing [166], Regres-
sion Benchmarking [79, 160]

Maybe

Measuring and/or evalu-
ating system performance
without load

Testing (After Conven-
tional Functional Test-
ing)

Performance Testing [84, 85]

No

Measuring and/or evaluat-
ing component/unit perfor-
mance

Implementation Performance Testing [158]

No

Measuring and/or evaluat-
ing various design alterna-
tives

Design Performance Testing [56, 94, 101,
102], Stress Testing [120, 119, 121,
122] No

Testing (After Conven-
tional Functional Test-
ing)

Performance Testing [76]

No

Measuring and/or evaluat-
ing system performance un-
der different configurations

Testing (After Conven-
tional Functional Test-
ing)

Performance Testing [147, 215, 224]

No



CHAPTER 2. A SURVEY ON LOAD TESTING LARGE SCALE SOFTWARE SYSTEMS 17

2.2.1.1 Load Testing

Load testing is the process of assessing the quality of a system under load in order to detect

load-related problems. The rate at which different service requests are submitted to the sys-

tem under test (SUT) is called the load [69]. Load testing uncovers load-related functional

problems (e.g, such as deadlocks, racing, buffer overflows and memory leaks [55, 62, 63])

and non-functional problems (e.g., high response time and low throughput [62, 63]).

Load testing is conducted on a system (either a prototype or a fully functional systems)

rather than on a design or an architectural model. In the case of missing non-functional

requirements, the pass/fail criteria are usually derived based on the “no-worse-than-before”

principle. The “no-worse-than-before” principle states that the non-functional requirements

of the current version should be at least as good as the previous versions [150]. Depending

on the objectives, the load can vary from a normal load (the load expected in the field when

the system is operational [55, 161]) or a stress load (higher than the expected normal load)

to uncover functional or non-functional problems [253].

2.2.1.2 Performance Testing

Performance testing is the process of measuring and/or evaluating performance related

aspects of a software system. Examples of performance related aspects include response

time, throughput and resource utilizations [62, 63, 128].

Performance testing can focus on parts of the system (e.g., unit performance testing [158]

or GUI performance testing [41]), or on the overall system [62, 63, 215]. Performance test-

ing can also study the efficiency of various design/architectural decisions [94, 101, 102],

different algorithms [84, 85] and various system configurations [147, 215, 224].

Contrary to load testing, the objectives of performance testing are broader. Performance

testing (1) can verify performance requirements [215] or in case of absent performance
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requirements, the pass/fail criteria are derived based on the “no-worse-than-previous” prin-

ciple [150] (similar to load testing); or (2) can be exploratory (no clear pass/fail criteria).

For example, one type of performance testing aims to answer the what-if questions like

“what is system performance if we change this software configuration option or if we in-

crease the number of users?” [194, 195, 197, 215].

2.2.1.3 Stress Testing

Stress testing is the process of putting a system under extreme conditions to verify the ro-

bustness of the system and/or to detect various load-related problems (e.g., memory leaks

and deadlocks). Examples of such conditions can either be load-related (putting system

under normal [87, 161, 251] or extreme heavy load [103, 150, 161, 177]) or limited com-

puting resources or failures (e.g. disk full or database failure) [40]. In other cases, stress

testing is used to evaluate the efficiency of software designs [120, 119, 121, 122].

2.2.2 Relationships Between Load Testing, Performance Testing and Stress

Testing

Our unified definition of load testing that is used in this survey is as follows:

�

�

�

�

Load testing is the process of assessing system behavior under load in order to detect load-

related problems due to one or both of the following reasons: (1) functional related problems

(i.e., functional bugs that appear only under load), and (2) non-functional quality related

problems under load (i.e., non-functional attributes that fail to meet the specified requirements

under load)

Comparatively, performance testing is used to measure and/or evaluate performance

related aspects (e.g., response time, throughput and resource utilizations) of algorithms,

designs/architectures, modules, configurations, or the overall systems. Stress testing puts
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Figure 2.2: Relationships Among Load, Performance and Stress Testing

a system under extreme conditions (e.g., higher than expected load or limited computing

resources) to verify the robustness of the system and/or detect various functional bugs (e.g.,

memory leaks and deadlocks).

There are commonalities and differences among the three types of testing, as illustrated

in the Venn Diagram shown in Figure 2.2. We use an online e-commerce system as a

working example to demonstrate the relation across these three types of testing techniques.

1. Scenarios Considered as Both Load Testing and Performance Testing

The e-commerce system is required to provide fast response under load (e.g., millions

of concurrent client requests). Therefore, testing is needed to validate the system’s

performance under the expected field workload. Such type of testing is not considered

as stress testing as the testing load is only the expected field workload.

2. Scenarios Considered as Both Load Testing and Stress Testing

The e-commerce system must also be be robust under extreme conditions. For ex-

ample, this system is required to stay up even under bursts of heavy load (e.g., flash

crowd [191]). In addition, the system should be free of resource allocation bugs like

deadlocks or memory leaks [206].

This type of testing, which imposes a heavy load on the system to verify the system’s
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robustness and to detect resource allocation bugs, is considered as both stress testing

and load testing. Such testing is not performance testing as the testing objectives do

not include performance.

3. Scenarios Considered as Load Testing Only

Although this system is already tested manually using a few users to verify the func-

tional correctness of a service request (e.g., the total cost of a shopping cart is calcu-

lated correctly when the customer checks out), the same requests should be verified

under hundreds and millions of concurrent users.

The test, which aims to verify the functional correctness of a system under load is

considered only as a load test. This scenario is not performance testing, as the objec-

tive is not performance related; nor is this scenario considered as stress testing, as the

testing conditions are not extreme.

4. Scenarios Considered as Load, Performance and Stress Testing

This e-commerce website can also be accessed using smartphones. One of the require-

ments is that the end-to-end service request response time should be reasonable even

under poor cellular network conditions (e.g., packet drops and packet delays).

The type of test used to validate the system’s performance requirements under load,

given specific computing resources (e.g., network conditions), can be considered as

any of the three types of testing.

5. Scenarios Considered as Performance Testing and Stress Testing

Rather than testing the system performance after the implementation is completed.

The system architect may want to validate whether a compression algorithm can effi-

ciently handle large image files (processing time and resulting compressed file size).

Such testing is not qualified as load testing, as there is no load (concurrent access)

applied to the system.
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6. Scenarios Considered as Performance Testing Only

In addition to writing unit tests to check the functional correctness of their code, the

developers are also required to unit test the code performance. The test to verify the

performance of one unit/component of the system is considered only as performance

testing.

In addition, the operators of this e-commerce system need to know the system deploy-

ment configurations to achieve the maximal performance throughput and minimal

hardware costs. Therefore, performance testing should be carried out to measure the

system performance under various database or webserver configurations. The type of

test to evaluate the performance of different architectures/algorithms/configurations

is only considered as performance testing.

7. Scenarios Considered as Stress Testing Only

Developers have implemented a smartphone application for this e-commerce system

to enable users to access and buy items from their smartphones. This smartphone app

is required to work under sporadic network conditions. This type of test is considered

as stress testing, since the application is tested under extreme network condition. This

testing is not considered as performance testing, since the objective is not performance

related; nor is this scenario considered as load testing, as the test does not involve

load.

2.3 Research Question 1: How is a proper load designed?

The goal of the load design phase is to devise a load, which can uncover functional and/or

non-functional (quality related) problems under load. Based on the objectives, there are

two general schools of thought for designing a proper load to achieve such objectives:

1. Designing Realistic Loads
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As the main goal of load testing is to ensure that the system can function correctly once

it is deployed in the field, one school of thought is to design loads, which resemble

the expected usage once the system is operational in the field. If the SUT can handle

such loads without functional and non-functional issues, the SUT would have passed

the load test.

Once the load is defined, the SUT executes the load and the system behavior under

load is recorded. Load testing practitioners then analyze the system behavior to de-

tect problems. Test durations in such cases are usually not clearly defined and can

vary from several hours to a few days depending on the testing objectives (e.g., to

obtain steady state estimates of the system performance under load or to verify that

system is deadlock-free) and testing budget (e.g., limited testing time). There are two

approaches proposed in the literature to design realistic testing loads as categorized

in [172]:

(a) The Aggregate-Workload Based Load Design Approach

The aggregate-workload based load design approach aims to generate the in-

dividual target request rates. For example, an e-commerce system is expected

to handle three types of requests with different transaction rates: ten thousand

purchasing requests per second, three million browsing requests per second, and

five hundred registration requests per second. The resulting load, using the

aggregate-workload based load design approach, should resemble these trans-

action rates.

(b) The Use-Case Based Load Design Approach

The use-case (also called user equivalent in [172]) based approach is more fo-

cused on generating requests that are derived from realistic use cases. For ex-

ample, in the aforementioned e-commerce system, an individual user would al-

ternate between submitting page requests (browsing, searching and purchasing)
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and being idle (reading the web page or thinking). In addition, a user cannot

purchase an item before he/she logs into the system.

2. Designing Fault-Inducing Loads

Rather than waiting for the system behavior generated by a realistic load and trying

to dig through a large amount of data, another school of thought aims to design

loads, which are likely to cause functional or non-functional problems under load.

Compared to the realistic load design, the test duration using faulting-inducing loads

are usually deterministic and the test results are usually easy to analyze. The test

durations in these cases are the time taken for the system to enumerate through the

load or the time until the system encounters a functional or non-functional problem.

There are two approaches proposed in the literature:

(a) Deriving Fault-Inducing Loads by Analyzing the Source Code

This approach uncovers various functional and non-functional problems under

load by systematically analyzing the source code of the system. For example, by

analyzing the source code of the aforementioned e-commerce system, load test-

ing practitioners can derive load that exercises these potential functional (e.g.,

memory leaks) and non-functional (e.g., performance issues) weak spots under

load.

(b) Deriving Fault-Inducing Loads by Building and Analyzing System Models

Various system models abstract different aspects of system behavior (e.g., perfor-

mance models for the performance aspects). By systematically analyzing these

models, potential weak spots, which can lead to load-related problems are re-

ported. For example, load testing practitioners can build performance models in

the aforementioned e-commerce system, and discover load that could potentially

lead to performance problems (higher than expected response time).
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We introduce the following dimensions to compare among various load design tech-

niques as shown in Table 2.2:

– Techniques refer to the names of the load design techniques (e.g., step-wise load);

– Objectives refer to the goals of the load (e.g., detecting performance problems);

– Data Sources refer to the artifacts used in each load design technique. Examples of

artifacts can be past field data or operational profiles. Past field data could include web

access logs, which record the identities the visitors and their visited sites, and database

auditing logs, which show the various database interactions. An Operational Profile

describes the expected field usage once the system is operational in the field [55].

For example, an operational profile for an e-commerce system would describe the

number of concurrent requests (e.g., browsing and purchasing) that the system would

experience during a day. The process of extracting and representing the expected

workload (operational profile) in the field is called Workload Characterization [151].

The goal of workload characterization is to extract the expected usage from hundreds

or millions hours of user data. Various workload characterization techniques have

been surveyed in [82, 111, 151].

– Output refers to the types of output from each load design technique. Examples can

be workload configurations or usage models. Workload configuration refers to one set

of workload mix and workload intensity (covered in Section 2.3.1.1). Models refer to

various abstracted system usage models (e.g., the Markov chain).

– References refer to the list of literatures, which propose each technique.

Both load design schools of thought (realistic v.s. fault-inducing load designs) have their

advantages and disadvantages: In general, loads resulting from realistic-load based design

techniques can be used to detect both functional and non-functional problems. However,
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Table 2.2: Load Design Techniques

Techniques Objectives Data Sources Output References

Realistic Load Design - (1) Aggregate-Workload Based Load Design Approach
Steady Load

Detecting Functional
and Non-functional
Quality Related
Problems

Operational Profiles,
Past Usage Data

One Configuration of
Workload Mix and
Workload Intensity

[74, 223]

Step-wise Load Operational Profiles,
Past Usage Data

Multiple Configurations
of Workload Mixed and
Workload Intensities

[39, 43,
87, 114,
140, 200]

Extrapolated
Load

Beta-user Usage Data,
Interviewing Domain
Experts and Competi-
tions Data

One or More Configura-
tions of Workload Mixes
and Workload Intensities

[60, 218]

Realistic Load Design - (2) Use-Case Based Load Design Approach
Testing Loads
Derived from
UML Models

Detecting Functional
and Non-functional
Quality Related
Problems

UML Use Case Di-
agrams, UML Activ-
ity Diagrams, Opera-
tional Profile

UML Diagrams Tagged
with Request Rates

[95, 100,
239]

Testing Load
Derived from
Markov Models

Past Usage Data Markov Chain Models [64, 164,
192]

Testing Loads
Derived from
Stochastic
Form-oriented
Models

Operational Pro-
file, Business Re-
quirements, User
configurations

Stochastic Form-
oriented Models

[105,
183]

Fault-Inducing Load Design - (1) Deriving Load from Analyzing the Source Code
Testing Loads
Derived from
Data Flow
Analysis

Detecting Functional
Problems (memory
leaks)

Source Code Testing Loads Lead to
Code Paths with Memory
Leaks

[247]

Testing Loads
Derived from
Symbolic Exe-
cution

Detecting Functional
Problems (high
memory usage), Per-
formance Problems
(high response time)

Source Code, Sym-
bolic Execution Anal-
ysis Tools

Testing Loads Lead to
Problematic Code Paths
with Performance Prob-
lems

[253]

Fault-Inducing Load Design - (2) Deriving Load from Building and Analyzing System Models
Testing Loads
Derived from
Linear Pro-
grams

Detecting Perfor-
mance Problems
(audio and video not
in sync)

Resource Usage Per
Request

Testing Loads Lead
to Performance Prob-
lems (high response
time)

[251,
252]

Testing Loads
Derived from
Genetic Algo-
rithms

Detecting Perfor-
mance Problems
(high response time)

Resource Usage and
Response Time Per
Task

[133,
213]
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the test durations are usually longer and the test analysis is more difficult, as the load

testing practitioners have to search through large amounts of data for functional and non-

functional problems. Conversely, although loads resulting from fault-inducing load design

techniques take less time to uncover potential functional and non-functional problems, the

resulting loads usually only cover a small portion of the testing objectives (e.g., only the

performance requirements). Thus, there are load optimization and reduction techniques

proposed to mitigate the deficiencies of each load design technique.

This section is organized as follows: Section 2.3.1 covers the realistic load design tech-

niques. Section 2.3.2 covers the fault-inducing load design techniques. Section 2.3.3 dis-

cusses the test optimization and reduction techniques used in the load design phase. Sec-

tion 2.3.4 summarizes the load design techniques and proposes a few open problems.

2.3.1 Designing Realistic Loads

In this subsection, we discuss the techniques used to design loads, which resemble the real-

istic usage once the system is operational in the field. Section 2.3.1.1 and 2.3.1.2 cover the

techniques from the Aggregate-Workload and the Use-Case based load design approaches,

respectively.

2.3.1.1 Aggregate-Workload Based Load Design Techniques

Aggregate-workload based load design techniques characterize loads along two dimen-

sions: (1) Workload Intensity, and (2) Workload Mix:

– The Workload Intensity refers to the rate of the incoming requests (e.g., browsing,

purchasing and searching), or the number of concurrent users;

– The Workload Mix refers to the ratios among different types of requests (e.g., 30%

browsing, 10% purchasing and 60% searching).
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There are three load design techniques proposed to characterize loads with various

workload intensity and workload mix:

1. Steady Load

The most straightforward aggregate-workload based load design technique is to de-

vise a steady load, which contains only one configuration of the workload intensity

and workload mix throughout the entire load test [74]. A steady load can be inferred

from the past data or based on an existing operational profile. This steady load could

be the normal expected usage or the peak time usage depending on the testing objec-

tives. Running the SUT using a steady load can be used to verify the system resource

requirements (e.g., memory, CPU and response time) [223] and to identify resource

usage problems (e.g., memory leaks) [74].

2. Step-wise Load

A system in the field normally undergoes different load characteristics during a normal

day. There are periods of light usage (e.g., early in the morning or late at night),

normal usage (e.g., during the working hours), and peak usages (e.g., during lunch

time). It might not be possible to load test a system using a single type of steady load.

Steady-wise load design techniques would devise loads consisting of multiple types of

load, to model the light/normal/peak usage expected in the field.

Step-wise load testing keeps the workload mixes the same throughout the test, while

increasing the workload intensity periodically [39, 43, 87, 114, 140, 200]. Step-wise

load testing, in essence, consists of multiple levels of steady load. Similar to the

steady load approach, the workload mixes can be derived from the past field data or

an operational profile. The workload intensity varies from systems to systems. For

example, the workload intensity can be the number of users, the normal and peak

load usages, or even the amount of results returned from web search engines.
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3. Load Extrapolation Based on Partial or Incomplete Data

The steady load and the step-wise load design techniques require an existing opera-

tional profile or past field data. However, such data might not be available in some

cases: For example, newly developed systems or systems with new features have no

existing operational profile or past usage data. Also, some past usage data may not be

available due to privacy concerns. To cope with these limitations, loads are extrapo-

lated from the following sources:

– Beta-Usage Data

Savoia [218] proposes to analyze log files from a limited beta usage and to ex-

trapolate the load based on the number of expected users in the actual deploy-

ment field.

– Interviews With the Domain Experts

Domain experts like system administrators, who monitor and manage deployed

systems in the field, generally have a sense of system usage patterns. Barber [60]

suggests to obtain a rough estimate of the expected field usage by interviewing

such domain experts.

– Extrapolation from Using Competitors’ Data

Barber [60] argues that in many cases, new systems likely do not have beta pro-

gram due to limited time and budgets and interviewing domain experts might

be challenging. Therefore, he proposes an even less formal approach to charac-

terize the load based on checking out published competitors’ usage data, if such

data exists.

2.3.1.2 Use-Case Based Load Design Techniques

The main problem associated with the aggregate-workload based load design approach is

that the loads might not be realistic/feasible in practice, because the resulting requests
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might not reflect individual use cases. For example, although the load can generate one

million purchasing requests per second, some of these requests would fail due to invalid

user states (e.g., some users do not have items added to their shopping carts yet).

However, designing loads reflecting realistic use-cases could be challenging, as there

may be too many use cases available for the SUT. For example, continuing with our e-

commerce system example, different users can follow different navigation patterns: some

users may directly locate items and purchase them. Some users may prefer to check out a

few items before buying the items. Some other users may just browse the catalogs with-

out buying. It would not be possible to cover all the combinations of these sequences.

Therefore, various usage models are proposed to abstract the use cases from thousands and

millions of user-system interactions. In the rest of this subsection, we discuss three load

design techniques based on usage models.

1. Testing Loads Derived from UML Models

UML diagrams, like Activity Diagrams and Use Case Diagrams, illustrate detailed user

interactions in the system. One of the most straight forward use-case based load

design techniques is to tag load information on the UML Activity Diagram [95, 100]

and Use Case Diagram [239].

Realistic Usage Model (RUM) is derived from the UML Use Case Diagrams proposed by

Wang et al. [239]. Figure 2.3 illustrates the resulting loads for a web-based file system

from [239]. As shown in the Use Case Diagram: once a user logs into the system, this

user can perform one of four use cases: downloading files (“Download”), navigating

in that file system (“Navigate”), uploading more files (“Upload”), and deleting files

(“Delete”). Each of the above use cases consist of one or more steps. For example,

the “Navigate” use case only has one step and the “Delete” use case consists of three

steps: (1) navigating files in the folder, (2) deleting a file (files) in the folder, and (3)

navigating this folder again to verify the deletion. The number beside each of the four
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Definition 2.3.3 (End SESSION). These types of 
SESSIONs will be executed for only once as the last session 
during runtime. In most cases, sessions like “logout”, “sign 
off” are End SESSIONs. 
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SESSION also have some properties like name, 
description; and besides that, it has the properties “ratio” and 
“type”. “ratio” indicates the probability to execute current 
session during runtime and type indicates the type of current 
session.  

Definition 2.4 (SCENARIO). SCENARIO is measured 
from SPE’s [13] perspective, and it descripbes all the usage 
behaviors of single visitor in a simple way. It consists of 
branches of SESSIONs; at least one General SESSION is 
required for one SCENARIO. The following is the schema 
definition of SCENARIO in Z notation: 

],,|:,,[ˆ 11 nn ssSESSIONssSCENARIO =       (8) 

In web applications, SCENARIO is extracted and 
summarized from the behaviors of visitors; the following is a 
simple SCENARIO of a web-based file system, which is also 
listed in Fig. 3. This SCENARIO consists of 6 sessions, 4 of 
which are General SESSIONs. “Login” is the Start 
SESSION, “Logout” is the End SESSION, and they will 
only be executed for once during runtime. Visitor should first 
login this web-based file system and go to his (her) home 
directory. Then there are multiple choices for him (her) to 
choose, he (she) could probably navigation in this system, 
download files, upload files or delete files. The probability of 
choosing these branches is represented in the property “ratio” 
of SESSIONs. After repeating these 4 General SESSIONs 
for some times, this visitor will logout this system and 
terminate the SCENARIO. 

 
Figure 3.  Web-based file system in Realistic Usage Model.  

III. SIMULATE USERS’ BEHAVIOR 
As everyone knows, before doing the load testing of web 

application, we have to find some models to describe the 
SUT, these models should be easy to use, represent the 
users’ behaviors realistically, easy to be applied in workload 
model, flexible and scalable. 

Let’s start this section with those existing Usage Models. 
We introduced three popular Usage Models first, which will 

be detailed illustrated in Sect. 3.1, 3.2 and 3.3 with the same 
sample web application; and then, “Realistic Usage Model” 
is introduced and compared with the above models, which 
will be illustrated in Sect. 3.4. “Realistic Usage Model” 
represents users’ behaviors in a simple way, and it’s very 
easy to be implemented in engineering. 

A. User Community Modeling Language 
User Community Modeling Language (UCMLTM) is a set 

of symbols that can be used to create visual system usage 
models and depict associated parameters [15]. 

It consists of many symbols to represent the possible 
usage through the system. It supports multiple user types in a 
single UCML diagram; sequential series and braches are also 
supported in this model; what’s more, simple data support is 
also available in this model. The web-based file system is 
modeled with this model in Figure 4. 

 
Figure 4.  Web-based file system in UCML.  

“When applied to Load Testing these symbols can serve 
to represent the workload distributions, operational profiles, 
pivot tables, matrixes, and Markov chains that performance 
testers often employ to determine what activities are to be 
included in a test and with what frequency they’ll occur.” 
Scott Barber [15] said. Besides that, we can find that UCML 
has simple data support. But considering the implementation 
of UCML in engineering, it’s not that easy. And it doesn’t 
model the users’ behavior in Activity granularity, thus it 
cannot reuse the Activity in models. 

B.  Stochastic Formcharts 
Form-oriented analysis [16] is a methodology for the 

specification of ultra-thin client based systems. Form-
oriented models describe a web application as a typed, 
bipartite state machine which consists of pages, actions and 
transitions between them [4]. Stochastic Formcharts is the 
combination of Form-oriented model and probability 
features. The web-based file system is also modeled with this 
model in Figure 5. 
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Figure 2.3: Load Design Based on UML Models [191]

use cases is the likelihood that a user triggers that action. For example, a user is more

likely to navigate around (40% probability) than to delete a file (10% probability).

The sum of all probabilities from these four use cases is 1.

2. Testing Loads Derived from Markov-Chain Models

The problem with the UML-based testing load is that the UML Diagrams may not

be available or such information may be too detailed (e.g., hundreds of use cases).

Therefore, techniques are needed to abstract load information from other sources.

A Markov Chain, which is also called the User Behavior Graph [192], consists of a

finite number of states and a set of state transition probabilities between these states.

Each state has a steady state probability associated with it. If two states are connected,

there is a transition probability between these two states.

Markov Chains are widely used to generate load for web-based e-commerce applica-

tions [64, 164, 192], since Markov chains can be easily derived from the past field

data (web access logs [192]). Each entry of the log is a URL, which consists of the
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Figure 1 – Simplified Customer Behavior 
Model Graph (CBMG) for the Travel Site. 

Not all customers behave the same way when they 
visit a site. So, one must consider groups or clusters 
of sessions that represent customers with “similar” 
behavior. Table 2 shows some examples of types of 
sessions. Each type of session can be described by 
a CBMG that represents a common behavior of a 
group of users. 

Table 2 – Examples of Types of Sessions 
Home ⇒ Search ⇒ Exit 

Home ⇒ Search ⇒ Reserve Flight ⇒ Exit 

Home ⇒ Search ⇒ Reserve Flight ⇒  Book Flight 
⇒ Exit 

Home ⇒ View Reservation ⇒ Book Flight ⇒ Exit 

If we analyze a CBMG using the methods in [MA00], 
we can determine the average number of times per 
session that each state is visited. For example, for 
the CBMG of Fig. 1, we would have the following 
numbers: Home Page (1.00), Search Flight (1.0857), 
View Reservation (0.20), and Book Flight (0.0899). 
So, 8.99% of the visitors to our travel site end up 
booking a flight. 

It is also important to know how long a customer 
takes between transitions. For example, some 
customers may take 15 seconds on average to go 
from Search Flight into Reserve Flight while others 
may take 60 seconds to make the same transition. 
This is called the think time. It is important to 
incorporate this feature into the customer behavior 
model because of the impact it has on the site 
performance. As customers submit their requests 
faster, i.e., with smaller think time, a site has a 
higher arrival rate of requests to process. 

What if a customer submits a search request for a 
flight and the travel site takes 45 seconds to reply to 

the customer? Well, it is quite likely that the 
customer will no longer be there to see the result. 
The customer would have abandoned the session! 
How long are customers willing to wait for a page to 
download? The answer depends on the type of 
customer and on the type of page. An industry de 
facto standard of 8 seconds has been used as a 
threshold after which customers become frustrated 
and abandon a Web site. While customers may be 
less willing to wait for the result of a search request, 
they will tolerate longer waits when they are waiting 
for their selected fl ight to be booked. 

 3.4 IT Resource Level 
At this level one must consider the several IT 
resources, including hardware (e.g., server boxes, 
storage boxes, LAN segments, routers, and 
firewalls), software (e.g., operating systems, web 
servers, database management systems, ERP 
systems, transaction processing monitors, 
performance monitoring tools, capacity planning 
tools), and personnel (e.g., programmers, system 
analysts, system and network administrators, DBAs, 
performance analysts, capacity planners, Web 
content developers, and graphic designers). 

4. Three Key Activities in QoS Management 

Managing the QoS of Web-based applications 
requires a combination of three types of activities: 
benchmarking, testing, and application performance 
management (APM). These three activities involve 
performance measurement. What distinguish them is 
how these measurements are taken, when they are 
taken, where they are taken, and how and to whom 
they are reported. 

4.1 Benchmarking 
Benchmarking is a process used to compare the 
performance of a hardware and/or software system, 
called the system under test (SUT). An SUT could 
be a Web-based application. The following are 
important components of any benchmark: 

q  Workload specification: determines the type 
of requests and the frequency by which these 
requests are submitted to the SUT. Some 
benchmarks, such as TPC-W (www.tpc.org) 
specify a controlled environment in which all 
the requests submitted to the SUT come 
from a specified workload generation process 
[Menascé2001, Menascé2002b]. Others, 
such as Keynote Performance Benchmarks 
(e.g., Broker Trading, Business 40, 
Consumer 40, Government 40, Streaming, 
and Wireless SMS) generate requests in a 
realistic environment, in which other 

Figure 2.4: A Sample Markov Chain [191]

requested web pages and “parameter name = parameter value” pairs. Therefore, se-

quences of user sessions can be recovered by grouping sequences of request types be-

longing to the same session. Each URL requested becomes one state in the generated

Markov chain. Transition probabilities between states represent real user navigation

patterns, which are derived from the probabilities of one user clicking page B when

he/she is on page A.

Figure 2.4 shows a sample Markov Chain from [191]. Each state corresponds to a

particular web page in that system. This Markov Chain shows that each user starts at

the ”Home” page. Afterwards, the user is 20% likely to move to the View Reservation

page, 70% likely to move to the Search Flight page, and 10% likely to leave the site.

During the course of a load test, user action sequences are generated based on the

probabilities modeled in the Markov chain. The think time between each action is

usually generated randomly based on a probabilistic distribution (e.g., a normal dis-

tribution or exponential distribution) [164, 192]. As the probability in the Markov

chain only reflects the average behavior of a certain period of time, Barros et al. [64]

recommend the periodically updating of the Markov chain based on the field data in
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order to ensure that load testing reflects the actual field behavior.

3. Testing Load Derived from Stochastic Form-oriented Models

Stochastic Form-oriented Model is another technique used to model a sequence of

actions performed by users. Compared to the testing loads represented by the Markov

Chain models, a Stochastic Form-oriented model is richer in modeling user interactions

in web-based applications [105]. For example, a user login action can either be a

successful login and redirect to the overview page, or a failure login and redirect back

to the login page. Such user behavior is difficult to model in a Markov chain [105,

183].

A form-oriented model consists of pages, actions and transitions. Pages are sets of

screens, with different screens corresponding to different contents of a page. For ex-

ample, an Amazon welcome screen is displayed differently based on different user’s

preferences and purchasing history. Each page contains a number of forms and sub-

missions of these forms are called actions. Hyperlinks are like forms but with no

data fields. Transitions are directed edges between actions and pages. As opposed

to Markov chains, which assign probabilities to all states, probabilities in stochastic

form-oriented models are assigned only to transitions going from pages to actions.

There is no probability going from actions to pages, since the resulting webpage is the

consequence of user actions.

Figure 2.5 is an example of Stochastic Form-oriented Model of a web-based applica-

tion (from [105]). Ovals are pages (e.g., Login and Menu) and boxes are actions (e.g.,

Verify and Confirm Transfer). The probability of performing a Make Transfer action on

the Menu page is 20%. Edges from boxes to ovals do not have probabilities (e.g. from

the Verify action to the Login page), since probabilities in stochastic form-oriented

models are only assigned to transitions from pages to actions. The result of the Verify

action can be either directed to the Menu page (verification success) or back to the
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Figure 3. Simple stochastic formchart for the
home banking system.

load that is representative. To create a representative repe-
tition model requires a random sample of real user sessions
with a sufficient size. If this is not given, the model might
simply fail to cover the variety of possible input behaviour
well enough, which might result in flaws of the system re-
maining undetected. In contrast to that, load testing with
a stochastic model uses a randomized algorithm, which is
generally less prone to yield tendentious results.

If we have data about how many times each form has
been submitted, i.e., the total usage frequency of each form,
we can use this to approximate Pform. The probability of
a form to be chosen is set to the relative usage frequency,
i.e., the number of usages of that form divided by the sum
of the numbers of usages for all the forms on that page.
This neglects the effect of session history on Pform and
produces a stochastic formchart like the one in Fig. 3. In
this formchart all page-action transitions are annotated with
a transition probability, which reflects function Pform. At
each page, the probabilities of all outgoing transitions sum
up to 1 or possibly a bit less, with the remaining probability
reserved for abrupt termination of the session. The tran-
sitions from actions to pages are performed by the system
and therefore need no annotation. The problem of choosing
transition probabilities for similar stochastic models is also
discussed in [13, 27].

Such stochastic formcharts are similar to Markov chains,
but there is a subtle and important difference: while a
Markov chain creates a state machine with probabilities at
every transition, a stochastic formchart is a bipartite state
machine with probabilities only at the transitions going
from page to action. Which transition will be chosen from
action to a page is determined by the logic of the system,
which is well-defined. Consequently, it makes no sense for
load testing to model also this aspect stochastically and add
probabilities to the action-page transitions, too. We cannot
get rid of action-page transitions because an action can have

more than one outgoing transition, such as the action Verify.

3.3 History-Sensitive Stochastic Models

When we have samples of real user sessions and not just
unrelated usage frequencies, we are able to create an em-
pirical model that takes into account the effects of session
history on Pform. A good method to define Pform with the
help of this data is a decision tree (see, for example, [12]),
which captures the relation between past events and future
ones. Each path in the tree is a sequence of pages and ac-
tions, alternating, and represents a possible user session of
a certain length. If there are cycles in the original formchart
of a system, a corresponding decision tree can have arbi-
trary depth, and actions and pages of the original formchart
can occur multiple times. In the decision tree we distin-
guish these multiple occurrences of actions and pages by
giving them running indexes. All these actions and pages
with index but the same name correspond to a single action
or page in the original formchart.

Look, for example, at Fig. 4, which shows a possible
decision tree for our home banking system. The root of
the tree represents the state in which the system starts, i.e.,
page Login. Since it is the first occurrence of this page in
our tree, we add the index 1 to its name. There is only one
form on page Login, i.e., the form to enter account num-
ber and PIN. Logically, the probability that action Verify,
which is invoked by that form, is chosen is 1 (or a little
bit less if we would consider abrupt termination). The next
two outgoing transitions of Verify are action-page transi-
tions and therefore need no probability, as we have dis-
cussed in Sect. 3.2. The first of these transitions is cho-
sen by the system when the authentication failed and leads
back to page Login1. This page, Login1, is the same as the
root of our tree. Formcharts allow us to visually represent
actions and pages arbitrarily often, which can be good to
avoid ugly transition arrows crossing over the diagram. If
we want a page or action to have a certain transition, we
can add a corresponding arrow to any of its correspond-
ing bubbles/rectangles. The fact that there is a transition
from Verify1 back to Login1 signifies that if the system
chooses to go back to page Login, the user will, with re-
gard to Pform, behave stochastically just the same as when
he or she first entered the system at that page. This equiva-
lence of user behaviour also includes future behaviour, i.e.,
the probabilities of form choices on pages to come. We
need this recurrence to states in order to handle cycles in
the original formchart, which could not be represented with
a finite decision tree otherwise. On the arrows representing
the outgoing transitions of page Menu1 we see the prob-
abilities with which the user chooses different forms just
after he or she logged in. Let us have a closer look at what
happens when the user chooses the form that leads to ac-

4

Figure 2.5: An Example Stochastic Form-Oriented Model [105]. Pages are represented as
ovals and actions are represented as boxes.

Login page (verification failure).

Cai et al. [80, 81] propose a toolset that automatically generates a load for a web

application using a three-step process: First, the web site is crawled by a third party

web crawler and the website’s structural data is recovered. Then, their toolset lays out

the crawled web structure using a Stochastic Form-Oriented Model and prompts the

performance engineer to manually specify the probabilities between the pages and

actions based on an operational profile.

2.3.2 Designing Fault-Inducing Loads

In this subsection, we cover the load design technique from the school of fault-inducing

load design. There are two approaches proposed to devise potential fault-inducing testing

loads: (1) by looking through the source code (Section 2.3.2.1), and (2) by building and

analyzing various system models (Section 2.3.2.2).
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2.3.2.1 Deriving Fault-Inducing Loads via Source Code Analysis

There are two techniques proposed to automatically analyze the source code for specific

problems. The first technique is trying to locate specific code patterns, which lead to known

load-related problems (e.g., memory allocation patterns for memory allocation problems).

The second technique uses model checkers to systematically look for memory and perfor-

mance problems.

1. Testing Loads Derived from Data Flow Analysis

Load sensitive regions are code segments, whose correctness depends on the amount

of input data and the duration of testing [247]. Examples of load sensitive regions can

be code dealing with various types of resource accesses (e.g., memory, thread pools

and database accesses). Yang et al. [247] use data flow analysis of the system’s source

code to generate loads, which exercise the load sensitive regions. Their technique

detects memory related faults (e.g., memory allocation, memory deallocation and

pointers referencing).

2. Testing Loads Derived from Symbolic Executions

Rather than matching the code for specific patterns (e.g., the resource accesses pat-

terns in [247]), Zhang et al. [253] use symbolic test execution techniques to gener-

ate loads, which can cause memory or performance problems. Symbolic executions

simulate the program execution using symbolic values instead of actual values as in-

puts. Symbolic values are unknown and will be computed later to satisfy various con-

straints. Paths are uniquely defined by a set of constraints. Each constraint encodes

a branch decision made along the path and is defined as a boolean expression over

concrete and symbolic values. For example, the symbolic execution on the following

code segment (taken from [253]) would yield two sets of outputs: (1) In order to ex-

ecute the if-statement, we need to have x and y equal and both x and y greater than 0;



CHAPTER 2. A SURVEY ON LOAD TESTING LARGE SCALE SOFTWARE SYSTEMS 35

(2) In order to skip the if-statement, we need to have x and y equal and less than and

equal to 0. Therefore, by symbolically executing the overall system, the output would

contain a set of input values corresponding to different code paths, respectively.

y = x;

if (y > 0) then y ++;

return y;

Zhang et al. use the path information to derive two types of loads:

(a) Testing Loads Causing Large Response Time

Zhang et al. assign a time value for each step (e.g., 10 for an invoking routing

and 1 for other routines). Therefore, by summing up the costs for each code

path, they can identify the paths that lead to the longest response time. The

values that satisfy the path constrains form the loads.

(b) Testing Loads Causing Large Memory Consumptions

Rather than tracking the time, Zhang et al. track the memory usage at each step.

The memory footprint information is available through a Symbolic Execution

tool, (e.g., the Java Path Finder (JPF)). Zhang et al. use the JPF’s built-in object

life cycle listener mechanism to track the heap size of each path. Paths leading to

large memory consumption are identified and values satisfying such code paths

form the loads.

2.3.2.2 Deriving Fault-Inducing Loads by Building and Analyzing System Models

Rather than analyzing the source code to explore potential problematic regions/paths, tech-

niques have been proposed to automatically search for potential problematic loads.

1. Deriving Performance-Problem-Inducing Loads from Linear Programs
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Online multimedia systems have various temporal requirements: (1) Timing require-

ments: audio and video data streams should be delivered in sequence and follow-

ing strict timing deadlines; (2) Synchronization requirements: video and audio data

should be in synch with each other; (3) Functional requirements: some videos can

only be displayed after collecting fee.

Zhang et al. [251, 252] propose a two-step technique that automatically generates

loads, which can cause a system to violate the synchronization and responsive re-

quirements while satisfying the business requirements. Their idea is based on the

belief that timing and synchronization requirements usually fail when the system’s

resources are saturated: For example, if the memory is used up, the system would

slow down due to paging.

(a) Identify Data Flows using a Petri Net

A Petri Net, which is a technique that models the temporal constraints of a system,

consists of a triple: places, transitions, and directed arcs. A petri-net starts with

an initial assignment of tokens to their places. Each place may contain zero or

more tokens. Directed arcs always run between a place and a transition, but

never between places or transitions. An Input place has an arc, which runs to a

transition. An Output place has an arc, which runs from a transition. A transition

between two places is enabled when both input places are active. A transition

can fire only when it is enabled. When a transition fires, a token is removed

from each of its input places and added to its output places. Figure 2.6 shows

an example Petri Net from [22], which consists of 4 places (P1, P2, P3, P4), 2

transitions (T1, T2), and 3 tokens. The black dots represent tokens. Many of the

places (e.g., P1, P2, P3) are both input and output places and P4 is an output

place only.

All possible user action sequences can be generated by conducting reachability
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Figure 2.6: A Petri Net Example [22]

analysis, which explores all the possible paths, on the Petri Net. For example, a

new video action C cannot be fired until the previous video action A and audio

action B are both completed.

(b) Formulate System Behavior into a Linear Program and Identify Performance

Problems

Linear programming systematically searches for optimal solutions based on cer-

tain constraints. A linear program contains the following two types of artifacts:

an objective function (the optimal criteria) and a set of constraints. The objective

function is to maximize or minimize a linear equation. The constraints are a set

of linear equations or inequalities. An example of a linear program is as follows:

maximize : 3x1 + 5x2

subject to : x1 + x2 ≤ 5

x1 ≥ 0, x2 ≥ 0

The sequencing of arrival times of these user action sequences are formulated

using a set of linear constraints. There are two types of constraint functions: One

constraint function ensures the total testing time is within a pre-specified value

(the test will not run for too long). The rest of the constraint functions formulate

the temporal requirements derived from the possible user action sequences, as
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the resource requirements (e.g., CPU, memory, network bandwidth) associated

with each multimedia object (video or audio) are assumed to be known. The

objective function is set to evaluate whether the arrival time sequence would

cause the saturations of one or more system resources (CPU and network).

2. Deriving Performance-Problem-Inducing Loads from Genetic Algorithms

An SLA, Service Level Agreement, is a contract with potential users on the non-functional

properties like response time and reliability as well as other requirements like costs.

Penta et al. [213] and Gu et al. [133] uses Genetic Algorithms to derive loads caus-

ing SLA or QoS (Quality of Service) requirement violations (e.g., response time) in

service-oriented systems. Like linear programming, Genetic Algorithms, is a search al-

gorithm, which mimics the process of natural evolution for locating optimal solutions

towards a specific goal.

The genetic algorithms are applied twice to derive potential performance sensitive

loads:

(a) Penta et al. [213] use the genetic algorithm technique proposed by Canfora et

al. [83] to identify risky workflows within a service, which is as close to the SLA

(high response time) as possible.

(b) Penta et al. [213] apply the genetic algorithm to generate loads that cover the

identified risky workflow and violate the SLA.

2.3.3 Load Design Optimization and Reduction Techniques

In this subsection, we discuss two classes of load design optimization and reduction tech-

niques aimed at improving various aspects of load design techniques. Both classes of tech-

niques are aimed at improving the realistic load design techniques.

– Hybrid Load Optimization Techniques
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The aggregate-workload based techniques focus on generating the desired workload,

but fail to mimick realistic user behavior. The user-equivalent based techniques focus

on mimicking the individual user behaviour, but fail to match the expected overall

workload. The hybrid load optimization techniques (Section 2.3.3.1) aims to combine

the strength of the aggregate-workload and use-case based load design approaches.

For example, for our example e-commerce system, the resulting load should resemble

the targeted transaction rates and mimic real user behavior.

– Optimizing and Reducing the Duration of a Load Test

One major problem with loads derived from realistic load testing is that the test du-

rations in these testing loads are usually not clearly defined (i.e., no clear stopping

rule). The same scenarios are repeatedly executed over several hours or days. There

are two techniques proposed to systematically reduce the overall load test duration.

Table 2.3 compares the various load design optimization and reduction techniques along

the following 5 dimensions:

– Techniques refer to the load design optimization and reduction techniques used (e.g.,

the hybrid load optimization techniques).

– Target Load Design Techniques refer to the load design techniques that the reduction

or optimization techniques are intended to improve. For example, the hybrid load

optimization techniques combine the strength of aggregate-workload and use-case

based load design techniques.

– Optimization and Reducing Aspects refer to the aspects the current load design that

the optimization and reduction techniques attempt to improve. One example is to

reduce the test duration.

– References refer to the list of literatures, which propose each technique.



CHAPTER 2. A SURVEY ON LOAD TESTING LARGE SCALE SOFTWARE SYSTEMS 40

Table 2.3: Test Reduction and Optimization Techniques Used in the Load Design Phase

Techniques Target Load Design
Techniques

Optimizing and
Reducing Aspects

Data Sources References

Hybrid Load Opti-
mization

All Realistic Load De-
sign Techniques

Combining the
strength of aggregate-
workload and use-
case based load
design techniques

Past usage data [86, 172, 184]

Extrapolation Step-wise Load Design Reducing the number
of workload intensity
levels

Step-wise testing
loads

[174, 191,
192]

Deterministic
State

All Realistic Load De-
sign Techniques

Reducing repeated
execution of the same
scenarios

Realistic testing
loads

[48, 54, 55]

2.3.3.1 Hybrid Load Optimization Techniques

Hybrid load optimization techniques aim to better model the realistic load for web-based

e-commerce systems [172, 184]. It consists of the following three steps:

– Step 1 - Extracting Realistic Individual User Behavior From Past Data

Most of the e-commerce systems record past usage data in the form of web access

logs. Each time a user hits a web page, an entry is recorded in the web access logs.

Each log entry is usually a URL (e.g., the browse page or the login page), combined

with some user identification data (e.g., session IDs). Therefore, individual user action

sequences, which describe the step-by-step user actions, can be recovered by grouping

the log entries with user identification data.

– Step 2 - Deriving Targeted Aggregate Load By Carefully Arranging the User Action

Sequence Data

The aggregate load is achieved by carefully arranging and stacking up the user ac-

tion sequences (e.g., two concurrent requests are generated from two individual user

action sequences). There are two techniques proposed to calculate user action se-

quences:
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1. Matching the Peak Load By Compressing Multiple Hours Worth of Load

Burstiness refers to short uneven spikes of requests. One type of burstiness is

caused by the flash crowd. The phenomenon where a website suddenly experi-

ences a heavier than expected request rate. An example of flash crowd includes

when many users flocked to the news sites like CNN.com during the 9/11 inci-

dent, or during the World CUP period, the FIFA website was often more loaded

when a goal was scored. During the flash crowd incident, the load could be sev-

eral times higher than the expected load. Incorporating realistic burstiness into

load testing is important to verify the capacity of a system [201].

Maccabee and Ma [184] squeeze multiple one-hour user action sequences to-

gether into one-hour testing load to generate a realistic peak load, which is sev-

eral times higher than the normal load.

2. Matching the Specific Request Request Rates By Linear Programs

Maccabee and Ma’s [184] technique is simple and can generate higher than nor-

mal load to verify the system capacity and guard against problems like a flash

crowd. However, their technique has problems like coarse-grained aggregate

load, which cannot reflect the normal expected field usage. For example, the

individual requests rates (e.g., browsing or purchasing rates) might not match

with the targeting request rates. Krishnamurthy et al. [171] use linear program-

ming to systematically arranging user action sequences, which match with the

desired workload.

A linear program in this case is formulated as follows:

– The variables (x1, x2, ...) correspond to the number of individual user action

sequences, respectively.

– Assuming that we have a desired load specified beforehand, each workload

request in that load is specified as one constraint in the linear program. The
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coefficients in each constraint are the number of corresponding workload

requests in that session. The linear combination of real sessions would not

exceed the pre-specified number of requests. For example, if there are two

individual user action sequences, one with two browsing requests and the

other with three browsing requests, and the overall desired browsing request

is 20. The constraints would be specified as: 2x1 + 3x2 ≤ 20.

– The objective function measures the overall similarity between the set of user

action sequences and the desired workload. The output/goal of this linear

program is to generate the number of individual user action sequences that

most closely match the desired workload.

– Step 3 - Specifying the Inter-arrival Time Between User Actions

There is a delay between each user action, when the user is either reading the page

or thinking about what to do next. This delay is called the “think time” or the “inter-

arrival time” between actions. The think time distribution among the user action

sequences is specified manually in [171, 172]. Casale et al. [86] extend the technique

in [171, 172] to create realistic burstiness. They use a burstiness level metrics, called

the Index of Dispersion [201], which can be calculated based on the inter-arrival time

between requests. They use the same constraint functions as [171, 172], but a dif-

ferent non-linear objective function. The goal of the objective function is to find the

optimal session mix, whose index of dispersion is as close to the real-time value as

possible.

The hybrid technique outputs the exact individual user actions during the course of the

actions. The advantage of such output is to avoid some of the expected system failures

from other techniques like the Markov chains. Krishnamurthy et al. [172] outline one such

case in the e-commerce systems: A user cannot purchase an item unless he/she logs in

and adds that item into the shopping cart. Krishnamurthy et al. [172] explain that test
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behavior of navigating from one request type to another
within a session. Transition probabilities determine the
number of “visits” to each state in the chain and, hence, the
mix of request types. Due to the first-order assumption, the
next request type to be submitted from a session depends
only on the current request type. As described by Menasce
et al. in [18], such a chain can be deduced in a straightfor-
ward manner from the Web server logs of a system under
study that include session identifiers.

The GEIST tool [9] implements another Markov chain-
based approach but also attempts to match aggregate work-
load characteristics. The trace generation engine of GEIST
first creates a trace of request arrival instants that exhibits the
desired arrival process characteristics. GEIST provides
statistical models that allow control over characteristics of
the marginal distribution of the time between successive
requests and the correlation between successive request
arrivals (e.g., self-similarity, multifractality). This trace is then
split among a number of sender threads, which emulate
sessions. Next, a user-specified first-order Markov chain is
employed to assign request names to the request arrival
instants in each sender thread. During request generation, the
sender thread issues a request at the specified time instant. A
separate receiver thread independently handles the response
for this request. The sender thread is therefore free to issue the
next request at the next specified time instant regardless of the
receipt of the response allowing the tool to achieve the desired
arrival process.

The Markov chain-based approach discussed suffers
from several limitations. These limitations arise due to the
use of states to represent request types and the assumption
of first-order dependencies between requests. We now
describe these limitations in detail.

1. Inability to fully address interrequest dependen-
cies. As mentioned previously, existing approaches
use first-order Markov chains whose states represent
request types. First-order chains assume that transi-
tion to a state (i.e., a request type) depends only on the

current state (i.e., the current request type). In
general, the transition to a request type may depend
on the previous request types as well. For example,
consider the following two valid sessions for an
e-commerce session: [Home, View, Add, View, Add,
Delete, Purchase] and [Home, View, Add,
Purchase]. The first session describes a shopper
who adds two products to the shopping cart and then
deletes one of the products from the shopping cart
before purchasing the other product. In contrast, the
second shopper adds a product to the shopping cart
and purchases that product. The first-order Markov
chain constructed based on these sessions is shown in
Fig. 1. Note that the transition from Exit to Home is
used to signify the start of a new session. This chain
would incorrectly deduce a dependency between
Delete and Purchase based on the first session,
without recognizing that the Purchase resulted due
to one of the two previous Add states. As a result, the
Markov chain of Fig. 1 will yield a session (i.e., [Home,
View, Add, Delete, Purchase]) where a shopper
invokes Purchase without any item in the shopping
cart, thereby violating interrequest dependencies for
the system. A higher-order Markov chain or a chain
with a different state space could be used to address
this deficiency. For example, a chain that has the
sequence [Add, View, Add, Delete] as a state can
ensure that Purchase is invoked only when there is
an item in the shopping cart.

2. Lack of flexibility—Apart from governing the
sequence of requests in sessions, the Markov chain
used by existing approaches also determines the mix
of request types and the session length distribution.
Studies of real session-based workloads [10], [17],
[26] have suggested that the characterizations of
these attributes may influence system performance.
It is therefore important to provide capabilities that
would allow stress test teams to achieve arbitrarily
desired request type mixes and session length
distributions (e.g., to match a workload observed at
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Fig. 1. Example of an incorrect Markov chain.
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Figure 2.7: An example of a Markov Chain that fails to capture the inter-request depen-
dencies from [172]

cases generated by the resulting Markov chain in the web-based systems may not satisfy

the such requirements. Their example is illustrated in Figure 2.7. Suppose a Markov chain

is derived based on two traces from two different customers: Customer A performs the

following actions: [Home, V iew,Add, V iew,Add,Delete, Purchase] and Customer B per-

forms the following actions: [Home, V iew,Add, Purchase]. The resulting Markov chain,

shown in Figure 2.7, may generate the following incorrect synthetic sequences: [Home,

View, Add, Delete, Purchase]. This sequence could result in an error, as there would be no

items to purchase in one user’s shopping chart.

Special load generators are required to take such input and generate the testing load [172].

The scalability of the approach would be limited by the machine’s memory, as the load gen-

erators need to read in all the input data (testing user actions at each time instance) at

once.

2.3.3.2 Optimizing and Reducing the Duration of a Load Test

There are two techniques proposed to systematically reduce the load test duration for the

realistic-load-based techniques. One technique aims at reducing a particular load design

technique (step-wise load testing). The other technique aims at optimizing and reducing
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the realistic load design techniques by adding determinism.

1. Load Test Reduction By Extrapolation

Load testing needs to be conducted at various load levels (e.g., number of user levels)

for step-wise load testing. Rather than examining the system behavior under all load

levels, Menasce et al. [191, 192] propose to only test a few load levels and extrapolate

the system performance at other load levels.

Furthermore, Leganza [174] proposes to extrapolate the load testing data from the

results conducted on a lower number of users onto the actual production workload

(300 users in testing versus 1, 500 users in production) to verify whether the current

SUT and hardware infrastructure can handle the desired workload.

2. Load Test Optimization and Reduction By Deterministic States

Rather than repeatedly executing a set of scenarios over and over, like many of the

aggregate-workload based load design techniques (e.g., steady load and Markov-

chain), Avritzer et al. [48, 54, 55] propose a load optimization technique, called the

Deterministic State Testing, which ensures each type of load is only executed once.

Avritzer et al. characterizes the testing load using states. Each state measures the

number of different active processing jobs at the moment. Each number in the state

represents the number of active requests of a particular request. Suppose our e-

commerce system consists of four scenarios: registration, browsing, purchasing and

searching. The state (1, 0, 0, 1) would indicate that currently only there is one regis-

tration request and one search request active and the state (0, 0, 0, 0) would indicate

that the system is idle. The probability of these states, called “Probability Mass Cov-

erage”, measures the likelihood that the testing states is going to be covered in the

field. These probabilities are calculated based on the production data. The higher the

probability of one particular state, the more likely it is going to happen in the field.
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Load test optimization can also be achieved by making use of the probability associ-

ated with each state to prioritize tests. If time is limited, only a small set of states with

a high probability of occurrence in the field can be selected. However, the “Probabil-

ity Mass Coverage” metric fails to capture the likelihood of transitions between states,

which can be important for measuring performance impacts and identifying resource

allocation faults.

In addition to reducing the test durations, deterministic state testing is very good

at detecting and reproducing resource allocation failures (e.g., memory leaks and

deadlocks). However, such testing cannot be used to verify some other non-functional

aspects (e.g., performance).

2.3.4 Summary and Open Problems

There are two schools of thought for load design: (1) Designing loads, which mimic realistic

usage; and (2) Designing loads, which are likely to trigger functional and non-functional

failures. Realistic Load Design techniques are more general, but the resulting loads can take

a long time to execute. Results of a load test are harder to analyze (due to the large volume

of data). On the contrary, Fault-Inducing Load Design techniques are more narrowly focused

on a few objectives (i.e., you will not detect unexpected problems), but the test duration is

usually deterministic and shorter. The test results are usually easier to analyze.

However, a few issues are still not explored thoroughly:

– Optimal Test Duration for the Realistic Load Design

One unanswered question among all the realistic load design techniques is to identify

the optimal test duration, which is the shortest test duration while still covering all

the test objectives.

– Benchmarking & Empirical Studies of the Effectiveness of Various Techniques
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Among the load design techniques, the effectiveness of these techniques, in terms of

scale and coverage, is not clear. In large scale industrial systems, which are not web-

based systems, can we still apply techniques like Stochastic Form-oriented Models? A

benchmark suite (like the Siemens benchmark suite for functional bug detection [4])

is needed to systematical evaluate the scale and coverage of these techniques.

– Test Coverage Metrics

Unlike functional testing suites, which have various metrics (e.g., code coverage) to

measure the test coverage. There are few load testing coverage metrics other than the

“Probability Mass Coverage” metric, which is proposed by Avritzer et al. [48, 54, 55].

Unfortunately, this metric fails to capture other aspects of the system under load (e.g.,

transition among different states and the input load level).

– Load Design Optimization and Reduction Techniques

Currently, load optimization and reduction techniques focus on realistic load design

techniques. There are no techniques aimed at improving the fault-inducing-based

load design techniques. For example, there are no work to combine the strength of

various fault-inducing techniques, so that the overall testing load can achieve multiple

objectives.

– Testing Load Evolution and Maintenance

There is no existing work aimed at maintaining and evolving the resulting load. Below

we provide two examples where the evolution of the load is likely to play an important

role:

1. Realistic Loads: As the users get more familiar with the system, the usage

patterns are likely to change. How much change would merit an update to a

realistic-based testing load?
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2. Fault-Inducing Loads: For fault-inducing techniques, as the system evolve over

time, can we improve the model building by incrementally analyzing the system

internals (e.g., changed source code or the change features)?

2.4 Research Question 2: How is a load test executed?

Once a proper load is designed, a load test is executed. The load test execution phase con-

sists of the following three main aspects: (1) Setup, which includes system deployment and

test execution setup; (2) Load Generation and Termination, which consists of generating the

load according to the configurations and terminating the load when the load test is com-

pleted; and (3) Test Monitoring and Data Collection, which includes recording the system

behavior (e.g., execution logs and performance metrics) during execution. The recorded

data is then used in the Test Analysis phase.

As shown in Table 2.4, there are three general approaches of load test executions:

1. Live-User Based Executions

A load test examines a system’s behavior when the system is simultaneously used by

many users. Therefore, one of the most intuitive load test execution approach is to

execute a load test by employing a group of human testers [31, 174]. Individual users

(testers) are selected based on the testing requirements (e.g., locations and browsers).

The live-user based execution approach reflects the most realistic user behaviors. In

addition, this approach can obtain real user feedbacks on aspects like acceptable re-

quest performance (e.g., whether certain requests are taking too long) and functional

correctness (e.g., a movie or a figure is not displaying properly). However, the live-

user based execution approach cannot scale well, as the approach is limited by the

number of recruited testers and the test duration [174]). Furthermore, the approach

cannot explore various timing issues due to complexity of manual coordination of
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many testers.

2. Driver Based Executions

To overcome the scalability issue of the live-user based approach, the driver based

execution approach is introduced to automatically generate thousands or millions

of concurrent requests for a long period of time. Compared to the live-user based

executions, where individual testers are selected and trained, driver based executions

require setup and configuration of the load drivers. Therefore, a new challenge in

driver based execution is the configuration of load drivers to properly produce the

load. In addition, some system behavior (e.g., the movie or image display) cannot be

easily tracked, as it is hard for the load driver to judge the audio or video quality.

Different from existing load driver surveys [68, 214, 235], which focus on comparing

the capabilities of various load drivers, our survey of driver based execution focuses

on the techniques used by the load drivers. Comparing the load driver techniques,

as opposed to capabilities, has the following two advantages in terms of knowledge

contributions: (1) Avoid Repetitions: Tools from different vendors can adopt sim-

ilar techniques. For example, WebLoad [33] and HP LoadRunner [10] both support

the store-and-replay test configuration technique. (2) Tool Evolution: The evolu-

tion of such load drivers is not tracked in the tool-based surveyed. Some tools get

decommissioned over time. For example, tools like Microsoft’s Web App Stress Tool

surveyed in [235], no longer exists. New features (e.g., supported protocols) are con-

stantly added into the load testing tools over time. For example, Apache JMeter [3]

has recently added support for model-based testing (e.g., Markov-chain models).

There are three categories of load drivers:

(a) Benchmark Suite is a specialized load driver, designed for one type of system.
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For example, LoadGen [18] is a load driver specified used to load test the Mi-

crosoft Exchange MailServer. Benchmark suites are also used to measure and

compare the performance of different versions of software and/or hardware

setup (called Benchmarking). Practitioners specify the rate of requests as well

as test duration. Such load drivers are usually customized and can only be used

to load test one type of system [18, 204].

In comparison to benchmark suites, the following two categories of load drivers

(centralized and peer-to-peer load drivers) are more generic (applicable for many

systems).

(b) Centralized Load Drivers refer to a single load driver, which generates the

load [10, 33].

(c) Peer-to-peer Load Drivers refer to a set of load drivers, which collectively

generate the target testing load. Peer-to-peer load drivers usually have a con-

troller component, which coordinates the load generation among the peer load

drivers [107, 246].

Centralized load drivers are better at generating targeted load, as there is only

one single load driver to control the traffic. Peer-to-peer load drivers can gener-

ate larger scale load (more scalable), as centralized load drivers are limited by

processing and storage capabilities of a single machine.

3. Emulation Based Executions

The previous two load test execution (live-user based and driver based execution)

approaches require a fully functional system and conduct load testing in the field

or in a field-like environment. The emulation based load test execution approach

performs the load testing on special platforms. In this survey, we focus on two types

of special platforms:



CHAPTER 2. A SURVEY ON LOAD TESTING LARGE SCALE SOFTWARE SYSTEMS 50

(a) Special Platforms Enabling Early and Continuous Examination of System

Behavior Under Load

In the development of large distributed software systems (e.g., service-oriented

systems), many components like the application-level entities and the infrastructure-

level entities are developed and validated in different phases of the software

lifecycle. This creates the serialized-phasing problem, as the end-to-end func-

tional and quality-of-service (QoS) aspects cannot be evaluated until late in the

software life cycle (e.g., at the system integration time) [141, 142, 143, 144].

Emulation based execution can emulate parts of the system that are not read-

ily available. Such execution techniques can be used to examine the system’s

functional and non-functional behavior under load throughout the software de-

velopment lifecycle, even before the system is completely developed.

(b) Special Platforms Enabling Deterministic Execution

Reporting and reproducing problems like deadlocks or high response time is

much easier on these special platforms, as these platforms can provide fine-

grained controls on method and thread inter-leavings. When problems occur,

such platforms can provide more insights on the exact system state.

Live-user based and driver based executions require deploying the system and running

the test in the field or field-like environment. Both approaches need to face the challenge

of setting up realistic test environment (e.g., with proper network latency mimicking dis-

tributed locations). Running the system on special platforms avoids such complications.

However, emulation based executions usually focus on a few test objectives (e.g., functional

problems under load), which are not general purposes like the live-user based and driver

based executions. In addition, like driver based executions, emulation based executions use

load drivers to automatically generate load.

Among the three main aspects of the load test execution phase, Table 2.4 outlines
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the similarities and differences among the aforementioned three load test execution ap-

proaches. For example, there are two distinct setup activities in the Setup aspect: System

Deployment and Test Execution Setup. Some setup activities would contain different as-

pects for the three test execution approaches (e.g., during the test execution setup activity).

Some other activities would be similar (e.g., the system deployment activity is the same for

the live-user and driver based executions).

In the next three subsections, we compare and contrast the different techniques applied

in the three aspects of load execution phases: Section 2.4.1 explains the setup techniques,

Section 2.4.2 discusses the load generation and termination techniques and Section 2.4.3

describes the test monitoring and data collection techniques. Section 2.4.4 summaries the

load test execution techniques and lists some open problems.

2.4.1 Setup

As shown in Table 2.4, there are two setup activities in the Setup aspect:

– System Deployment refers to deploying the system in the proper test environment

and making the system operational. Examples can include installing the SUT and con-

figuring the associated third party components (e.g., the mail server and the database

server).

– Test Execution Setup refers to setting up and configuring the load testing tools (for

driver based and emulation based executions), or recruiting and training testers (for

live-user based executions) and configuring the test environment to reflect the field

environment (e.g., network latency for long distance communication).

2.4.1.1 System Deployment

The system deployment process is the same for the live-user based and the driver based

executions, but different from the emulation based executions.
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Table 2.4: Load Execution Techniques

Load Test
Execution

Approaches

Live-user based
Execution

Driver based
Execution

Emulation based
Execution

Aspect 1. Setup

Setup Activities

System Deploy-
ment

System installation
and configuration
in the field/field-
like/lab environ-
ment

System installa-
tion and config-
urations in the
field/field-like/lab
environment

System deployment
on the special plat-
forms

Test Execution
Setup

Tester Recruit-
ment and Training,
Test Environment
Configurations

Load Driver Instal-
lation and Configu-
rations, Test Envi-
ronment Configura-
tions

Load Driver Installa-
tion and Configura-
tions

Aspect 2. Load Generation and Terminations

Options for
Load Gen-
eration and
Termination

Static Configura-
tions

X X X

Dynamic

x X x

Deterministic

x x X

Aspect 3. Test Monitoring and Analysis

Types of System
Behavior Data

Functional Prob-
lems

X X X

Execution Logs

X X X

Performance
Metrics

X X x

System Snap-
shots x X x
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– System Installation and Configuration for the Live-user based and Driver based

Executions

For live-user based and driver based executions, it is recommended to perform the

load testing on the actual field environment, although the testing time can be limited

and there could be high cost associated [218]. However, in many cases, load tests are

conducted in a lab environment due to accessibility and cost concerns (difficult and

costly to access the actual production environment) [60, 174, 193, 218]. Therefore,

extra efforts are required to configure the lab environment to reflect the most relevant

field characteristics. The system deployment process for emulation based execution is

different from the other two approaches.

The SUT and its associated components (e.g., database and mail servers) are deployed

in a field-like setting. One of the important aspects mentioned in the load testing

literature is creating realistic databases, which have a size and structure similar to

the field setting. It would be ideal to have a copy of the field database. However,

sometimes no such data is available or the field database cannot be directly used due

to security or privacy concerns.

There are two proposed techniques to create field like test databases:

– Importing Raw Data

One technique is to import a set of raw data, which shares the same characteris-

tics (e.g., size and structure) as the field data.

Bainbridge et al. [58] describe their experience of creating a realistic database

for load testing digital library systems, which are required to index and query

millions or billions of records. Such data usually contains large volumes of text,

images and metadata (e.g., bibliography). Bainbridge et al. setup the synthetic

database by importing a large amount of newspaper data (20 GB of raw text, 50

GB of metadata and 570 GB and of images) into the database.
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– Data Sanitization

In many cases, raw data that shares similar characteristics with the field data,

may not be available. Furthermore, importing such large volumes of raw data

would take a long time. Another approach is to transform the field database into

a test database [240], but to remove certain sensitive information. Such process

is called data sanitization or data anonymization.

Barros et al. [64] first identify the confidential data from the field database.

Then, they compute the hash value of the confidential data using a secure one-

way hash function, called SHA-1, and replace the confidential data in the database

with the computed hash value. For different confidential records, a hash function

will provide different hash values. A hash function is called “secure” if it is com-

putationally impossible to find the key corresponds to a specific hash value. In

this way, the resulting test database preserves data integrity (e.g., primary keys

and uniqueness) as well as data relations.

One limitation with Barros et al.’s hashing approach is that the hashed values

may lead to different code paths and code coverage, since the application logic

may treat different database field values differently. To overcome this limitation,

Grechanik et al. [129] propose to identify the database field and values, which

impact the control flow of the application. Grechanik et al. identify the database

field and values by applying existing test cases on the instrumented SUT and

recording the resulting control flows. Then they calculate the range of database

field values, which satisfy the path conditions in these control flows. Finally,

these database field values are generalized while still satisfying the control flow

during the data sanitization process. For example, all ages between 40 − 60 are

all generalized to 50, as this age group follows same code path.

– System Deployment for the Emulation based Executions
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For the emulation based executions, the SUT needs to be deployed on the special

platforms, in which the load test is to be executed. The deployment techniques for

the two types of special platforms mentioned above are different:

– Automated Code Generation for the Incomplete System Components

The automated code generation for the incomplete system components is achieved

by the model-driven engineering platforms. Rather than implementing the ac-

tual system components via programming, developers can work at a higher level

of abstraction in model-driven engineering (e.g., using domain-specific modeling

languages or visual representations). Concrete code artifacts and system config-

urations are generated based on the model interpreter [141, 142, 143, 144] or

the code factory [71]. The overall system is implemented using a model-based

engineering framework in Domain-specific modeling languages. For the compo-

nents, which are not available yet, the framework interpreter will automatically

generate mock objects (method stubs) based on the model specifications. These

mock objects, which conform to the interface of the actual components, emulate

the actual component functionality. In order to support a new environment (e.g.,

middleware or operating system), the model interpreter needs to be adapted for

various middleware or operating systems, but no change to the upper level model

specifications is required.

– Special Profiling and Scheduling Platform

In order to provide more detailed information on the system’s state when a prob-

lem occurs (e.g., deadlocks or racing), special platforms (e.g., the CHESS plat-

form [206]), which control the inter-leaving of threads are used. The SUT needs

to be run under a development IDE (Microsoft Visual Studio) with a specific

scheduling in CHESS. In this way, the CHESS scheduler, rather than the operat-

ing system, can control the inter-leaving of threads.
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2.4.1.2 Test Execution Setup and Configuration

The test execution setup and configuration includes two parts: (1) setting up and config-

urating the test components: testers (for live-user based executions) or load drivers (for

driver based and emulation based executions); (2) configuring the test environment.

Setting Up and Configuring the Test Components

Depending on the execution approaches, the test components for setup and configura-

tion are different:

– Tester Recruitment, Setup and Training (Live-user based executions)

For live-user based executions, the three main steps involved in the test execution

setup and configuration aspects [31, 174] are:

1. Tester Recruitment

Testers are hired to perform load tests. There are specific criteria to select live

users depending on the testing objectives and type of system. For example, for

web-applications, individual users are picked based on factors like geographical

locations, languages, operating systems and browsers;

2. Tester Setup

Necessary procedures are carried out to enable testers to access the systems (e.g.,

network permission, account permission, monitoring and data recording soft-

ware installation);

3. Tester Training

The selected testers are trained to be familiar with the target system and their

testing scenarios.

– Load Driver Deployment (Driver based and emulation based executions)

Deploying the load drivers involves the installing and configuring of load drivers:
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1. Load Driver Installation

The installation of load drivers is usually straight-forward [10, 33], except for

the peer-to-peer load drivers. Dumitrescu et al. [107] implement a framework

to automatically push the peer load drivers to different machines for load testing

GRID systems. The framework picks one machine in the GRID to act as a con-

troller. The controller pushes the peer load driver to other machines, which are

responsible for requesting web services under test.

2. Load Driver Configurations

The configuration of load drivers is the process of encoding the load as inputs,

which the load drivers can understand. There are currently four general load

driver configuration techniques:

(a) Simple GUI Configuration

Some load drivers (especially the benchmark suites like [18]) provide a sim-

ple graphical user interface for load test practitioners to specify the rate of

the requests as well as test durations.

(b) Programable Configuration

Many of the general purpose load drivers let load test practitioners en-

code the testing load using programming languages. The choice of pro-

gramming languages vary between load drivers. For example, the language

could be generic programming languages like C++ [10], Javascript [33]

and Java [198]; or domain specific languages, which enable easy specifica-

tions of test environment like the setup/configration of database, network

and storage [108] and or for specialized systems (e.g., TTCN-3 for telecom-

munication systems [219]).

(c) Store-and-replay Configuration

Rather than directly encoding the load via coding, many load drivers support
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store-and-replay to reduce the programming efforts. Store-and-replay load

driver configuration techniques are used in web-based applications [10, 33,

100] and wireless mobile applications [225, 226]. This configuration tech-

nique consists of the following three steps:

i. The Storing Phase:

During the storing phase, load test practitioners perform a sequence of

actions for each scenario. For example, in a web-based system, a user

would first login to the system, browse a few catalogs then logout. A

probe, which is included in the load drivers, is used to capture all in-

coming and outgoing data. For example, all HTTP requests can be cap-

tured by either implementing a probe at the client browser side (e.g.,

browser proxy in WebLoad [10, 33]) or at the network packet level us-

ing a packet analyzer like Wireshark [35]. The recorded scenarios are

encoded in load-driver specific programming languages (e.g., C++ [10]

and Javascript [33]).

Rich Internet Applications (RIA) dynamically update parts of the web

page based on the user actions. Therefore, the user action sequences

cannot be easily use in record-and-replay via URL editing. Instead, The

store-and-replay is achieved via using GUI automation tools like Sele-

nium [24] to record user actions instead.

ii. The Editing Phase:

The recorded data needs to be edited and customized by load test prac-

titioners in order to be properly executed by the load driver. The stored

data is usually edited to remove runtime-specific values (e.g., session IDs

and user IDs).

iii. The Replaying Phase: Once load test practitioners finish editing, they
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need to identify the rates of these scenarios, the delay between individ-

ual requests and the test duration.

(d) Model Configuration

Section 2.3.1.2 explains realistic load design techniques via usage models.

There are two approaches to translate the usage models into load driver

inputs: on one hand, many load drivers can directly take usage models as

their inputs. On the other hand, works have been proposed to automatically

generate load driver configuration code based on the usage models.

i. Readily Supported Models:

Test cases formulated in Markov chain can be directly used in load test

execution tools like LoadRunner [10] and Apache JMeter [3] (through

plugin) or research tools like [222].

ii. Automated Generation of Load Driver Configuration Code

Many techniques have been proposed to automatically generate load

driver configuration code from usage models. Silveira et al. [95] au-

tomatically generate LoadGen scripts based on UML activity diagram.

The Stochastic Form Charts can be automatically encoded into JMeter

scripts [80, 81].

Configuring the Test Environment

As mentioned above, live-user based and driver based executions usually take place in

a lab environment. Extra care is needed to configure the test environment to be as realistic

as possible.

First, it is important to understand the implication of the hardware platforms. Netto et

al. [209] and White et al. [243] evaluate the stability of the generated load under virtualized

environments (e.g., virtual machines). They find that the system throughput sometimes

might not produce stable load on virtual machines. Second, additional operating system
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configurations might need to be tuned. For example, Kim [167] reported that extra settings

need to be specified in Windows platforms in order to generate hundreds or millions of

concurrent connections. Last, it is crucial to make network behavior as realistic as possible.

This is covered in two aspects:

1. Network Latency

Many load-driver based test execution techniques are conducted within a local area

network, where packets are delivered swiftly and reliably. The case of no/little packet

latency is usually not applicable in the field, as packets may be delayed, dropped or

corrupted. IP Network Emulator Tools like Shunra [25, 188] are used in load testing

to create a realistic load testing network environment [177].

2. Network Spoofing

Routers sometimes try to optimize overall network throughput by caching the source

and destination. If the requests come from the same IP address, the network latency

measure won’t be as realistic. In addition, some systems perform traffic controls based

on requests from different network addresses (IP addresses) for purposes like guard-

ing against Denial of Service (DoS) attacks or providing different Quality of Services.

IP Spoofing in a load test refers to the practice of generating different IP addresses

for workload requests coming from different simulated users. IP Spoofing is needed

to properly load test some web-based systems using the driver based executions, as

these systems usually deny large volume of requests from the same IP addresses to

protect against the DoS attacks. IP spoofing is usually configured in supported load

drivers (e.g. [10]).

2.4.2 Load Generation and Termination

This subsection covers three categories of load generation and termination techniques:

manual load generation and termination techniques (Section 2.4.2.1), load generation and
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termination based on static configurations(Section 2.4.2.2), and load generation and ter-

mination techniques based on dynamic system feedback (Section 2.4.2.3).

2.4.2.1 Manual Load Generation and (Timer-based) Termination Techniques

Each user repeatedly conducts a sequence of actions over a fixed period of time. Sometimes,

actions among different live users need to be coordinated in order to reach the desired load.

2.4.2.2 Static-Configuration-Based Load Generation and Termination Techniques

Each load driver has a controller component to generate the specified load based on the

configurations [10, 33, 64]. If the load drivers are installed on multiple machines, the

controller needs to send messages among distributed components to coordinate among the

load drivers to generate the desired load [107].

Each specific request is either generated based on a random number during runtime

(e.g., 10% of the time user A is doing browsing) [10, 64] or based on a specific pre-defined

schedule (e.g., during the first five minutes, user B is doing browsing) [171, 172].

There are four types of load termination techniques based on pre-defined static con-

figurations. The first three techniques (continuous, timer-driven and counter-driven) exist

in many existing load drivers [226]. The fourth technique (statistic-driven) was recently

introduced [188, 223] to ensure the validity or accuracy of the data collected.

1. Continuous: A load test runs continuously until the load test practitioners manually

stop it [226];

2. Timer-Driven: A load test runs for a pre-specified test duration then stops [226].

3. Counter-Driven: A load test runs continuously until a pre-specified number of re-

quests have been processed or sent [226].
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4. Statistic-Driven: A load test is terminated once the performance metrics of interest

(e.g., response time, CPU and memory) is statistically stable. This means the metrics

of interest yield high confidence interval to estimate such value or have small standard

deviations among the collected data points [188, 223].

2.4.2.3 Dynamic-Feedback-Based Load Generation and Termination Techniques

Rather than generating and terminating a load test based on static configurations, tech-

niques have been proposed to dynamically steer the load based on the system feedback [62,

63, 66, 67].

Depending on the load testing objectives, the definition of important inputs can vary. For

example, one goal is to detect memory leaks [66]. Thus, input parameters that significantly

impact the system memory usage, are considered as important parameters. Other goals

can be to find/verify the maximum number of users that the system can support before

the response time degrades [66] or to locate software bottleneck [62, 63]. Thus, impor-

tant inputs are the ones that significantly impact the testing objectives (e.g., performance

objectives like the response time or throughput).

There are two techniques proposed to locate the important inputs.

1. System Identification Technique

Bayan and Cangussu calculate the important inputs using the System Identification

Technique [159, 181]. The general idea is as follows: the metric mentioned in the

objectives is considered as the output variable (e.g., memory or response time). Differ-

ent combinations of input parameters lead to different values in the output variable.

A series of random testing, which measures the system performance using randomly

generated inputs, would create a set of linear equations with the output variable on

one side and various combinations of input variables on the other side. Thus, locat-

ing the resource impacting inputs is equivalent to solving these linear equations and
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identifying the inputs, which are large (sensitive to the resources of interest).

2. Analytical Queuing Modeling

Compared with the above System Identification Technique, which calculates the im-

portant inputs before load test execution starts, Branal et al. dynamically model the

software system using a two-layer queuing model and use analytical techniques to

find the workload mixes that change the bottlenecks in the systems. Branal et al. it-

eratively tune the analytical queuing model based on the system performance metrics

(e.g., CPU, disk and memory). Through iteratively driving load, their model gradually

narrows down the bottleneck/important inputs.

Once these important inputs are identified, the load driver automatically generate the

target load to detect memory leaks [66], to verify system performance requirements [67]

or to identify software bottlenecks [62, 63].

2.4.2.4 Deterministic Load Generation and Termination Techniques

Even though all of these load test execution techniques manage to inject many concurrent

requests into the system, none of those techniques can guarantee to explore all the possible

inter-leavings of threads and timing of asynchronous events. Such system state informa-

tion is important, as some thread inter-leaving and events could lead to hard to catch and

reproduce problems like deadlocks or racing conditions.

As we mentioned in the beginning of this section, the CHESS platform [206] can be

used to deterministically execute a test based on all the possible event inter-leavings. The

deterministic inter-leaving execution is achieved by the scheduling component, as the actual

scheduling during the test execution is controlled by the tool scheduler rather than the OS

scheduler.

The CHESS scheduler understands the semantics of all non-deterministic APIs and pro-

vides an alternative implementation of these APIs. The alternative API implementations
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insert a call to the CHESS scheduler whenever there is a call to these non-deterministic

APIs. In addition, the CHESS scheduler creates a lock for each thread.

Upon receiving concurrent requests, whenever there is a call to the non-deterministic

API, the calling thread queries the tool scheduler to see if the calling thread should block. If

the CHESS scheduler decides the calling thread should block, the calling thread blocks on its

lock and the CHESS scheduler releases the next thread supposedly to run next. Therefore,

by picking different threads to block at different execution points, the CHESS scheduler is

able to deterministically explore all the possible inter-leavings. The test stops when the

scheduler explores all the task inter-leavings.

The CHESS platform automatically reports when there is a deadlock or race conditions,

along with the exact execution context (e.g., thread interleaving and events).

2.4.3 Test Monitoring and Data Collection

The system behavior under load is monitored and recorded during the course of the load

test execution. There is a tradeoff between the level of monitoring details and monitoring

overhead. Detailed monitoring has a huge performance overhead, which may slow down

the system execution and may even alter the system behavior [207]. Therefore, probing

techniques for load testing are usually light weight and are intended to impose minimal

overhead to the overall system.

In general, there are four categories of collected data in the research literature: Metrics,

Execution Logs, Functional Failures, and System Snapshots.

2.4.3.1 Monitoring and Collecting Metrics

In general, there are two types of metrics getting monitored and collected during the course

of the load test execution phase: Throughput Metrics (“Number of Pass/Fail Requests”) and

Performance Metrics (“End-to-End Response Time” and “Resource Usage Metrics”). These
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metrics are getting tracked by recruited testers in the live-user based executions [31, 173],

by load drivers in the driver based and emulation based executions [10, 33, 72, 190, 191,

196, 245] or by light weight system monitoring tools PerfMon or pidstats [173].

1. Number of Passed and Failed Requests

Once the load is terminated, the number of passed and failed requests are collected

from live users. This metric can either be recorded periodically (the number of pass

and fail requests at this interval) or recorded once at the end of the load test (the total

number of pass and failed requests).

2. End-to-End Response Time

The end-to-end response time (or just response time) is the time it takes to complete

one individual request.

3. Resource Usage Metrics

System resource usage metrics like CPU, memory, disk and network usage, are col-

lected for the system under load. These resource usage metrics are usually collected

and recorded at a fixed time interval. Similar as the end-to-end metrics, depending

on the specifications, the recorded data can either be aggregated values or a sam-

pled value at that particular time instance. System resource usage metrics can either

be collected through system monitoring tools like PerfMon in Windows or pidstats in

Unix/Linux [173]. Such resource usage metrics are usually collected both for the SUT

and its associated components (e.g., databases and mail servers).

2.4.3.2 Instrumenting and Collecting Execution Logs

Execution logs are generated by the instrumentation of code that developers insert into the

source code. There are three types of instrumentation mechanisms: (1) ad-hoc debug state-

ments, like printf or System.out, (2) general instrumentation frameworks like Log4j [116]
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and (3) through specialized instrumentation frameworks like ARM (Application Response

Measurement) [132]:

1. Ad-hoc Logging: The ad-hoc logging mechanism is the most commonly used, as

developers insert output statements (e.g., printf or System.out) into the source code

for debugging purposes [141]. However, extra care is required to (1) minimize the

amount of information generated, and to (2) to make sure the statements are not

garbled as multiple logging threads are trying to write to the same file concurrently.

2. General Instrumentation Framework: General instrumentation frameworks like

Log4j [116] address the two limitations in the ad-hoc mechanism. The instrumen-

tation framework provides a platform to support thread-safe logging and fine-grained

control of information. Thread-safe logging makes sure that each logging thread seri-

ally accesses the single log file for multi-threaded systems. Fine-grained logging con-

trol enables developers to specify logging at various levels. For example, there can

be many levels of logging suited for various purposes, like information level logs for

monitoring and legal compliances [23], and debug level logs for debugging purposes.

During load tests and actual field deployments, only higher level logging (e.g., at the

information level) is generated to minimize overhead.

3. Specialized Instrumentation Framework: Specialized instrumentation frameworks

like ARM (Application Response Measurement) [132] can facilitate the process of

gathering performance information from running programs.

2.4.3.3 Monitoring and Collecting Functional Failures

Live-user based and emulation based executions record functional problems, whenever the

failure occurs. For each request that a live user executes, he/she records whether the request

has completed successfully. If not, he/she will note the problem areas (e.g., flash content is
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not displayed properly [31]). For the deterministic emulation based execution (the CHESS

platform), the detailed system state is recorded when the deadlock or race conditions occur.

2.4.3.4 Monitoring System Behavior and Collecting System Snapshots

Rather than capturing information throughout the course of the load testing, Bertolino et

al. [72] propose a technique that captures a snapshot of the entire test environment as well

as the system state when a problem arises. Whenever the system’s overall QoS is below

some threshold, all network requests as well as snapshot of the system state is saved. This

snapshot can be replayed later for debugging purposes.

2.4.4 Summary and Open Problems

There are three general load test execution approaches: (1) the live-user based executions,

where recruited testers manually generate the testing load; (2) the driver based executions,

where the testing load is automatically generated; and (3) the emulation based executions,

where the SUT is executed on top of special platforms. Live-user based executions provide

the most realistic feedback on the system behavior, but suffer from scalability issues. Driver

based executions can scale to large testing load and test durations, but require substantial

efforts to deploy and configure the load drives for the targeted testing load. Emulation

based executions provide special capacities over the other two execution approaches: (1)

early examination of system behavior before system is fully implemented, (2) easy detection

and reporting of load problems. However, emulation based execution techniques can only

focus on a small subset of the load testing objectives.

Here, we list two open problems, which are still not explored thoroughly:

– Encoding Testing Loads into Testing Tools

It is not straight-forward to translate the designed load into inputs used by load

drivers. For example, the load resulted from hybrid load optimization techniques [172]
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is in the form of traces. Therefore, load drivers need to be modified to take these traces

as inputs and replay the exact order of these sequences. However, if the size of traces

become large, the load driver might not be able to handle traces. Similarity, testing

load derived from deterministic state testing [51, 53] is not easily realized in existing

load drivers, either.

– System Monitoring Details and Load Testing Analysis

On one hand, it is important to minimize the system monitoring overhead during the

execution of a load test. On the other hand, the recorded data might not be suffi-

cient (or straight-forward) for load testing analysis. For example, recorded data (e.g.,

metrics and logs) can be too large to be examined manually for problems. Additional

work is needed to find proper system monitoring data suited for load testing.

2.5 Research Question 3: How is the result of a load test ana-

lyzed?

During the load test execution phase, the system behavior (e.g., logs and metrics) is recorded.

Such data must be analyzed to decide whether the SUT has met the test objectives. Different

types of data and analysis techniques are needed to validate different test objectives.

As discussed in Section 2.4.3, there are four categories of system behavior data: met-

rics, execution logs, functional failures and system snapshots. All of the research literature

focuses on the analysis and reporting techniques used for working with metrics and execu-

tion logs. (It is relatively straight-forward to handle the functional failure data by reporting

them to the development team, and there is no further discussion on how to analyze system

snapshots [72]).

There are three categories of load testing analysis approaches:

1. Verifying Against Threshold Values
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Some system requirements under load (especially non-functional requirements) are

defined using threshold values. One example is the system resource requirements.

The CPU and memory usage cannot be too high during the course of a load test, other-

wise the request processing can hang and system performance can be unstable [117].

Another example is the reliability requirement for safety critical and telecommuni-

cation systems [51, 53]. The reliability requirements are usually specified as “three-

nines” or “five-nines”, which means the system reliability cannot be lower than 99.9%

(for “three-nines”) and 99.999% (for “five-nines”). The most intuitive load test anal-

ysis technique is to summarize the system behavior into one number and verify this

number against a threshold. The usual output for such analysis is simply pass/fail.

2. Detecting Known Problems

Another general category of load test analysis is examining the system behavior to

locate patterns of known problems; as some problems are buried in the data and

cannot be found based on threshold values, but can be spotted by known patterns.

One example is to check the memory growth trend over time for memory leaks. The

usual output for such analysis is a list of detected problems.

3. Automated Detection of Anomalous Behavior

Unfortunately, not all problems can be specified using patterns and certainly not all

problems have been detected previously. In addition, the volume of recorded sys-

tem behavior is too big to examine manually. Therefore, automated techniques have

been proposed to systematically analyze the system behavior to uncover anomalous

behavior. These techniques usually apply statistical or artificial intelligence methods

to automatically derive “normal/expected behavior” and flag “anomalous behavior”

from the data. However, the accuracy of such techniques might not be as high as

the above two approaches, as the “anomalous behavior” are merely hints of potential

system problems under load. The output for such analysis is usually the anomalous



CHAPTER 2. A SURVEY ON LOAD TESTING LARGE SCALE SOFTWARE SYSTEMS 70

behavior and some reasoning/diagnosis on the potential problematic behavior.

All three aforementioned techniques can analyze different categories of data to verify

a range of objectives (detecting functional problems and non-functional problems). These

load test analysis techniques can be used individually or together based on the types of data

available and the available time. For example, if time permitted, load testing practitioners

can verify against known requirements based on the threshold, locate problems based on

specific patterns and run the automated anomaly detection techniques just to check if there

are any more problems. We categorize the load test analysis technique into the following

six dimensions as shown in Table 2.5.

– Approaches refer to one of the above three load test analysis approaches.

– Techniques refer to the load test analysis technique like memory leak detection.

– Data refers to the types of system behavior that the test analysis technique can ana-

lyze. Examples are execution logs and performance metrics like response time.

– Test Objectives refer to the goal or goals of load test objectives (e.g., detecting per-

formance problems), which the test analysis technique achieve.

– Reported Results refer to the types of reported outcomes, which can simply be

pass/fail or detailed problem diagnoses.

– References refer to the list of literatures, which propose each technique.

This section is organized as follows: The next three subsections describe the three cat-

egories of load testing analysis techniques respectively: Section 2.5.1 explains the tech-

niques of verifying load test results against threshold values, Section 2.5.2 describes the

techniques of detecting known problems, and Section 2.5.3 explains the techniques of au-

tomated anomaly detection. Section 2.5.4 summarize the load test analysis techniques and

propose some open problems.
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Table 2.5: Load Test Analysis Techniques

Approaches Techniques Data Test
Objectives

Reported
Results

References

Verifying
Against
Threshold
Values

Straight-
forward
Comparison

Performance
metrics

Detecting
performance
and scalabil-
ity problems Pass/Fail

[104,
232, 249]

Comparison
Against
Processed
Data (Max,
medium or
90-percentile
values)

Periodic
sampling
metrics

Detecting
performance
problems

[104,
107, 117,
127, 130,
141, 142,
143, 144,
191, 251]

Comparison
Against
Derived
(Thresh-
old and/or
target) Data

Number of
pass/fail
requests,
past per-
formance
metrics

Detecting
performance
and reliabil-
ity problems

[109,
150, 191,
192]

Detecting
Known Prob-
lems

Memory Leak
Detection

Memory us-
age metrics

Detecting
functional
problems

Pass/Fail [66, 74]

Locating Er-
ror Keywords

Execution
logs

Detecting
functional
problems

Error log
lines and
error types

[154]

Detecting
Throughput
Problems Us-
ing Queuing
Theory

Throughput,
response
time met-
rics

Detecting
functional
and scalabil-
ity problems

Pass/Fail [188]

Automated
Detection of
Anomalous
Behavior

Detecting
Anomalous
Performance
Behavior
using Perfor-
mance and
Resource Us-
age Metrics

Performance
and re-
source
usage
metrics

Detecting
performance
problems

Anomalous
perfor-
mance
metrics

[115,
185, 186,
187, 210,
229, 230]
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2.5.1 Verifying Against Threshold Values

The threshold-based test analysis approach can be further broken down into three tech-

niques based on the availability of the data and threshold values.

2.5.1.1 Straight-forward Comparison

When the data is available and the threshold requirement is clearly defined, load testing

practitioners can perform a straight-forward comparison between the data and the thresh-

old values. One example is throughput analysis. Throughput, which is the rate of successful

requests completed, can be used to compare against the load to validate whether the sys-

tem’s functionality can scale under load [104, 232, 249].

2.5.1.2 Comparison Against Processed Data

If the system resources, like CPU and memory utilization are too high, the system perfor-

mance may not be stable [117] and user experience could degrade (e.g., slow response

time) [43, 52, 114, 177, 199].

There can be many formats of system behavior. One example is resource usage data,

which is sampled at a fixed interval. Another example is the end-to-end response time,

which is recorded as response time for each individual request. These types of data need

to be processed before comparing against threshold values. On one hand, as Bondi pointed

out [74], system resources may fluctuate during the startup time for warmup and cooldown

period. Hence, it is important to only focus on the system behavior once the system reaches

a stabilized state. On the other hand, a proper data summarization technique is needed

to describe these many data instances into one number. There are three types of data

summarization techniques proposed in the literature. We use response time analysis as an

example to describe the proposed data summarization techniques:

1. Maximum Values
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For online distributed multi-media systems, if any video and audio packets are out of

synch or not delivered in time, it is considered a failure [251]. Therefore, the inability

of the end-to-end response time to meet a specific threshold (e.g., video buffering

period) is considered as a failure.

2. Average or Medium Values

The average or medium response time summarizes the majority of the response times

during the load test and is used to evaluate the overall system performance under

load [104, 107, 141, 142, 143, 144, 191].

3. 90-percentile Values

Some researchers advocate the 90-percentile response time is a better measurement

than the average/medium response time [117, 127, 130], as 90-percentile response

time accounts for most of the peaks, while eliminating the outliers.

2.5.1.3 Comparison Against Derived Data

In some cases, either the data (e.g., system reliable under load) to compare or the threshold

value is not directly available. Extra steps need to be taken to derive this data before

analysis.

– Deriving Threshold

Some other threshold values for non-functional requirements are informally defined.

One example is the “no-worse-than-before” principle when verifying the overall sys-

tem performance. The “no-worse-than-before” principle states that the average re-

sponse time (system performance requirements) for the current version should be at

least as good as prior versions [150].

– Deriving Target Data

There are two method of deriving the target data to be analyzed:
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– Through Extrapolation: As mentioned in Section 2.3.3.2, due to time or cost

limitations, sometimes it is not possible to run the targeted load, but we might

run tests with lower load levels (same workload mix but different intensity).

Based on the performance of these lower workload intensity level tests, load test

practitioners can extrapolate the performance metrics at the targeted load [192,

191, 109]. If certain resource metrics are higher than the hardware limits (e.g.,

requires more memory than provided or CPU is greater than 100%) based on the

extrapolation, scalability problems are noted.

– Through Bayesian Network: Software reliability is defined as the probability

of failure-free operation for a period of time, under certain conditions. Mis-

sion critical systems usually have very strict reliability requirements. Avritzer et

al. [55, 51] uses the Bayesian Network to estimated the system reliability from

the load test data. Avritzer et al. use the failure probability of each type of load

(workload mix and workload intensity) and the likelihood of these types of load

occurring in the field. Load test practitioners can then use such reliability esti-

mates to track the quality of the SUT across various builds and decide whether

the SUT is ready for release.

2.5.2 Detecting Known Problems

There are three known load-related problems, which can be analyzed using patterns: mem-

ory leak detection(Section 2.5.2.1), searching for error keywords(Section 2.5.2.2), and de-

tecting throughput problems using queuing theory(Section 2.5.2.3).

2.5.2.1 Memory Leak Detection

Memory leaks can cause long running systems to crash. Memory leak problems can be de-

tected if one of the two scenarios are present: (1) an upward trend of the memory footprint
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throughout the course of load testing [157]; or (2) the number of processed requests drops

with the same memory footprint as the load test progresses [66, 74].

2.5.2.2 Locating Error Keywords

Execution logs, generated by code instrumentations, provide textual descriptions of the sys-

tem behavior during runtime. Compared to system resource usage data, which are struc-

tural and easy to analyze, execution logs are more difficult to analyze, but provide more

in-depth knowledge.

One of the challenges of analyzing execution logs is the size of the data. At the end

of a load test, the size of execution logs can be several hundred megabytes or gigabytes.

Therefore, automatic log analysis techniques are needed to scan through logs to detect

problems.

Load testing practitioners can search for specific keywords like “errors”, “failures”, “crash”

or “restart” in the execution logs [154]. Once these log lines are found, load test practition-

ers need to analyze the context of the matched log lines to determine whether they indicate

problems or not.

2.5.2.3 Detecting Throughput Problems Using Queuing Theory

Mansharamani et al. [188] uses Little’s Law from Queuing Theory to validate the load test

results:

Throughput = Number of users
Response T ime + Average Think T ime

If there is a big difference between the calculated and measured throughput, there could

be failure in the transactions or load variations (e.g., during warm up or cool down) or load

generation errors (e.g., load generation machines cannot keep up with the specified loads).



CHAPTER 2. A SURVEY ON LOAD TESTING LARGE SCALE SOFTWARE SYSTEMS 76

2.5.3 Automated Detection of Anomalous Behavior

Current automated anomaly detection approaches are focuses on analyzing the resource

usage and response time metrics. There are five techniques proposed to derive the “ex-

pected/normal” behavior and flag “anomalous” behavior based on response time or re-

source usage data:

2.5.3.1 Deriving and Comparing Clusters

As noted by Georges et al. [123, 207], it is important to execute the same tests multiple

times to gain a better view of the system performance due to issues like system warmup

and memory layouts. Bulej et al. [79] propose the use of statistical techniques to detect

performance regressions (performance degradations in the context of regression testing).

Bulej et al. repeatedly execute the same tests multiple times. Then, they group the response

time for each request into clusters and compare the response time distributions cluster-by-

cluster. They have used various statistical tests (Student-t test, Kolmogorov-Smirnov Test,

Wilcoxon test, Kruskal-Wallis test) to compare the response time distributions between the

current release and prior releases. The results in their case studies show that these statistical

tests yield similar results.

2.5.3.2 Deriving Clusters and Finding Outliers

Rather than comparing the resulting clusters as in [79], Syer et al. [229, 230] use a hi-

erarchical clustering technique to identify outliers, which represent threads with deviating

behavior in a thread pool. A thread pool, which is a popular design pattern for large scale

software systems, contains a collection of threads available to perform the same type of

computational tasks. Each thread in the thread pool performs similar tasks and should

exhibit similar behavior with respect to resource usage metric, such as CPU and memory

usage. Threads with performance deviations likely indicate problems, such as deadlock or
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Fig. 1. Hierarchical cluster dendrogram of machine level abstractions.

Fig. 2. Database access time plots. The points are actual values for machine4
and the line is the average value of the other three machines‘ threads.

To find out what exactly causes the deviating behaviour
in machine4, the analysts now proceed to perform the same
analysis at a lower level, i.e., on the threads of machine4.
From the resulting dendrograms, the analysts identify clusters
of similar behaviour and select one thread as representative
of each cluster. The resource usage metrics of each selected
thread is plotted and from the plot of database access time
(Figure 2) the analysts quickly determine that competition
for access to the database between machine4 and the other
machines is affecting the access time. When the database
access time of machine4 increases, the database access times
of the other machines decrease and vice versa.

Thanks to our iterative, top-down methodology, Quick
Shipping is able to quickly understand the system, pinpoint
problems, fix them and deploy the system to their customers.

IV. METHODOLOGY

We now present in detail our methodology for identifying
and ranking performance deviations in thread pools that we il-
lustrated in the previous section. Figure 3 provides a graphical
overview of our methodology.

A. Performance Data

Our methodology requires the performance data containing
the resource usage metrics of the pooled resources, typically
threads, processes or memory buffers. Increasing the number
of resource usage metrics allows for a more accurate charac-
terization of the behaviour, but it increases the overhead of
performance monitoring and may lead to data redundancy [3],
[9]. Typical resource usage metrics include CPU usage and
the amount of allocated memory.

B. Metric Abstraction

Our methodology is a top-down approach that determines
the level of dissimilarity between different levels of abstracted
metrics. This top-down approach allows us to scale our
methodology to hundreds or thousands of threads by first iden-
tifying dissimilarities at a high-level between few abstractions,
before delving into more concrete details.

Performance analysts should group threads into higher-
level abstractions by aggregating their resource usage metrics
into a single abstracted thread. For example, in a cluster of
machines, all pooled threads executing on one machine (or
within one data centre) could be aggregated into one macro-
abstraction. Our methodology is first applied at this level to
detect deviating machines. Afterwards, a deviating machine
identified during this iteration could then be more thoroughly
examined by repeating our methodology at the level of the
pooled threads of the deviating machine, or groups of pooled
threads. If threads cannot be grouped by space (machines),
they typically can be grouped by time, e.g., all the threads
created in slots of one hour.

C. Distance Calculation Between Covariance Matrices

Once abstractions have been defined for a particular sys-
tem, we can determine the level of dissimilarity between
abstractions. The level of dissimilarity, or distance, between
two abstractions must take into account the differences in the
time-dependent behaviour of the resource usage metrics in
each abstraction. This distance must be robust to noise in the
performance data. For this reason, we use a statistical approach
based on covariance matrices.

The covariance matrix of an abstraction characterizes (1)
the variation of each resource usage metric across time and (2)
the degree to which two metrics vary together. The covariance
matrix for an abstraction is built as follows:

1) The diagonal values, (i, i), contain the statistical variance
σi

2 of metric i. The variance characterizes the spread of
the metric i across time.

2) The off-diagonal values, (i, j), contain the statistical
covariance σij

2 between each pair of metrics i and j. The
covariance characterizes how closely metric i and metric
j vary together.

Figure 2.8: An Example of a Hierarchical Clustering Diagram from [229]

memory leaks.

Figure 2.8 shows an example of a hierarchical clustering diagram (from [229]), which

consists of a set of nested clusters organized as a tree. Each leaf node represents a thread. If

two threads’ performance are similar, they are joined closer to the bottom of the tree (e.g.,

X.machine1 and X.machine3). If two threads’ performance are very different, they are very

far apart and only joined at the top of the tree (e.g., X.machine1 and X.machine4). In this

diagram, the performance from X.machine4 is different from all other threads.

2.5.3.3 Deriving Performance Ranges Using Control Charts

As shown in Figure 2.9, a control chart consists of three parts: a control line (center line),

a lower control limit (LCL) and an upper control limit. If a point lies outside the controlled

regions (between the upper and lower limits), the point is counted as a violation. Control

charts are used widely in the manufacturing process to detect anomalies.

Nguyen et al. [210] use control charts to flag anomalous resource usage metrics. For

each recorded resource usage metrics, Nguyen et al. [210] derive the “expected behavior”

in the form of control chart limits based on prior good tests. Then current test data is
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Fig. 2. An example of control chart built on the old run (baseline). The
dashed line in the middle is the control line (CL). The solid lines are the the
upper control limit (UCL) and the lower control limit (LCL). The × dots are
the baseline run’s readings. The ◦ dots are the target run’s readings.

B. Control Charts

In this project, we want to investigate new approaches that
can automatically compare the performance counters between
the baseline test and the new target test based on a statistical
quality control technique called control chart.

Control charts were first introduced by Shewhart [13] at Bell
Labs, formerly known as Western Electric, in the early 1920s.
The goal is to automatically determine if fluctuation in per-
formance is caused by common causes, e.g. fluctuation of the
input, or by special causes, e.g. defects. Control charts were
originally used to monitor problems on telephone switches.
Control chart has since became a common tool in statistical
quality control. We note that, despise the name, control chart is
not just a visualization technique. It is a technique to analyze
process data.

Figure 2 shows an example of a control chart. The x-axis
show the readings ordered, usually, in a unit of time, e.g. every
minute. The y-axis shows the performance counter, e.g., the
response time. A control chart is typically built by two sets of
data: baseline test’s counter readings and target test’s counter
readings.

The baseline readings determine the control limits. In our
load testing world, the baseline would be an previously passed
test run. The Centre Limit (CL) is median of all readings in
the baseline set. The Lower Control Limit (LCL) is the lower
limit of the normal behaviour range. The Upper Control Limit
(UCL) is the upper limit. The LCL and UCL can be defined in
several ways. A common choice is three standard deviations
from the CL. Another choice would be the 10th and the 90th

percentiles. Figure 2 shows an example where the baseline run
has eleven response time readings consist of 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, and 13 (not in that order). The LCL (10th), CL
(median), and UCL (90th) for the baseline would be 4, 8, and
12 respectively. The baseline readings are shown with the ×

TABLE I
DELL DVD STORE LOAD GENERATOR CONFIGURATION

Property Value
Database size Medium (1GB)

Threads 50
Ramp rate 25

Warm up time 1 minutes
Run duration 60 minutes

Customer think time 0 seconds
Percentage of new customers 20%

Average number of searches per order 5
Average number of items returned in each search 5

Average number of items purchased per order 5

dots. The LCL and UCL are the solid lines. The CL is the
dashed line in the middle.

We calculate violation ratio of the target readings data on
the control chart of the baseline. In load testing, a target run
is a new test run of the software which is being verified. In
Figure 2, the target run’s response time readings are the ◦ dots
in the graph. These readings are 1, 2, 4, 4, 6, 7, 9, 10, 12,
13, and 14 (not in that order). The violation ratio indicates
the degree to which the target run behaviour is deviated from
the baseline. It is calculated as the percentage of the readings
that are greater than the UCL or smaller than the LCL of the
baseline. In this example, the readings of 1, 2, 13, and 14 are
out side the limits set by the baseline. So the violation ratio
would be 4/11 = 36%.

C. Control Chart Based Approaches for Load Test Verification

We propose to use control charts on performance counters
to determine if the target test is similar to the baseline test. We
can build a control chart for each counter of the baseline test.
Then we score the violation ratio of the equivalent counter of
the target test. A high violation ratio indicates that the target
counters behave differently from the baseline counters. This
signals that the target test might have performance problems.

To guide our inquiry, we derive the following research
questions:

• RQ1: Can control charts automatically verify load tests?
• RQ2: Can control charts indicate subsystems with per-

formance anomaly?

III. CASE STUDIES

In order to investigate the use of control chart as an approach
to verify load test results, we conduct two case studies.

A. Study setting

1) Telecom: Our first case study is a large software system
in the telecommunication industry. We call it Telecom for
short. The software is developed in a tight agile development
process. Performance engineers have to perform load tests
at the end of each development iteration to determine if
the software can be released. The software has a multi-tiers
server client architecture. A typical load test exercises load on
multiple subsystems which reside on different servers. The
behaviour of the subsystems and the hardware servers are
recorded during the test run.

3

Figure 2.9: An example of a Control Chart from [210] with lower and upper control limits
shown as solid lines (LCL and UCL), control line shown as dotted lines (CL), and the data
points of the performance metric shown as cycles (target)

overlayed on the control chart. If the examined performance metric (e.g., subsystem CPU)

has a high number of violations, this metric is flagged as an anomaly and is reported to the

development team for further analysis.

2.5.3.4 Deriving Performance Rules Using AI Techniques

Nguyen et al. [210] treat each metric separately and derive range boundary values for each

of these metrics. However, in many cases, these metrics are correlated with each other. For

example, when the system is processing a large number of requests, the CPU usage and

memory usage could be high.

Foo et al. [115] build performance rules, and flag metrics, which violates these rules.

A performance rule groups a set of correlating metrics. For example, a large number of

requests imply high CPU and memory usage. For all the past tests, Foo et al. first cat-

egorize each metrics into one of high/medium/low categories, then derive performance

rules by applying an artificial intelligence technique, called Association Rule mining. The

performance rules (association rules) are derived by finding frequent co-occurred metrics.



CHAPTER 2. A SURVEY ON LOAD TESTING LARGE SCALE SOFTWARE SYSTEMS 79

For example, if high browsing requests, high Database CPU and high web server memory

footprint always appear together, Browsing/DB CPU/Web Server Memory form a set (called

“frequent-item-set”). Based on the frequent-item-set, association rules can be formed (e.g.,

high browsing requests and high web server memory implies high database CPU). Metrics

from the current test are matched against these rules. Metrics (e.g., low database CPU),

which violates these rules, are flagged as “anomalous behavior”.

2.5.3.5 Deriving Performance Signatures Using Statistical Techniques

Rather than finding and grouping related metrics by AI techniques like in [115], Malik et

al. [185, 186, 187] use statistical techniques to select the most important metrics among

hundreds or thousands of metrics and group these metrics into relevant groups, called

“Performance Signature”.

The statistical technique, which Malik et al. used, is called Principal Component Analy-

sis (PCA). First, Malik et al. normalize all metrics into values between 0 and 1. Then PCA is

applied to show the relationship between metrics. PCA groups metrics into groups, called

Principle Components (PC). Each group has a value called variance, which explains the im-

portance/relevance of the group to explain the overall data. The higher the variance values

of the groups, the more relevant these groups are. Furthermore, each metric is a member

of all the PCs, but the importance of the metrics within one group varies. The higher the

Eigen-value of a metric within one group, the more important the metric is to the group.

Malik et al. select first N Principle Components with then largest variance. Then within

each Principle Component, Malik et al. select important counters by calculating pair-wise

correlations between counters. These important counters forms the “Performance Signa-

tures”. The performance signatures are calculated on the past good tests and the current

test, respectively. The discrepancies between the performance signatures are flagged as

“Anomalous Behavior”.



CHAPTER 2. A SURVEY ON LOAD TESTING LARGE SCALE SOFTWARE SYSTEMS 80

2.5.4 Summary and Open Problems

Depending on the types of data and test objectives, there are different load test analysis

techniques that have been proposed. There are three general test analysis approaches:

verifying the test data against fixed threshold values, searching through the test data for

known problem patterns and automated detection of anomalous behaviors.

Below are a few open problems:

– Limited Load Test Analysis Work

Load testing analysis is challenging (due to the volume of data and limited time), yet

very little test analysis work has been proposed, especially on automated anomaly

detection. Most of the load test analysis work is done within our research team [115,

185, 186, 187, 210], which focus on analyzing the metrics. There is little work on

automated anomaly detection on execution logs.

– Can we use system monitoring techniques to analyze load test data?

Many research ideas in production system monitoring may be applicable for load

testing analysis. For example, works [40, 90, 152, 136] have been proposed to build

performance signatures based on the past failures, so that whenever such symptoms

occur, the problems can be detected and notified right away. Analogously, we can

formulate our performance signature based on mining the past load testing history

and use these performance signatures to detect recurrent problems in load tests. A

promising research area is to explore the applicability and ease of adapting system

monitoring techniques for the analysis of load tests.
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2.6 Conclusion

To ensure the quality of large scale systems, load testing is required in addition to con-

ventional functional testing procedures. Furthermore, load testing is becoming more im-

portant, as an increasing number of services are being offered in the cloud to millions of

users. However, as observed by Visser [236], load testing is a difficult task requiring a great

understanding of the system under test. In this chapter, we surveyed techniques used in

the three phases of a load test: the load design phase, the load execution phase, and the

load test analysis phase. We compared and contrasted these techniques and provided a few

open research problems in each phase. One of the key findings highlighted in this survey is

that little research has been done on the analysis of the behavior of the system under load,

especially on automated analysis of large volume of load testing data to assess the system

quality under load. This finding motivates our research proposed in subsequent part of this

thesis (Chapters 3, 4, 5 and 6).



CHAPTER 3

Automated Abstraction of Execution Logs

Motivated by Chapter 2’s finding, we set out to explore automated approaches to analyze the results
of load tests (execution logs). Execution logs are generated by output statements which develop-
ers insert into the source code. Execution logs are widely available and are helpful in monitoring,
remote issue resolution, and system understanding of complex enterprise applications. There are
many proposals for standardized log formats such as the W3C and SNMP formats. However, most
applications use ad-hoc nonstandardized logging formats. Automated analysis of such logs is com-
plex due to the loosely defined structure and a large non-fixed vocabulary of words. The large
volume of logs, produced by enterprise applications, limits the usefulness of manual analysis tech-
niques. Automated techniques are needed to uncover the structure of execution logs. Using the
uncovered structure, sophisticated analysis of logs can be performed.

In this chapter, we propose a log abstraction technique which recognizes the internal structure of
each log line. Using the recovered structure, log lines can be easily summarized and categorized to
help comprehend and investigate the complex behavior of large software applications. Our proposed
approach handles free-form log lines with minimal requirements on the format of a log line. Through
a case study using log files from four enterprise applications, we demonstrate that our approach
abstracts log files of different complexities with high precision and recall.

3.1 Introduction

C
HAPTER 2 reports that few research efforts has been devoted on the automated

analysis of large volume of load testing data. Motivated by this finding, we set

out to explore this important and practical research topic in the remaining part of

82
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this thesis. There are two types of artifacts recorded during a load test: execution logs and

metrics. We focus on analyzing the collected execution logs, since logs are widely available

and there is little research on logs compared to metrics [115, 185, 186, 187, 210].

Execution logs are generated by output statements, which developers insert into the

source code. Logs record application events at run-time. Logs help in monitoring, remote

issue resolution and system understanding of complex enterprise applications. Tracing and

execution logs are two types of logs that are commonly used for dynamic analysis. Tracing

logs are generated by instrumenting or monitoring an application using a variety of tech-

nologies such as the Java Virtual Machine Profiler Interface (JVMPI). In contrast, execution

logs are inserted by developers during the development of an application. Execution logs

are at a higher level of abstraction than tracing logs. Developers use execution logs to track

domain level events (e.g., “Login Verified”), instead of tracking implementation level events

(e.g., “Function CheckPassword() Called”). There is an abundance of execution logs in the

field, whereas tracing logs must be produced for specific scenarios. Producing tracing logs

may not be possible in a production setting due to the performance overhead, the lack of

system knowledge, and the inaccessibility of the source code. The availability of execu-

tion logs continues to increase at a rapid rate due to recent legal acts. For example, the

Sarbanes-Oxley Act of 2002 [23] stipulates that the execution of telecommunication and

financial applications must be logged.

Execution logs are hard to parse and analyze automatically since they are free-form with

no strict format and with a large vocabulary of words. Several standard log formats (e.g.,

[2, 19, 26]) have been proposed to ease the automated analysis of logs. However, such

standards are rarely used in practice. Modifying a legacy application to follow a particular

standard is usually not feasible nor economically possible due to the lack of resources, the

limited system knowledge or the inaccessible source code for off-the-shelf applications.

In this chapter, we present an approach which can uncover the structure of log lines.

The approach examines each log line and abstracts it to its corresponding execution event.
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Table 3.1: Example log lines
1. User checkout for accountId(tom), item=100
2. User checkout for accountId(jerry), item=100
3. Item shipped for accountId(tom), item=100
4. User checkout for accountId(john), item=103

Although execution logs may not follow a strict format, they have one general structure:

a log line is a mixture of static and dynamic information. Each log line contains static

information indicating the execution event, and dynamic information which is specific to

the particular occurrence of the execution event. The dynamic information causes the same

execution event to result in different log lines. Looking at Table 3.1, the italic tokens are

dynamic information generated at runtime. The rest of a line is static information. Our

approach would identify that logs lines in Table 3.1 correspond to two execution events:

“User checkout” and “Item Shipped”. For example, the first log line would be abstracted to

the “User checkout” execution event.

Once a log file is processed and the execution event corresponding to each log line is

identified, a developer can use the recovered log file structure to understand and investi-

gate the dynamic behaviour of a software application. Our abstraction approach reduces

the volume of data that a developer needs to investigate. Moreover the abstracted events

can be used to reason about important events in a log file. Depending on the type of infor-

mation recorded and the logging details, different types of analysis can be conducted. For

example, the log file of one application in our case study (see Section 3.5) contains more

than 1.6 million log lines. More than 23, 000 lines in this log file, contain the word “fail” or

“failure”. A developer investigating these failures would need to manually go through each

one of these lines. Alternatively, our approach abstracts these 1.6 million log lines to 319

execution events. Among these 319 events, there are 12 types of failure events which range

from external protocol communication failures to internal synchronization failures. Using

the frequency of failure events, the developer can prioritize his work by tackling the most

frequently occurring failures first.
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Organization of the Chapter

This chapter is organized as follows. Section 3.2 overviews related work in the field and

places our contributions relative to prior work. Section 3.3 gives an overview of the process

for abstracting log lines. We use precision and recall, two traditional information retrieval

metrics, to measure the performance of log abstraction approaches. Section 3.4 presents

our approach of abstracting log lines to execution events. Section 3.5 demonstrates the

effectiveness of our approach through a case study using log files from four enterprise

software applications. We also discuss lessons learned from our study. Section 3.6 concludes

the chapter.

3.2 Related Work

Uncovering the structure of free-form text is commonly referred to as the grammar infer-

ence problem [96, 99]. Prior approach for inferring the grammar of execution logs (i.e.,

abstracting log lines to execution events) could be grouped under three general approaches:

Rule-based, Codebook-based and AI-based approaches.

Rule-based approaches [97, 138, 175, 234] use a set of hard coded rules for abstracting

log lines to execution events. These approaches are commonly used in practice since they

are very accurate. However these approaches require a substantial effort for encoding and

updating the rules. For the logs shown in Table 3.1, a rule-based approach would define

two regular expressions to map each log line to one of the two possible execution events:

the “user checkout” or “item shipped” events.

Codebook-based approaches [134, 168, 217] are similar to the rule-based approach.

However codebook approaches process a subset of execution events (“alarms”) instead of

all events. The subset of events, which forms the codebook, is used in real-time to match

the observed symptoms. For the logs shown in Table 3.1, a codebook-based approach may

consider only tracking the “item shipped” events so an alarm for that event would be created
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Table 3.2: Summary of related work

Approach Interpretability Needed
Knowledge

Required Effort Coverage

Rule-based [97,
138, 175, 234]

Y High High N

Codebook-
based [134, 168,

217]

Y Medium High N

AI-
based [135, 148,
149, 178, 221,
227, 233, 244]

N Low Low N

Our approach Y Low Low Y

using a regular expression.

AI-based approaches [135, 148, 149, 178, 221, 227, 233, 244] use various types of arti-

ficial intelligent techniques such as, Bayesian networks, frequent-itemset mining, to abstract

execution logs to execution events. For the logs shown in Table 3.1, a frequent-itemset ap-

proach would recognize the high repetition of the “user checkout” event. However, the

approach would not recognize the “item shipped” event since it does not occur that fre-

quently.

Our approach, presented in Section 3.4, is a mixture of rule-based and AI-based ap-

proaches. Our approach requires less system knowledge and effort than other approaches.

Rather than encoding rules to recognize specific execution events, our approach uses a few

general heuristics to recognize static and dynamic information in log lines. Log lines with

identical static information are then grouped together to abstract log lines to execution

events.
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We define several criteria (Table 3.2) to summarize the difference between these four

log abstraction approaches.

1. Interpretability: Whether a user can easily understand the rationale for abstract-

ing a log line to a particular execution event? For example, in a neural-network AI

approach, the user cannot determine the rationale for abstracting a log line to a par-

ticular event. We desire an approach with high transparency so users would trust it

and adopt it.

2. Needed system knowledge: What is the amount of knowledge needed about the

system for the approach to work? For example, in a rule-based approach a domain

expert is needed to encode all the rules.

3. Required effort: What is the amount of effort required for the approach to work

properly? Rule-based and cookbook-based approaches require a large amount of hu-

man effort to encode the rules or alarms. These encodings must be updated for every

version of a software system.

4. Coverage: Is each log line abstracted to an appropriate execution event? For example,

some AI approaches only abstract log lines, which occur above a particular threshold.

3.3 Measuring the Performance of Approaches for Abstraction

Logs

Given the four log lines shown in Table 3.1, a log abstraction approach would determine that

log lines 1, 2, and 4 correspond to the execution event: “User checkout for accountId($v),

item=$v”, where $v indicates the dynamic parts of an execution event. Log line 3 cor-

responds to another execution event, namely “Item shipped for accountId($v), item=$v”.

Due to the simple structure of the log lines used in our example, a log abstraction approach
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Log lines which
correspond to event e
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which correspond to event e
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Figure 3.1: Measuring the performance of a log abstraction approach

could easily perform the abstraction. However, in practice the structure of log lines is not

as simple and the performance of each approaches differs between applications.

We use precision and recall, two traditional information retrieval metrics, to measure

the performance of different approaches for abstracting log lines to execution events. We

first measure the performance of an approach for each execution event, then we sum up

the performance for each log line to determine the overall performance of the approach.

Given a single execution event (e), we know that log lines (A, B, C, F ) correspond to e

(see Figure 3.1). On the other hand, the log abstraction approach abstracted log lines (A,

B, C, D, E) to event e. Therefore, the log abstraction approach correctly classified log

lines: A, B, C, incorrectly classified log lines: D, E, and missed classifying event F . For

event e, we define the number of log lines classified correctly as PCe, the number of lines

classified incorrectly as PFe, the number of missed lines as PMe. Using the information

from Figure 3.1, we have for event e:

PCe = {A,B,C}, PFe = {D,E}, and PMe = {F}

We define precision and recall as:

precision =
PCe

PCe + PFe
, and recall =

PCe

PCe + PMe

Therefore, the approach used in our example would have a recall of 3
3+2 or 60%, and a
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precision of 3
3+1 or 75%.

In the ideal situation, PFe and PMe are empty and then both precision and recall would

reach their maximum value. The maximum value for precision and recall is 1. We desire an

approach with high precision and high recall.

3.3.1 Average Performance

The above formulas measure performance for a particular execution event (e). To measure

the overall performance of an approach, we define the average precision and the average

recall which combine the precision and recall measures for all unique k events (e1, e2, . . . ,

ek) in a log file as follows:

Average Precision =
1

k
×

k∑
1

precisionei , and

Average Recall =
1

k
×

k∑
1

recallei

We use the average precision and recall measures in the rest of the chapter to compare

log abstraction approaches. We desire an approach which maximizes precision and recall

to reduce the need for manual analysis of log lines.

3.4 Our Log Abstraction Approach

In this section, we present our log abstraction approach. Our approach uses clone detection

techniques to uncover common tokens in logs lines and to parameterize each log line. We

first report on our experience in using an off-the-shelf clone detection tool to perform the

log abstraction then present our approach in detail.
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linux-2.6.16.13\drivers\net\ne2.c : 285 - 295 linux-2.6.16.13\drivers\net\lne390.c: 152 - 162 linux-2.6.16.13\drivers\net\lance.c: 437 - 447 
#ifndef MODULE 
struct net_device * __init ne2_probe(int unit) 
{ 
 struct net_device *dev = alloc_ei_netdev(); 
 int err; 
 
 if (!dev) 
  return ERR_PTR(-ENOMEM); 
 
 sprintf(dev->name, "eth%d", unit); 
 netdev_boot_setup_check(dev); 
 
 err = do_ne2_probe(dev); 
 if (err) 
  goto out; 
 return dev; 
out: 
 free_netdev(dev); 
 return ERR_PTR(err); 
} 
#endif 

#ifndef MODULE 
struct net_device * __init lne390_probe(int unit) 
{ 
 struct net_device *dev = alloc_ei_netdev(); 
 int err; 
 
 if (!dev) 
  return ERR_PTR(-ENOMEM); 
 
 sprintf(dev->name, "eth%d", unit); 
 netdev_boot_setup_check(dev); 
 
 err = do_lne390_probe(dev); 
 if (err) 
  goto out; 
 return dev; 
out: 
 free_netdev(dev); 
 return ERR_PTR(err); 
} 
#endif 

#ifndef MODULE 
struct net_device * __init lance_probe(int unit) 
{ 
 struct net_device *dev = alloc_etherdev(0); 
 int err; 
 
 if (!dev) 
  return ERR_PTR(-ENODEV); 
  
 sprintf(dev->name, "eth%d", unit); 
 netdev_boot_setup_check(dev); 
 
 err = do_lance_probe(dev); 
 if (err) 
  goto out; 
 return dev; 
out: 
 free_netdev(dev); 
 return ERR_PTR(err); 
} 
#endif 

(A) (B) (C) 

Figure 3.2: Clone example taken from Linux kernel version 2.6.16.13

3.4.1 Clone Detection

Log lines generated due to the same execution event tend to have high textual similarities

(see lines 1, 2, and 4 in Table 3.1). The process of abstracting log lines to execution events

can be considered as detecting and grouping similarities among log lines. This intuition

leads us to consider using clone detection approaches for abstracting log lines to events.

Code clones refer to identical or similar segments of source code. Code clones are

created by copy-and-paste practices adopted by developers to reuse certain design patterns,

or to minimize risks [91]. Figure 3.2 shows a code clone example taken from the driver

code of the Linux kernel version 2.6.16.13. The example shows three code snippets. The

source of each snippet is shown at the top of the Figure. The cloned areas are coloured in

grey with the identical code tokens in black and the variation points in red.

Clone detection approaches uncover clones using different measures of similarity. For

example, some approaches compare the Abstract Syntax Tree (AST) for two code seg-

ments [65]. While other approaches compare a set of data flow and control metrics [169]

or measure the text similarities of code segments and report code segments as clones if the
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measurement of similarities exceeds a threshold [106].

We expect a clone detection approach to determine that lines 1, 2 and 4, in Table 3.1

are clones of each other with slight differences due to parameterization (i.e., tom v.s. jerry

v.s. john and 100 v.s. 100 v.s. 103). To verify our intuition, we experimented with us-

ing the Kamiya et al. algorithm to abstract logs. We experimented with Kamiya et al.’s

CCFinder [162] tool to abstract log lines. CCFinder, which uses a parameterized token

matching algorithm, detect similarities in multiple programming languages and plain text.

The tool is easy to use and is fully automated. The only input required is the name of

the files to be analyzed, their type and number of similar tokens. The input files could

be C, C++, COBOL, Java or plain text. The number of similar tokens is a user-specified

threshold which is used to determine whether two code segments are similar. If the simi-

larities between two code segments exceed this threshold, they will be reported as clones.

The tool scales well to handle large software systems, like Apache, FreeBSD, NetBSD, and

Linux [155, 162, 165, 180], with thousands or millions of lines of code.

After running CCFinder on a log file, we discovered that CCFinder is not suitable for our

purposes. In particular, CCFinder has the following limitations:

1. Threshold: CCFinder has a configuration parameter which specifies the minimum

number of tokens that two segments of code should have in common to qualify as

a clone pair. However, each execution event contains a different number of words.

Therefore, it is not possible to give a single threshold number for all execution events.

A large threshold would only process execution event with a large number of tokens

and ignore execution events with a small number of tokens. A large threshold will

increase the precision of the approach and decrease its recall. Conversely, a small

threshold will increase the recall but decrease the precision. A percentage threshold

would be more suitable for our purposes.

2. File size: CCFinder could only handle small-sized log files. Large files resulted in
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CCFinder crashing due to excessive use of memory. We require a tool that can process

log files with thousands or millions of lines.

3. Delimiters: CCFinder performs clone detection across multiple lines. However, this

is not ideal for abstracting log lines, since we want the output to stop at the line

boundary.

Although CCFinder works well on large source code bases, it is not able to process large

log files. We believe this is due to the following reasons:

1. Source code and plain text wrap around lines but have delimiters for each statement

(like “;”, “.” or “!”); whereas a log line does not use similar delimiters. Therefore,

CCFinder cannot find the end of each log line and treats all log lines as one large

chunk.

2. Source code contains control keywords like if, else, for, while, etc. These keywords are

the static parts in the source code and are used by CCFinder to mark the static parts of

the source code. As log lines have a less strict grammar and a non-fixed vocabulary;

CCFinder cannot mark up any specific parts as static when processing log lines.

3.4.2 The Steps of Our Approach

Based on our experience using CCFinder, we implemented our own tool to detect similarities

among log lines, then to parameterize and abstract log lines. Our approach addresses the

following problems:

1. Threshold: Our approach minimizes the impact of threshold for deciding whether

two log lines are similar to each other.

2. File size: Our approach scales up to process log files, which contain thousands or

millions of log lines.
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Figure 3.3: Our approach for abstracting execution logs to execution events

Table 3.3: Log lines used as a running example to explain our approach
1. Start check out
2. Paid for, item=bag, quality=1, amount=100
3. Paid for, item=book, quality=3, amount=150
4. Check out, total amount is 250
5. Check out done

3. Delimiters: Our approach uses flexible heuristics to mark the dynamic and static

information for each log line. We treat end of line characters as the delimiter for each

log line.

As shown in Figure 3.3, our approach consists of four steps: Anonymize, Tokenize,

Categorize and Reconcile. In the rest of this section, we demonstrate our approach using a

small running example that is shown in Table 3.3. The example has 5 log lines.

The Anonymize step

The Anonymize step uses heuristics to recognize dynamic tokens in log lines. Once dynamic

tokens are recognized they are replaced with a generic token ($v). Heuristics can be added

or removed from this step based on domain knowledge. The following are two heuristics to

recognize dynamic parts in log lines:

1. Assignment pairs like “word = value”;

2. Phrases like “is[are|was|were] value”
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Table 3.4: Running example logs after the Anonymize step
1. Start check out
2. Paid for, item=$v, quality=$v, amount=$v
3. Paid for, item=$v, quality=$v, amount=$v
4. Check out, total amount=$v
5. Check out done

Table 3.4 shows the sample log lines after the Anonymize step. In the second and third

lines, tokens after the equal signs (=) are replaced with the generic term $v. In the fourth

line, the phrase “is 250” is replaced with the term “=$v”. There are no changes made to

the first line and last line.

The Tokenize step

The Tokenize step separates the anonymized log lines into different groups (i.e., bins) ac-

cording to the number of words and estimated parameters in each log line. The use of

multiple bins limits the search space of the following step (i.e., the categorize step). The

use of bins permits us to process large log files in a timely fashion using a limited mem-

ory footprint since the analysis is done per bin instead of having to load up all the lines in

the log file. We estimate the number of parameters in a log line by counting the number

of generic terms (i.e., $v). Log lines with the same number of tokens and parameters are

placed in the same bin.

Table 3.5 shows the sample log lines after the Anonymize and Tokenize steps. The left

column indicates the name of a bin. Each bin is named with a tuple: number of words

and number of parameters that are contained in the log line associated with that bin. The

right column in Table 6 shows the log lines. Each row shows the bin and its corresponding

log lines. The second and the third log lines contain 8 words and are likely to contain 3

parameters. Thus the second and third log lines are grouped together in the (8, 3) bin.

Similarly, the first and last log lines are grouped together in the (3, 0) bin since they both

contain 3 words and are likely to contain no parameters.
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Table 3.5: Running example logs after the Tokenize step
Bin Names Log Lines

(# of words, # of parameters)

(3, 0) 1. Start check out
5. Check out done

(5, 1) 4. Check out, total amount = $v
(8, 3) 2. Paid for, item=$v, quality=$v, amount=$v

3. Paid for, item=$v, quality=$v, amount=$v

The Categorize step

The Categorize step compares log lines in each bin and abstracts them to the corresponding

execution events. The inferred execution events are stored in an execution events database

for future references. The algorithm used in the Categorize step is shown below. Our

algorithm goes through the log lines bin by bin. After this step, each log line should be

abstracted to an execution event. Table 3.6 shows the results of our working example after

the Categorize step.

for each bin bi

for each log line lk in bin bi

for each execution event e(bi,j) corresponding to bi in the execution events DB

perform word by word comparison between e(bi,j) and lk

if (there is no difference) then

lk is of type e(bi,j)

break

end if

end for // advance to next e(bi,j)

if ( lk does not have a matching execution event) then

lk is a new execution event

store an abstracted lk into the execution events DB

end if
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Table 3.6: Running example logs after the Categorize step
Execution Events Log Lines

(word parameter id)

3 0 1 1. Start check out
3 0 2 5. Check out done
5 1 1 4. Check out, total amount = $v
8 3 1 2. Paid for, item=$v, quality=$v, amount=$v
8 3 1 3. Paid for, item=$v, quality=$v, amount=$v

end for // advance to the next log line

end for // advance to the next bin

We now explain our algorithm using the running example. Our algorithm starts with

the (3, 0) bin. Initially, there are no execution events which correspond to this bin yet.

Therefore the execution event corresponding to the first log line becomes the first execution

event namely 3 0 1. The 1 at the end of 3 0 1 indicates that this is the first execution event

to correspond to the bin which has 3 words and no parameters (i.e., bin 3 0). Then the

algorithm moves to the next log line in the (3, 0) bin which contains the fifth log line. The

algorithm compares the fifth log line with all the existing execution events in the (3, 0) bin.

Currently, there is only one execution event: 3 0 1. As the fifth log line is not similar to the

3 0 1 execution event, we create a new execution event 3 0 2 for the fifth log line. With

all the log lines in the (3, 0) bin processed, we can move on to the (5, 1) bin. As there

are no execution events which correspond to the (5, 1) bin initially, the fourth log line gets

assigned to a new execution event 5 1 1. Finally, we move on to the (8, 3) bin. First, the

second log line gets assigned with a new execution event 8 3 1 since there are no execution

events corresponding to this bin yet. As the third log line is the same as the second log line

(after the Anonymize step), the third log line is categorized as the same execution event as

the second log line. Table 3.6 shows the sample log lines after the Categorize step. The left

column is the abstracted execution event. The right column shows the line number together

with the corresponding log lines.
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Table 3.7: Sample logs which the Categorize step would fail to abstract
Event IDs Execution Events

5 0 1 Start processing for user Jen
5 0 2 Start processing for user Tom
5 0 3 Start processing for user Henry
5 0 4 Start processing for user Jack
5 0 5 Start processing for user Peter

The Reconcile step

Since the Anonymize step uses heuristics to identify dynamic information in a log line,

there is a chance that we might miss to anonymize some dynamic information. The missed

dynamic information will result in the abstraction of several log lines to several execution

events which are very similar. Table 3.7 shows an example of dynamic information that was

missed by the Anonymize step. The Table shows 5 different execution events. However, the

user names after “for user” are dynamic information and should have been replaced by the

generic token “$v”. All the log lines shown in Table 3.7 should have been abstracted to the

same execution event after the Categorize step. The Reconcile step addresses this situation.

All execution events are re-examined to identify which ones are to be merged. Execution

events are merged if:

1. They belong to the same bin;

2. They differ from each other by one token at the same positions;

3. There exists a few of such execution events. We used a threshold of 5 events in our

case studies. Other values are possibly based on the content of the analyzed log files.

The threshold prevents the merging of similar yet different execution events, such as

“Start processing” and “Stop processing”, which should not be merged.

Looking at the execution events in Table 3.7, we note that they all belong to the “5 0”

bin and differ from each other only in the last token. Since there are 5 of such events, we

merged them into one event. Table 3.8 shows the execution events from Table 3.7 after the
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Table 3.8: Sample logs after the Reconcile step
Event IDs Execution Events

5 0 1 Start processing for user $v

Table 3.9: Size of the log files of the four studied applications
Application App 1 App 2 LoadSim Blue Gene/L

Number of Log Lines 723, 608 1, 688, 876 67, 651 2, 994, 986

Reconcile step. Note that if the “5 0” bin contains another execution event: “Stop processing

for user John”; it will not be merged with the above execution events since it differs by two

tokens instead of only the last token.

3.5 Case Study

We conducted a case study to evaluate the effectiveness of our approach in abstracting the

logs for enterprise applications. We used log files from four different applications: App 1,

App 2, LoadSim, and Blue Gene/L. App 1 is a large scale enterprise application developed

by Research In Motion (RIM). App 2 is a medium scale enterprise application developed by

Research In Motion (RIM). Loadsim is a medium scale enterprise application developed by

Microsoft. These three applications are deployed and used by millions of users in thousands

of enterprises worldwide. Blue Gene/L logs [28] are from an application running on the

Blue Gene/L supercomputer [211]. Table 3.9 tabulates the applications and the size of

studied log files. Table 3.10 shows sample log lines taken from LoadSim and Blue Gene/L.

Table 3.10: Sample Log Lines from LoadSim and Blue Gene/L

Sample LoadSim Logs Sample Blue Gene/L Logs

Browse Mail: Read 1, Deleted 1 RAS KERNEL INFO program interrupt
Sent oups4k.msg (4 recipient(s)) RAS KERNEL INFO generating core.406
Browse Mail: Read 1, Moved 1 RAS KERNEL INFO program interrupt
There are 6 rules: Added 1 rule RAS KERNEL FATAL data TLB error interrupt
Sent oups2k.msg (3 recipient(s)) RAS KERNEL FATAL data TLB error interrupt
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3.5.1 Other Approach for Log Abstraction

In the case study, we want to compare the performance of our approach to other approaches

for log abstraction. Since we have limited knowledge of the studied software applications,

we could not use rule-based or codebook-based approaches. We could only use an AI-

based approach. There exist two AI tools against which we could compare our approach.

The tools are: teirify [227] and SLCT (Simple Logfile Clustering Tool) [233]. The teirify

tool uses a bio-informatics algorithm [29] to detect line patterns, whereas the SLCT tool

uses frequent-itemset mining techniques to cluster similar log lines. Unfortunately, teirify

requires a large amount of memory and cannot handle log files, exceeding 10, 000 log lines.

In the case study, we compared the performance of our approach against the result obtained

from SLCT, which scaled to handle large files. We ran SLCT with the -s <support threshold>

and -j options. The -s <support threshold> option specifies a support threshold value. Each

line pattern exceeding this threshold will be outputted. For each outputted line pattern,

SLCT also shows the support count associated with this pattern, i.e., the number of input

lines that correspond to this pattern. Without the -j option, a log line will only be counted

towards the support count of a single pattern. With the -j option specified, if a log line

matches multiple line patterns then this line will be counted multiple times for the support

count for each matched line patterns. Table 3.11 shows an example of the SLCT output. The

left column shows 5 sample input log lines. The right column shows the results of several

runs for SLCT using these input log lines. For each run, the table shows the used SLCT

options and the corresponding output. If the support threshold is 4, the “In Checkout, user

is *” pattern is outputted. All five input lines match the outputted pattern so the support for

this pattern is 5. If the support threshold is 3, the “In Checkout, user is *” and “In Checkout,

user is Tom” patterns are outputted. The “In Checkout, user is Tom” is a sub-pattern of “In

Checkout, user is *”, so all lines that are mapped to the “In Checkout, user is Tom” pattern

are mapped to the “In Checkout, user is *” pattern as well. If the support threshold is 2, the
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Table 3.11: An example of SLCT output
Log Lines SLCT Runs

Options SLCT Output
In Checkout, user is Tom -s 4 -j In Checkout, user is * (5)
In Checkout, user is Jerry -s 3 -j In Checkout, user is * (5)
In Checkout, user is Tom In Checkout, user is Tom (3)
In Checkout, user is Tom -s 2 -j In Checkout, user is Tom (3)
In Checkout, user is Jerry In Checkout, user is Jerry (2)

“In Checkout, user is Tom” and “In Checkout, user is Jerry” patterns are outputted.

For our case study, we wrote a Perl script which processes the SLCT output to ease our

comparison process. Since a long line can correspond to several line patterns, our script

matches each log line to the pattern with the largest support value. For example, using

the output from “-s 3 -j”, the log line “In Checkout, user is Tom” will be matched with the

“In Checkout, user is *” pattern. We also explored mapping a line to the pattern with the

smallest support value. The precision values using the smallest support mapping are similar

to the large support mapping. However, the recall values are slightly lower when mapping

to the smallest support value.

3.5.2 Measuring the Performance of an Approach

To measure the performance of a log abstraction approach, we need to know the correct

mapping between every log line and its corresponding execution event. Acquiring such

mapping is challenging, even if the source code of an application is available. Simply search-

ing for “LOG” statements (e.g., “printf” statements in C/C++ or “System.out” statements

in Java) is not sufficient since in many instances an execution event may be generated dy-

namically using several output statements in the source code. For example, the log line,

shown in Figure 3.4, is generated by three output statements: one statement is outside the

loop, and another two statements are inside the loop.

For our case study, we used two techniques to determine the gold standard (i.e., the

accurate mapping of each log line to its corresponding execution event). For application
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Log Lines Source Code 

User Shopping Basket contains: 2, 3, 5

LOG("User Shopping Basket contains: "); 
for (int i=0; i<shoppingBasket.size(); i++) 
{ 
    itemId = shoppingBasket[i]; 
    if(i > 0) { 
          LOG(" , ” + itemId); 
    } else { 
          LOG(itemId); 
    } 
} 

 

Figure 3.4: An example of an execution event generated by multiple output statements

App 1, we used an internationalization file to determine the mappings. The application

was internationalized and part of the internationalization efforts involved the manual map-

ping of each log line to an execution event. The execution events are stored in a separate

file which is translated to different languages. This file acted as the gold standard in our

performance evaluation for App 1. For the other three applications (App 2, LoadSim and

Blue Gene/L), we performed random sampling to measure the performance of the log ab-

straction approaches. We randomly picked 100 log lines and measured the performance

of SLCT and our approach on these log lines. Such sample size is sufficient to ensure a

confidence level of 90% and a confidence interval of ±8.2% for the measured precision and

recall results. We believe that a standard corpus, based on the logs of several enterprise

applications, would be very valuable for studying and comparing the performance of log

abstraction approaches. For this work, our random sampling and the internationalization

file were the only possible options instead of a complete manual analysis of the large log

files.

Table 3.12 tabulates the performance results for the two approaches. We note that

since SLCT uses a frequent item set technique, it requires a minimum support count as a

parameter. We experimented with different support count: 10, 50, 100, 150, 200, 250, 500,

750 and 1000. Due to page limitations, we do not discuss the details of these experiments.
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Table 3.12: Performance of both approaches on the studied applications
Application SLCT SLCT Our Our

Precision (%) Recall (%) Precision (%) Recall (%)
App 1 31.7 13.4 100 92.6

App 2 23.1± 8.2 7.5± 8.2 84.2± 8.2 82.4± 8.2

LoadSim 9.1± 8.2 9.1± 8.2 87.9± 8.2 85.3± 8.2

Blue Gene 33.3± 8.2 28.3± 8.2 100± 8.2 100± 8.2

However, our experiments show that the differences in performance due to different support

counts is not statistically significant (within 2% for recall and within 1% for precision) using

an ANOVA analysis with an alpha of 0.05. For reported results, we use a support count of

100.

The results reported in Table 3.12 show that our approach abstracts log lines to events

with high precision and recall across the studied applications. On the other hand, the

performance of SLCT is is not as high. The low precision and recall values for SLCT are due

to the following two reasons.

1. Many log lines are not abstract to any execution events by SLCT since these lines do

not occur often enough for a frequent pattern to emerge.

2. Although SLCT outputs a higher support count for the more general line pattern with

the -j option, it does not attempt to abstract patterns further. For example as shown

in Table 3.11 for support count 2, SLCT would output these two similar patterns “In

Checkout, user is Tom” and “In Checkout, user is Jerry”. SLCT does not attempt to

merge and abstract identified patterns further since it may lead to all patterns being

abstracted to a very general “*” pattern.

Our approach does not suffer from the problem of limited frequencies and subpattern

merging since we map log lines to events even if the line occurs a single time and our

Reconcile step identifies similar yet different by one token patterns (i.e., events) and merges

them.
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Adjusting Our Log Abstraction Heuristics

Our approach uses heuristics to recognize the dynamic information in a log line. These

heuristics are based on coding conventions and observations made by examining log lines.

However, these heuristics are not necessary complete nor applicable across applications.

For different software systems, even different versions of a system, we might need to adjust

our heuristics accordingly:

1. The anonymization rules depend on the application and might need to be adjusted

for each application. For the Blue Gene/L logs, the parameter values are printed in

“name:value” style rather than the “name=value” style. For both App 1 and App 2

logs, we needed to anonymize email addresses. For the LoadSim logs, we needed to

anonymize different message file names (“*.msg”). These were simple changes which

required minimal effort.

2. The Reconcile step, the final step in our approach, merges similar events which may

have been missed by earlier anonymization rules. If there are multiple execution

events which differ by one word in the same position and there are at least 5 of these

events, then these execution events are merged. This heuristic performs relatively

well on logs from the above four applications. However, this heuristic might need to

be adjusted for other types of applications.

3.5.3 Studying the Characteristics of Log Files

To gain a better understanding of the performance of our approach and the other log ab-

straction approach, we examine the properties of the studied log files. We want to determine

the effect of the complexity of a log file on the performance of a log abstraction approach.

We assess the complexity of a log file by calculating the Shannon Entropy metric for that

file [228]. The entropy metric assesses the amount of information contained in each log
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file. The metric measures the uncertainty which is related to information. For example,

suppose we monitored the output of an application which emitted 4 execution events, A, B,

C, or D. As we wait for the next execution event, we are uncertain as to which event the

application will produce (i.e., we are uncertain about the distribution of the output). Once

we see an event outputted, our uncertainty decreases. We now have a better idea about the

distribution of the output; this reduction of uncertainty has given us information. Shannon

proposed to measure the amount of uncertainty using entropy. Shannon’s entropy Hn is

defined as:

Hn(P ) = −
n∑

k=1

(pk × log2pk)

where pk ≥ 0, ∀k ∈ 1, 2, 3, . . . , n, (n is the number of events), and
∑n

k=1 pk = 1.

By defining the amount of uncertainty in a distribution, Hn describes the minimum

number of bits required to uniquely distinguish the distribution. In other words, it defines

the best possible compression for the distribution (i.e., the output of the application).

We measure the information contained in a log file by calculating Shannon’s entropy on

the distribution of execution events as reported by our approach. pk is the probability that

a log line will be assigned to the execution event k. To compare log files with a different

number of events, we use the normalized shannon entropy which divides the entropy value

by the log of the number of events (i.e., Hn(P )
log2n

). If all log lines belong to different execution

events (p
k
= 1

n), we achieve maximum entropy. On the other hand, if all log lines belong

to the same execution event i (i.e., p
k
= 0 for k 6= i), we achieve minimal entropy. The

larger the entropy, the more complex the log file is. Table 3.13 tabulates the normalized

entropy for the four log files (0 is minimal entropy and 1 is maximal entropy). The Table

shows that the Blue Gene/L and LoadSim log files are the least complex files, while App 1

log file is the most complex. A comparison of the entropy results shown in Table 3.13 and

the performance of both approaches, in Table 3.12, indicates that the performance of an
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Table 3.13: Shannon entropy for the log files of the studied applications
Application App 1 App 2 LoadSim Blue Gene/L

Entropy 0.71 0.52 0.39 0.40

Table 3.14: Detailed analysis of the content of the log lines for the studied applications
System Log Lines Execution Events Top Event (%) Top 10 Events (%)
App 1 723,608 396 5.85 41.1
App 2 1,668,876 338 12.8 70.5

LoadSim 67,651 163 60.5 86.3
Blue Gene/L 2,994,986 2,918 35.9 74.3

approach is independent of the complexity of a log file.

In addition to measuring the entropy of each log file, we calculated the number of log

lines in each log file, the number of identified execution events, the percentage of log lines

which are abstracted to the most occurring execution event (Top Event), and the percentage

of log lines which are abstracted to the top ten most occurring execution events (see Table

3.14). The metrics shown in the Table help explain the entropy values shown earlier in

Table 3.13. In particular, the higher the top ten column in Table 3.14, the lower is the

entropy due to the limited variability in the occurrence of execution events. For example,

for the LoadSim log file, which has the lowest entropy, the top ten column indicates that

86% of all log lines are abstracted to just ten execution events. A closer analysis of the

log file shows that LoadSim outputs a particular log line “$v: User is keeping a total of $v

messages open (Max = $v)” each time the system status changes.

We also note that even though the Blue Gene/L log file contains more execution events,

it is less complex than the App 1 logs. A manual analysis of the log files for both application

indicated that the differences are due to two different logging styles: Blue Gene/L logs

record the faults from different types of sources (e.g., disks, networks, printers, etc.). When

a fault happens (e.g., disk full), the fault will persist for a period of time until either the

fault is resolved or the process is aborted. Therefore, we expect to see hundreds of adjacent

log lines (e.g., disk full) which report the same message within a time period. The App

1 logs record the execution of different scenarios of a complex application, therefore, we
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expect a higher variability in the execution events.

3.6 Conclusion

Much of the research in dynamic analysis focuses on instrumenting an application and pro-

ducing tracing logs. All too often instrumenting an application is not possible in a produc-

tion setting due to performance overhead, lack of system knowledge, and the inaccessibility

of the source code. On the other hand, execution logs are commonly available for most

enterprise applications and could be used to study the dynamic behavior of complex appli-

cations.

It is difficult to analyze the log files produced by enterprise applications. Such logs are

very large with millions of lines in them. The logs rarely follow standard logging formats.

Techniques are needed to preprocess log files and identify the internal structure of each

log line. Abstraction log lines abstracted to execution events helps to comprehend and

summarize log files

In this chapter, we developed an approach that recognizes the internal structure of

logs lines. The approach uses clone detection techniques to abstract each log line to its

corresponding execution event. We conducted a case study using logs from four enterprise

applications that are developed by three different organizations. Our case study shows that

our approach performs well on large log files and has very high precision and recall.

As large scale systems are used by millions of users simultaneously, log lines from dif-

ferent scenarios and users are intermixed with each other in the execution logs. In the

next three chapters, we will link related execution context from the logs and form different

event representations (i.e., event pairs, event sequences and system states) to assess various

aspects of the system quality under load (i.e., functional, performance and reliability).



CHAPTER 4

Automatic Detection of Functional Problems

Many software applications must provide services to hundreds or thousands of users concurrently.
These applications must be load tested to ensure that they can function correctly under high load.
Functional problems in load testing are due to problems in the load environment, the load genera-
tors, and the application under test. It is important to identify and address these problems to ensure
that load testing results are correct and these problems are resolved. It is difficult to detect such
problems in a load test due to the large amount of data which must be examined. Current industrial
practice mainly involves time-consuming manual checks which, for example, grep the logs of the
application for error messages.

In this chapter, we present an approach which mines the execution logs of an application to
uncover the dominant behavior for the application and flags functional anomalies (i.e., deviations)
from the dominant behavior. Using a case study of two open source and two large enterprise soft-
ware applications, we show that our approach can automatically identify functional problems in a
load test. Our approach flags < 0.01% of the log lines for closer analysis by domain experts. The
flagged lines indicate load testing problems with a relatively small number of false alarms. Our
approach scales well for large applications and is currently used daily in practice.

4.1 Introduction

M
ANY SYSTEMS ranging from e-commerce websites to telecommunications must

support concurrent access by hundreds or thousands of users. To assure the

quality of these systems, load testing is a required testing procedure in addi-

tion to conventional functional testing procedures, such as unit and integration testing.

107
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Load testing, in general, refers to the practice of assessing the system behavior under

load [70]. Load refers to the rate of the incoming requests to the system. A load test

usually lasts for several hours or even a few days. Load testing requires one or more load

generators which mimic clients sending thousands or millions of concurrent requests to the

application under test. During the course of a load test, the application is monitored and

performance data along with execution logs are stored. Performance data record resource

usage information such as CPU utilization, memory, disk I/O and network traffic. Execution

logs record the run time behavior of the application under test.

As observed by Visser [34], load testing is a difficult task requiring a great understanding

of the application under test. Problems in the application under test (e.g., bugs), the load

generator or the load environment are usually the sources of functional problems under

load. However, as discussed in Chapter 1, looking for functional problems in a load testing

is a time-consuming and difficult task, due to the challenges like no documented system

behavior, monitoring overhead, time pressure and large volume of data. Most practition-

ers look for the functional problems under load using ad-hoc manual searches for specific

keywords like “failure”, or “error”. Then load testing practitioners analyze the context of

the matched log lines to determine whether they indicate functional problems or not. De-

pending on the length of a load test and the volume of generated data, it takes load testing

practitioners several hours to perform these checks.

We believe this current practice is not efficient since it takes hours of manual analysis,

nor is it sufficient since it may miss possible problems. On one hand, not all log lines

containing terms like “error” or “failure” are worth investigating. A log such as “Failure to

locate item in the cache” is likely not a bug. On the other hand, not all errors are indicated

in the log file using the terms “error” or “failure”. For example, even though the log line

“Internal queue is full” does not contain the words “error” or “failure”, it might also be

worthwhile investigating it, since newly arriving items are possibly being dropped.

In this chapter, we introduce an approach for automatically uncovering the dominant



CHAPTER 4. AUTOMATIC DETECTION OF FUNCTIONAL PROBLEMS 109

behavior of an application by mining logs generated during a load test. We use the recov-

ered dominant behavior to flag any deviation, i.e., anomalies, from the dominant behavior.

The main intuition behind our work is that a load test repeatedly executes a set of scenar-

ios over a period of time. Therefore, the applications should follow the same behavior (e.g.

generate the same logs) each time the scenario is executed. Therefore, the dominant behav-

ior is probably the normal (i.e., correct) behavior and the minority (i.e. deviated) behaviors

are probably troublesome and worth investigating. The main contributions of our work is

as follows:

1. This work is the first work to propose a systematic approach to detect functional

problems in a load test;

2. Unlike other existing log analysis work which require a user specified model (e.g.,

[44]), our approach is self-learning, requiring little domain knowledge about an ap-

plication and little maintenance to update the models over releases. The model for

the dominant behavior is created automatically;

3. Case studies show that our approach flags a very small percentage of log lines that are

worth investigating. The approach produces very few false alarms (precision > 50%)

with many of the flagged lines indicating load testing problems;

4. Our proposed approach is easy to adopt and scales well to large scale enterprise ap-

plications. Our approach is currently used daily in practice for analyzing the results

of load tests of large enterprise applications.

Organization of the Chapter

This chapter is organized as follows: Section 4.2 explains the types of problems that can

occur during a load test. Section 4.3 describes our anomaly detection approach. Section 4.4

presents a case study of our anomaly detection approach. We have applied our approach
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to uncover functional problems in load tests for two open source and two large enterprise

applications. Section 4.5 discusses our current approach and present some of its limitations.

Section 4.6 describes related work. Section 4.7 concludes this chapter.

4.2 Functional Problems in a Load Test

Load testing involves the setup of a complex load environment. The application under test

should be setup and configured correctly. Similarly, the load generators must be configured

correctly to ensure the validity of the load test. The results of a load test must be analyzed

closely to discover any problems in the application under test (i.e., load related problems),

in the load environment, or in the load generation. We detail the various types of functional

problems that occur during load testing.

Bugs in the Application Under Test

The main purpose of a load test is to uncover load sensitive errors. Load sensitive errors are

problems which only appear under load or extended execution. For example, memory leaks

are not easy to spot under light-load with one or two clients, or during a short-run. However,

memory leaks usually exhibit a clear trend during extended runs. Another example of load

sensitive errors are deadlock or synchronization errors which show up due to the timing of

concurrent requests.

Problems with the Load Environment

Problems with the load testing environment can lead to invalid test results. These problems

should be identified and addressed to ensure that the load test is valid. Examples of load

environment problems are:

Mis-configuration: The application under test or its run-time environment, e.g., databases
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or web servers, may be mis-configured. For example, the number of concurrent con-

nections allowed for a database may be incorrect. A small number of allowed con-

nections may prevent the login of several users and would lead to a lower load being

applied on the application under test.

Hardware Failures: The hardware running the application and the load test may fail. For

example, the hard disks may fill up due to the tester forgetting to clean up the data

from an older run. Once the disk is full, the application under test may turn-off specific

features. This would lead to an incomplete load test since some of the functionalities

of the application have not been fully load tested.

Software Interactions: A load test may exhibit problems due to intervention from other

applications. For example, during a long running load test, an anti-virus software may

start up and and intervene with the running load test. Or the operating system may

apply updates and reboot itself.

Problems with the Load Generation

Load generators are used to generate hundreds or thousands of concurrent requests trying

to access the application. Problems in the load generators can invalidate the results of a

load test. Examples of possible load generation problems.

Incorrect Use of Load Generation Tools: Some of the generic load testing tools [32] re-

quire load testing practitioners to first record the scenarios, edit the recordings and

replay them. This is an error-prone process. Edited recordings may not trigger the

same execution paths as expected. For example, in a web application, the recorded

URLs have a session ID which must be consistent for each request by the same user

otherwise the application would simply return an error page instead of performing

the expected operations.
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Buggy Load Generators: The load generation tools are software applications which may

themselves have load sensitive problems or bugs. For example, rather than sending

requests to the application under test in a uniform rate, many load generation tools

allow load testing practitioners to specify different distributions. However, the re-

quests may not follow that distribution during a short run.

It is important to identify and remedy these functional problems. However, identifying

these functional problems is a challenging and time-consuming task due to the large amount

of generated data and the long running time of load tests. The motivation of our work is to

help practitioners identify these functional problems.

4.3 Our Anomaly Detection Approach

The intuition behind our approach is that load testing involves the execution of the same

operations a large number of times. Therefore, we would expect that the application under

test would generate similar sequences of events a large number of times. These highly

repeated sequences of events are the dominant behavior of the application. Variations from

this behavior are anomalies which should be closely investigated since they are likely to

reveal load testing problems.

We cannot instrument the application to derive the dominant behavior of the applica-

tion, as instrumentation may affect the performance of the application and the software

behavior won’t be comparable with the deployed application. Fortunately, most large en-

terprise applications have some form of logging enabled for the following reasons:

1. to support remote issue resolution when problems occurs and

2. to cope with recent legal acts such as the “Sarbanes-Oxley Act of 2002” [23] which

stipulate that the execution of telecommunication and financial applications must be

logged.
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Figure 4.1: Our anomaly detection approach

Such logs record software activities (e.g. “User authentication successful”) and errors

(e.g. “Fail to retrieve customer profile”). We can mine the dominant behavior of the appli-

cation from these commonly available logs. In this section we present an approach to detect

anomalies in these logs. These anomalies are good indicators of problems in a load test.

As shown in Figure 4.1, our anomaly detection approach takes a log file as input and

goes through four steps: Log Decomposition, Log Abstraction, Identification of the Domi-

nant Behavior, and Anomaly Detection. Our approach produces an HTML anomaly report.

We explain each step in detail in the following subsections.

4.3.1 Log Decomposition

Most modern enterprise applications are multi-threaded applications which process thou-

sands of transactions concurrently. The processing of all these transactions is logged to a

log file. Related log lines do not show up continuously in the log file, instead they may be

far apart. The log decomposition step processes the log file and groups related log lines

together. Log lines could be related because they are processed by the same thread or be-

cause they are related to the same transaction. Most of the enterprise applications have a

standard format for logging the transaction information (e.g. header part of a log line), as

this information is important for remote issue resolution. For example, in a web applica-

tion, each log line contains a session or customer ID. Or in a multi-threaded application,

each log line contains a thread ID. Or in a database application, each log line might contain

the transaction ID. Sometimes, a log line might contain multiple types of IDs. For example,

in an e-commerce application, a log line can contain both the session and customer IDs.

Depending on the granularity of the analysis, one or multiple of these IDs are used to group
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Table 4.1: Example log lines
# Log lines Group

1. accountId(Tom) User purchase, item=100 Tom
2. accountId(Jerry) User purchase, item=100 Jerry
3. accountId(Tom) Update shopping cart, item=100 Tom
4. accountId(John) User purchase, item=103 John
5. accountId(Tom) User checkout Tom
6. accountId(Jerry) Update shopping cart, item=100 Jerry
7. accountId(John) User purchase, item=105 John

Table 4.2: Example execution events
Event ID Event Template

E1 User purchase, item=$v
E2 Update shopping cart, item=$v
E3 User checkout

related lines together.

Table 4.1 shows a log file with 7 log lines. If the log file is decomposed using the

accountId field, the log decomposition step would produce 3 groups (Tom, Jerry and John).

This step requires domain knowledge by the load testing practitioner to decide which field

to use to decompose the logs.

4.3.2 Log Abstraction

Each log line is a mixture of dynamic and static information. Log lines containing the

same static information belong to the same execution event. We want a technique that

would recognize that two log lines are due to the same event. We call this process the

log abstraction problem. In Chapter 3, we have proposed a technique which can uniquely

map each log line to an execution event. The technique parameterizes log lines using a

similar process as token-based code cloning techniques. The log lines in Table 4.1 would

be abstracted to only 3 execution events as shown in Table 4.2. The “$v” sign indicates a

runtime generated parameter value.

Based on the log decomposition and abstraction steps, the sample log file in Table 4.1

would result in the grouping of events shown in Table 4.3.
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Table 4.3: The sample log file after the log decomposition and the log abstraction steps
Group Event ID Log line #

Tom E1 1
E2 3
E3 5

Jerry E1 2
E2 6

John E1 4
E1 7

4.3.3 Identification of the Dominant Behavior

In this step, we identify the dominant behavior in the logs. We achieve this by analyzing the

execute-after relations for each event E. The execute-after relation for an event E, denote

by (E, *), refers to the occurrences of all the event pairs with the leading event E. Two

events E1 and E2 form an event pair, if

1. E1 and E2 belong to the same group; and

2. E2 is the next event that directly follows E1 .

In the event pair (E1 , E2), E1 is referred to as the leading event. The execute-after pair

for event E1 is formed by aggregating all the event pairs which have E1 as the leading event.

Table 4.4 shows all the execute-after pairs in Table 4.3. There are two execute-after pairs:

one for E1 and one for E2 . For each execute-after pair, the table shows the event pairs, the

number of occurrences for each event pair, and a sample log lines corresponding to the first

occurrence of each event pair. There are two types of events which are executed after the

User purchase event (E1). E1 could be followed with another E1 . This is generated by John’s

session from log lines 4 and 7. Or E1 could be followed with Update shopping cart (E2).

There are two occurrences of (E1 ,E2) which are attributed to Tom’s and Jerry’s sessions.

The first and third log lines correspond to the first occurrence of the event pair (E1 ,E2).

Event pairs are grouped by the execute-after relations. For example, (User purchase, *)

includes all the event pairs which start with the User purchase event. Thus, the event pairs

(User purchase, Update shopping cart) and (User purchase, User purchase) are grouped

under the execute-after relations for the User purchase event, (User purchase, *).
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Table 4.4: Log file after the identification of the dominant behavior step
(E, ∗) Event Pair Occurrences Sample Line #

(E1 , *) (E1 , E2) 2 1, 3
(E1 , E1) 1 4, 7

(E2 , *) (E2 , E3) 1 3, 6

Table 4.5: Summary of execute-after pairs
(E, ∗) Event Pair Frequency

(User purchase, *) (User purchase, Update cart) 1, 000
(User purchase, User purchase) 1

(User signin, *) (User signin, Browse catalog) 100
(User signin, Update account) 20
(User signin, Browse history) 10

(Browse catalog, *) (Browse catalog, User purchase) 500
(Browse catalog, Update account) 500
(Browse catalog, Search item) 100

The dominant behavior for (E, *) refers to the largest event pair(s) which starts with E.

The dominant behavior pairs for each execute-after relation are shown in bold in Table 4.4.

The dominant behavior for (E1 , *) is (E1 , E2). The dominant behavior for (E2 , *) is (E2 ,

E3). Sample line numbers show the first occurrences of the event-pair in the log file. The

sample log line numbers are displayed later in the anomaly report.

4.3.4 Anomaly Detection

The previous step identifies the dominant behavior in the logs. In this step, we mark any

deviations, i.e., anomalies, from the domination behavior for closer investigation. As load

testing practitioners have limited time, we need a way to rank anomalies to help load

testing practitioners prioritize their investigation. We use a statistical metric called z-stats.

Recent work by Kremenek and Engler [170] shows that the z-stats metric performs well in

ranking deviation from dominant behaviors when performing static analysis of source code.

The z-stats metric measures the amount of deviation of an anomaly from the dominant

behavior. The higher the z-stats is, the stronger the probability that the majority behavior

is the expected behavior. Therefore the higher the z-stats value, the higher the chance

that a deviation, i.e. low frequency pairs, are anomalies that are worth investigating. The
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Anomaly Analysis Report: 
# Z-Stat Kinds Min Max Total Event

E1 10.44 2 1 1,000 1,001 accountId(Tom) User purchase, item=100

E3 -4.97 3 10 100 130 accountId(Tim) User signin, user=Tim

E4 -49.25 3 100 500 1,100 accountId(John) Browse catalog, catalog=book

Figure 4.2: An example anomaly report

formula to calculate z-stats is as follows: z(n,m) =
(m
n
−p0 )√

p0×(1−p0 )

n

, where n is total number of

occurrences of event E, m is the occurrences of the dominant event pairs which starts with

E, and p0 is the probability of the errors. p0 is normally assigned a value of 0.9 [112] for

error ranking.

We illustrate the use of z-stats using the example shown in Table 4.5 with dominant

behavior marked in bold. The dominant behavior for (User purchase, *) is (User purchase,

Update cart). Thus the z-stats for (User purchase, *) is calculated as follows (m = 1000,

n = 1001): z(1001, 1000) =
( 1000
1001
−0.9)√

0.9×(1−0.9)
1001

= 10.44, and the z-stats for (User signin, *) is

z(m = 100, n = 130) = −4.97. The dominant behavior for (Browse catalog, *) is (Browse

catalog, Purchase item) or (Browse catalog, Update account). Thus the z-stats for (Browse

catalog, *) is z(m = 500, n = 1100) = −49.25. (User purchase, *) has a higher z-stats score

than (User signin, *) and (Browse catalog, *). This indicates that low frequency event pairs

in the group of (User purchase, *) are likely anomalies that should be investigated closely.

Normally, each purchase is followed by an update. The missing Update cart event suggests

that the system might miss information about items selected by a customer.

4.3.5 Anomaly Report

To help a load testing practitioner examine the anomalies, we generate an anomaly report.

The report is generated in dynamic-HTML so testers can easily attach it to emails that are

sent out while investigating a particular anomaly.
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Anomaly Analysis Report: 
# Z-Stat Kinds Min Max Total Event

E1 10.44 2 1 1,000 1,001

accountId(Tom) User purchase, item=100

Freq Sample Details (Sort by Freq)

1,000 (99%)
log.txt, line 20 
log.txt, line 23

E1 --> accountId(Tom) User purchase, item=100 

E2 --> accountId(Tom) Update shopping cart, item=100

1 (<1%)
log.txt, line 104 
log.txt, line 108

E1 --> accountId(John) User purchase, item=103 

E1 --> accountId(John) User purchase, item=105

E3 -4.97 3 10 100 130 accountId(Tim) User signin, user=Tim

E4 -49.25 3 100 500 1,100 accountId(John) Browse catalog, catalog=book

Figure 4.3: An expanded anomaly report

Figure 4.2 shows the generated report for our running example. Our anomaly report

is a table with each row corresponding to one execute-after relation. Rows are sorted by

decreasing z-stats score. Execute-after relations with high z-stats value are more likely to

contain anomalies that are worth investigating. The first row in Figure 4.2 corresponds to

the execute-after pair for the User purchase event (E1). There are in total two types of event

pairs with User purchase as the leading event. One event pair occurs 1, 000 times and the

other event pair occurs just once. In total, all the event pairs, with User purchase as the

leading event, appear 1, 001 times during the course of this load test. A sample line for this

event (E1) is also shown.

Each sample line is a clickable hyperlink. Once a user clicks the hyperlink, the report

shows detailed information about the execute-after pairs for that event. Figure 4.3 shows

the screenshot of the anomaly report after clicking the sample line for Event E1 . Event pairs

for (User purchase, *) are sorted with decreasing frequency. The topmost event pair (User

purchase, Update cart(E2)) is the dominant behavior. (User purchase, Update cart) occurs

99% (1, 000) of the time. The first occurrence of this event pair is in log file log.txt lines

20 and 23. The other event pair (User purchase, User purchase) is a deviated behavior. It

occurs only once (< 1%). It is recorded in log file log.txt lines at 104 and 108.
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4.4 Case Studies

We have conducted three case studies on four different applications. The application are:

the Dell DVD Store (DS2), the JPetStore application (JPetStore), and two large enterprise

software applications. Table 4.6 gives an overview of these four case studies. Based on our

experience, z-stats lower than 10 are likely noise. Thus, we only output event pairs with

z-stats score larger than 10 in these four experiments. The table summarizes the types of the

applications, the duration of the load test, size of logs, and our anomaly detection results.

For example, Dell DVD Store is an open source web applications implemented using JSP.

The load test was 5 hours long and generated a log file with 147, 005 log lines. Our anomaly

detection approach takes less than 5 minutes to process the log file. We have discovered 23

abstract event types. There are 4 anomalies detected and 18 log lines are flagged, that is

less than 0.01% of the whole log file. Among these four anomalies, two of them are actual

problems in the load test. Our precision is 50%. Among these two problems: one is a bug in

the application under test, the other is a bug in the load generator. We did not detect any

problems with the load environment. The percentage of flagged lines is the total number

of log lines shown in the anomaly report. As shown in Figure 4.4, there are total 9 event

pairs (3 + 2 + 2 + 2). Thus our approach has flagged 9× 2 = 18 lines. The processing time

for our approach is measured using a laptop with 2G memory, 7, 200 RPM hard-drive and a

Dual Core 2.0 GHz processor.

The rest of this section covers the details of our case studies. For each application, we

present the setup of the load test then we discuss the results of applying our approach to

identify problems. The goal of the studies is to measure the number of false positive (i.e.

precision) reported by our approach. A false positive is a flagged anomaly that did not point

to a load testing problem. We cannot measure the recall of our approach since we do not

know the actual number of problems.
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Table 4.6: Overview of our case studies
Applications DS2 JPetStore App 1 App 2

Application Domain Web Web Telecom Telecom
License Open Source Open Source Enterprise Enterprise

Source Code JSP, C# J2EE C++, Java C++, Java
Load Test Durations 5 hr 5 hr 8 hr 8 hr
Number of Log lines 147, 005 118, 640 2, 100, 762 3, 811, 771

% Flagged 18
147005

(< 0.01)% 8
118640

< 0.01% < 0.01% < 0.01%
Number of Events 23 22 > 400 > 400
Application Size 2.3M 4.9M > 300M > 400M

Precision 2
4
(or 50%) 2

2
(or 100%) 56% 100%

Processing Time < 5 min < 5 min < 15 min < 15 min
Break Down of Problems

(Application/Environment/Load) 1/0/1 2/0/0 Y/Y/N Y/N/N

4.4.1 DELL DVD Store

The DVD Store (DS2) application is an online web application [6]. DS2 provides basic e-

commerce functionality, including: user registration, user login, product search, and item

purchase. DS2 is an open source application and is used to benchmark Dell hardware, and

for database performance comparisons [20]. DS2 comes in different distribution package

to support various web platforms (e.g. Apache Tomcat, or ASP .NET) and database vendors

(MySQL, Microsoft SQL Server, and Oracle).

Experiment Setup

DS2 contains a database, a load generator and a web application. For a load test, the

database is populated with entries using provided scripts. The web application consists of

four JSP pages which interact with the database and display dynamic content. The DS2 load

generator supports a range of configuration parameters to specify the workload. Table 4.7

shows the parameters used in our experiment. Note that “Think Time” refers to the time the

user takes between different requests. We use a small database, which by default contains

20, 000 users. Parameter values marked with a “*” indicate that we use the default value.

In this experiment, we use MySQL as the backend database and the Apache Tomcat as our

web server engine. We increase the number of allowed concurrent connections in MySQL

to enable a large number of concurrent access. For this configuration, The web application
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Table 4.7: Workload configuration for DS2
Parameter Value

Duration 5 hours
Number of driver threads 50
Startup request rate 5
Think time 50 sec
Database size Small
Percentage of new customers 20%
Average number of searches per order 3*
Average number of items returned in each
search

5*

Average number of items per order 5*

layer is implemented in JSP and the load generator is implemented in C#.

Each action from the user (login, registration, browse, purchase) results in a separate

database connection and transaction. Since DS2 has no logs, we manually instrument its

four JSP pages so that logs are output for each database transaction. Each log line also

contains the session ID and customer ID.

Analysis of the Results of the Load Test

The load test generated a log file with 147, 005 log lines for 23 execution events. Our

approach takes about 2 minutes to process the logs.

Figure 4.4 shows the screenshot of the anomaly report for the DS2 application. The

report shows 4 anomalies. We cross examine the logs with the source code to determine

whether the flagged anomalies are actual load testing problems. The precision of this report

is 50%. Two out of four anomalies are actual problems in the load tests. We briefly explain

these two problems.

Figure 4.4 shows the details of the first anomaly. The first execute-after pair is about

a customer trying to add item(s) into their shopping cart (E13). About 99% (87, 528) of

the time, the customer’s shopping cart is empty. Therefore, a shopping cart is created in

the database along with the purchased item information (E14). Less than 1% (1, 436) of

the time, the customer adds more item(s) into their existing shopping cart (E13). For the

other 358 (< 1%) cases, the customer directly exits this process without updating the order
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information (E15).

The first event pair is the dominant behavior. The second event pair refers to the cases

that customers purchases multiple items in one session. However, the last event pair (E13 ,

E15) looks suspicious. A closer analysis of the DS2 source code reveals that this is a bug

in the web application code. DS2 pretty prints any number if it is larger than 999. For

example, 1000 would be outputted as 1, 000. However, the pretty printed numbers are con-

catenated into the SQL statement which are used for updating (or inserting) the customer’s

information. The additional comma results in incorrect SQL code since a comma in the

SQL statements means different columns. For example, a SQL statement like: “INSERT into

DS2.ORDERS (ORDERDATE, CUSTOMERID, NETAMOUNT, TAX, TOTALAMOUNT) (‘2004-

01-27’, 24, 888, 313.24, 1,200)” will cause an SQL error, since SQL treats a value of 1, 200

for TOTALAMOUNT as two values: 1 and 200.

The second and third anomalies are not problems. They are both due to the nature of

the applied load. For example, the second anomaly is because we only have a few new

customers in our experiment (20% new customers in Table 4.7). The expected behavior

after each customer login is to show their previous purchases. There are a few occurrences

where DS2 does not show any previous purchase history. These occurrences are due to

newly registered customers who do not have any purchase history.

The fourth anomaly is due to a problem with the load generator. The load generator

randomly generates a unique ID for a customer. However, the driver does not check whether

this random number is unique across all concurrent executing sessions. The shown anomaly

is due to one occurrence, in a 5 hour experiment, where two customers were given the same

customer ID.
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Anomaly Analysis Report: 
# Z-Stat Kinds Min Max Total Event

E13 79.61 3 358 87,528 89,322

SessionID=19420, Entering purchase for simple quantity queries

Freq Sample Details (Sort by Freq)

87,528 (98%)
ds2logs.txt 688 
ds2logs.txt 689

E13 --> SessionID=19420, Entering purchase for simple quantity queries 

E14 --> SessionID=19420, Initial purchase, update cart

1,436 (<1%)
ds2logs.txt 2,484 
ds2logs.txt 2,488

E13 --> SessionID=16242, Entering purchase for simple quantity queries 

E13 --> SessionID=16242, Entering purchase for simple quantity queries

358 (<1%)
ds2logs.txt 10,020 
ds2logs.txt 10,021

E13 --> SessionID=13496, Entering purchase for simple quantity queries 

E15 --> SessionID=13496, Finish purchase before commit

E6 39.96 2 1 14,393 14,394 SessionID=11771, Login finish for existing user

E19 34.73 2 317 16,273 16,590 SessionID=14128, End of purchase process

E22 20.65 2 1 3,857 3,858 SessionID=12067, Purchase complete

Figure 4.4: DS2 Anomaly Report

4.4.2 PetStore

We used our approach to verify the results of a load test of another open source web ap-

plication software called JPetStore [11]. Unlike Sun’s original version of Pet Store [16]

which is more focused on demonstrating the capability of the J2EE platform, JPetStore is a

re-implementation with a more efficient design [13] and is targeted for benchmarking the

J2EE platform against other web platforms such as .Net.

JPetStore is a larger and more complex application relative to DS2. Unlike DS2 which

embeds all the application logic into the JSP code, JPetStore uses the “Model-View-Controller”

framework [15] and XML files for object/relational mappings.

Experiment Setup

We deployed JPetStore application on Apache Tomcat and use MySQL as the database back-

end. As JPetStore does not come with a load generator, we use Webload [32], an open

source web load testing tool, to load test the application. Using webload we recorded four

different customer scenarios for replay during load testing. In Scenario 1, a customer only

browses the catalog without purchasing. In Scenario 2, a new customer first registers for

an account, then purchase one item. In Scenario 3, a new customer first purchases an item,
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Table 4.8: Workload configuration for JPetStore
Parameter Value

Duration 300 minutes (5 hours)
Request rate 5 - 150 (random distribution)
Think time 50 sec
Scenario 1/2/3/4 25% / 25% / 25% / 25%

then register for an account then checkout. In Scenario 4, an existing customer purchases

multiple items.

In this load test, we ran two WebLoad instances from two different machines sending

requests to the JPetStore web application. For each WebLoad instances, we added in 5, 000

users. Table 4.8 shows the workload configuration parameters for JPetStore load test. Note

that WebLoad can specify the distribution of the generated request rate. In this experiment,

we specify a random distribution for the user’s requests with minimum rate 5 requests/sec

and maximum rate 150 requests/sec.

Analysis of the Results of the Load Test

The load test generated a log file with 118,640 log lines. It takes our approach around

2 minutes to process the logs. Two anomalies are reported and they are both application

problems.

The first problem is a bug in the registration of new users. We have two load genera-

tors running concurrently. Each load generator has an input file with randomly generated

customer IDs. These customer IDs are used to generate web requests for scenarios (2 and

3). There are a some user IDs which are common to both WebLoad instances. If a user tries

to register an ID which already exists in the database, PetStore does not gracefully report a

failure. Rather, PetStore will output a stack of JSP and SQL errors.

The second problem reveals that JPetStore does not process page requests when it is un-

der a heavy load. There is one instance out of 22, 330 instances where the header JSP page

is not displayed. The error logs for the WebLoad tool indicate that the PetStore application

timed out and could not process the request for the header JSP page on time.
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4.4.3 Large Enterprise Applications

We applied our approach on two large enterprise applications, which can handle thousands

of user requests concurrently. Two applications are both tested for 8 hours. It takes our

approach about 15 minutes to process the log files. Table 4.6 shows the precision of our ap-

proach (56% - 100%). We have found bugs in development versions of the applications (App

1 and App 2). One of the bugs in the applications shows the SQL statement was corrupted

due to a memory corruption. Further investigation leads to a memory corruption problems

in the systems. In addition, our approach detected problems with the load environment

due to the complexity of the load environment for the enterprise applications. The false

positives in App 1 are mainly due to some rare events at the start of the application. When

using our approach in practice, load testing practitioners commented that:

1. Our approach considerably speeds up the analysis work for a load test from several

hours down to a few minutes.

2. Our approach helps uncover load testing problems by flagging lines that do not simply

contain keywords like “error” or “failure”.

3. Our approach helps load testing practitioners communicate more effectively with de-

velopers when a problem is discovered. The generated HTML report can be emailed

to developers for feedback instead of emailing a large log file. Moreover the report

gives detailed examples of the dominant and the deviated behaviors. These simple

examples are essential in easing the communication between the testers and the de-

velopment team.

4.5 Discussions and Limitations

Our approach assumes that load testing is performed after the functionality of the applica-

tion is well tested. Thus, the dominant behavior is the expected behavior and the minority
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deviated behavior is the anomalies. However, this might not be a valid assumption. For

example, if the disk of an application fills up one hour into a ten hour load test, then the

majority of the logs will be the error behavior. That said, our approach would still flag this

problem and the expert analyzing the logs would recognize that dominant behavior is the

problematic case.

Our approach processes the logs for the whole load test at once. This whole processing

might cause our approach to miss problems. For instance, if the disk for the database

fills up halfway during a load test, the application under test will report errors for all the

incoming requests which arrives afterwards. Normal and erroneous behavior may have

equal frequencies. Our statistical analysis would not flag such a problem. However, if we

segment the log files into various chunks and process each individual chunk separately, we

can detect these types of anomalies by comparing frequencies across chunks.

Finally, our anomaly report contains false positives. Anomalies can be flagged due to

the workload setup. For example, our report for the DS2 case study contains two false

positives which are due to the workload. Also in a threaded application when a thread is

done processing a particular request and starts processing a new request, the pair of events:

event at end of a request and event at start of a request may be incorrectly flagged as an

anomaly. We plan on exploring techniques to reduce with these false positives. For now,

load testing practitioners are able to specify a false positive pair in a separate exclusion file.

These pairs are used to clean up the results of future log file analysis.

4.6 Related Work

Much of the work in literature focuses on identifying bugs in software applications. Our

work is the first, to our knowledge, that tackles the issue of identifying problems in load

tests. These problems may be due to problems in the application, load generation or load

environment.
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Table 4.9: Summary of Related Work
Category References

Key Idea Technique Challenges

Static

[112] Inferring source code de-
viations

Statistics (z-stats) Requires templates

[176] Inferring call sequences
inconsistency

Frequent Item-Set min-
ing

Too many reported viola-
tions, precision unknown

Dynamic

[92] Comparing pass and fail-
ure runs

Finite State Machine Scalability

[137] Inferring invariant viola-
tions

Invariants Confidence Scalability

[179] Inferring control flow
abnormality

Hypothesis Testing Scalability

[241] Inferring error handling
policy

Statistics Coverage

[248] Inferring programme
properties

Heuristics Requires heuristics for in-
teresting properties

Hybrid [93] Inferring invariant viola-
tions

Testing Scalability

The work in the literature closest to our approach is all the work related to inferring

dominant properties in a software application and flagging deviations from these properties

as possible bugs. Such work can be divided into three types of approaches: 1) Static

approaches which infer program properties from the source code and report code segments

which violate the inferred properties; 2) Dynamic approaches infer program properties

from program execution traces; 3) Hybrid approaches combine both approaches. Table 4.9

summarizes the related work. For each work, the table shows the main idea of the approach,

the used techniques, and the challenge of directly adopting this approach to load testing.

Dawson et al. [112] gather statistics about the frequency of occurrence for coding pat-

terns such as: pointer deference and lock/unlock patterns. They then use z-stats to detect

and rank the errors. Li et. al. [176] use frequent item-set mining techniques to mine the

call graph for anomalies. However, this approach produces many violations and the authors

only evaluate a few violations thus the overall precision is unknown.

Hangal et al. [137] use dynamically inferred invariants to detect programming errors.

Csallner et. al. [93] further improve the precision of bug detection techniques by executing

the program using automatically generated test cases that are derived from the inferred
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invariants. Liu et. al. [179] use hypothesis testing on code branches to detect programming

errors. The above three techniques cannot be applied to load testing since the detailed

instrumentations would have an impractical performance overhead.

Weimer et al. [241] detect bugs by mining the error handling behavior using statistical

ranking techniques. Their approach only works for Java applications which have try-catch

blocks and requires good knowledge of the source code which is not applicable for load

testing practitioners..

Yang et al. [248] instrument the source code and mine the sequences of call graphs

(pairs) to infer various programme properties. They look at function calls which are directly

adjacent to each other as well as gapped function pairs. Due to the large size of inferred

explicit properties, they use heuristics to select interesting patterns (e.g. lock/unlock).

Their approach requires a great deal of manual work and the instrumentations has a high

performance overhead.

Cotroneo et al. [92] produce a finite state machine based on profiled data. Then a failed

workload is compared against the finite state machine to infer the failure causes. Profiling

during a load test is infeasible due to inability to collect performance data. In addition,

inferring a deterministic finite machine is not possible in a complex workload due to the

large number of events that are generated using random load generators.

4.7 Conclusion

In this chapter, we present an approach to automatically identify functional problems under

load. Our approach mines the logs of an application to infer the dominant behavior of the

application. The inferred dominant behavior is used to flag anomalies. These anomalies are

good indicators of load testing problems. Our case study on four applications shows that

our approach performs with high precision and scales well to large systems. In the next

chapter, we will explore an automated approach to detect performance problems under

load.



CHAPTER 5

Automatic Detection of Performance Problems

Once the system is verified to function correctly under load, the next step is to determine if there
are any non-functional problems (e.g., performance problems). Performance problems refer to the
situations where a system suffers from unexpectedly high response time or low throughput. It
is difficult to detect performance problems in a load test due to the absence of formally-defined
performance objectives and the large amount of data that must be examined.

In this chapter, we present an approach which automatically analyzes the execution logs of a load
test for performance problems. We first derive the system’s performance baseline from previous runs.
Then we perform an in-depth performance comparison against the derived performance baseline.
Case studies show that our approach produces few false alarms (with a precision of 77%) and scales
well to large industrial systems.

5.1 Introduction

L
OAD TESTING, in general, refers to the practice of assessing the quality of a system

under load [70]. A load is typically based on an operational profile, which de-

scribes the expected workload of the system once it is operational in the field [48,

55]. A load consists of the types of executed scenarios and the rate of these scenarios. For

example, the load of an e-commerce website would contain information such as: browsing

(40%) with a min/average/max rate of 5/10/20 requests/sec, and purchasing (40%) with

a min/average/max rate of 2/3/5 requests/sec. A load test usually lasts for several hours

129
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or even a few days.

The goal of a load test is to uncover functional and non-functional problems under load.

Functional problems are often bugs, which do not surface during the functional testing pro-

cess. Deadlock is an example of functional problems under load. Typical non-functional

problems are performance problems like high response time or low throughput under load.

As discussed in Chapter 1, current practice of load testing analysis involves with manual

high level checks. We believe this current practice is not efficient since it takes hours of

manual analysis, nor is it sufficient since it might miss problems. Our previous work (Chap-

ter 4) flags possible functional problems by mining the execution logs of a load test to

uncover dominant execution patterns and to automatically flag functional deviations from

this pattern within a test. In this chapter, we introduce an approach that automatically flags

possible performance problems in a load test.

We cannot derive the dominant performance behavior from just one load test as we

did in Chapter 4, since the load is not constant. A typical workload usually consists of

periods simulating peak usage and periods simulating off-hours usage. The same workload

is usually applied across load tests, so that the results of prior load tests are used as an

informal baseline and compared against the current run. If the current run has scenarios

which follow a different response time distribution than the baseline, this run is probably

troublesome and worth investigating. The main contributions of this chapter are as follows:

1. To the best of our knowledge, our approach is the first work to automatically detect

performance problems in the load testing results.

2. Our approach makes use of readily available execution logs, which avoids the need of

performance impacting instrumentation [61, 88] .

3. Our approach automatically reports scenarios with performance problems and pin-

points the performance bottlenecks within these scenarios. Case studies show that our
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approach scales well to large systems and produces few false alarms (with a precision

of 77%).

Organization of the Chapter

The chapter is organized as follows: Section 5.2 shows an example of how a load testing

practitioner can use our performance analysis report to analyze the performance of a load

test. Section 5.3 describes our performance analysis approach. Section 5.4 presents three

case studies on our performance analysis approach: two on open source applications and

one on a large enterprise application. Section 5.5 presents some discussions. Section 5.6

describes related work. Section 5.7 concludes the chapter.

5.2 Performance Analysis Report

The previous section discussed the challenges and limitations of the current performance

analysis practices. In response, we have developed an automatically generated report,

which can uncover potential performance problems. The report extracts information from

the readily available execution logs and uses a previous run as an informal performance

baseline to compare against.

Consider the following example. Jack, a load testing practitioner, is asked to load test a

new version of an online application. He needs to determine whether the application can

scale to hundreds of concurrent client requests just like the earlier version did. The appli-

cation is an online pet store which supports operations like login/logout, browse, purchase

and registration for new users. We now demonstrate how Jack can use our performance

analysis report to uncover performance problems based on the run he did on an early re-

lease.



CHAPTER 5. AUTOMATIC DETECTION OF PERFORMANCE PROBLEMS 132

 

Throughput Deviation Event 
Sequences 

5,000 
5,002 

0.8 

E1→E2→ 
E3→E4 

4,500 
4,498 0.5 

E1→E3→ 
E5→E7 

4,000 
4,010 0.3 

E1→E3→ 
E5→E7→ 
E2 →E4 

(a) Overall Performance Summary 
 

 
 

                                                         (c) Stepwise Performance Diagnosis  
 

Throughput Deviation Event Sequences 

5,000 
5,002 

0.8 

E1→E2→E3→E4 
Average Deviation Event Sequences 

 E1: sessionId=2, time=1, user=Tom, login successfully 

1.0 
1.1 0.1 

E2: sessionId=2, time=1, user=Tom, browse catalog,  
       catalog=bird 

0.5 
1.8 0.9 

E3: sessionId=2, time=2, user=Tom, add item,              
       item=parrot, quantity=1 

0.5 
0.5 0.1 

E4: sessionId=2, time=3, user=Tom, user checkout  
       successfully 

 

4,500 
4,498 0.5 E1→E3→E5→E7 

4,000 
4,010 0.3 E1→E3→E5→E7→E2 →E4 

 

Throughput Deviation Event Sequences 

5,000 
5,002 

0.8 

 
 

E1→E2→ 
E3→E4 

4,500 
4,498 0.5 E1→E3→E5→E7 

4,000 
4,010 0.3 

E1→E3→E5→ 
E7→E2 →E4 

                                                                                 (b) Visual Performance Comparison  
 

Figure 5.1: An example performance analysis report
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5.2.1 Overall Performance Summary

Since extra instrumentation or profiling of the application may slow it down and affect

the performance measurement, Jack has to work with readily available execution logs and

performance metrics.

As shown in Figure 5.1(a), from millions of log lines in the execution logs, our report

flags 3 scenarios whose performance is statistically different than the previous run. Each

row in the table corresponds to one performance deviated scenario. Among these three

scenarios, there are two scenarios which are worse than the previous run (shown in red)

and one scenario which is better (shown in blue). Scenarios are sorted by the degree of

performance deviations from the previous run so that Jack can make best use of his time by

working from the top.

Looking at the first row, Jack discovers that the first scenario has around the same

throughput (5, 000 versus 5, 002 requests per second) from both runs. However, he notices

that the current scenario performance is worse than the previous run, indicated by the red

colour under the deviation value 0.8. The event sequence triggered by this scenario is also

displayed. Each event is abbreviated using its abstracted event id (E1 , E2 , E3 , and E4).

5.2.2 Visual Performance Comparison

After gaining an overall impression about the system performance, Jack clicks the hyperlink

under the deviation value to dig deeper into the performance of the first scenario. As

shown in Figure 5.1(b), the report expands and shows a visual comparison of this scenario’s

performance between the two runs. He examines the two graphs seeking to answer the

following two questions:
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1. How does the scenario performance differ?

The top graph in Figure 5.1(b) is a beanplot [163], which visualizes the response time

distributions of the same scenario in the previous and current runs side-by-side. The left

side shows the response time distribution from the previous run and the right side shows

the current run. The width of the plot indicates the frequency. For example, most of the

instances in the current run take about 1 second and around 0.5 second in the previous run.

After examining the beanplot, Jack now has a better idea of why this scenario is flagged:

First, the majority of the cases from the current run are slower than the previous run (1

second versus 0.5 second). Second, the maximum response time from the current run is 5

seconds compared with 4 seconds from the previous run.

2. How does the performance evolve over time?

The bottom graph in Figure 5.1(b) shows whether the system performance has degraded

over the course of the load test. The horizontal axis indicates the start time of a scenario

instance. The vertical axis indicates the response time of the scenario instances triggered at

this moment. If more than one instances from this scenario are trigged at the same moment,

the average response time from these instances is used.

For the first scenario, there are no performance degradations even though the response

time fluctuates over time. Most of the time, the current run (in red) is above the previous

run (in black), which again indicates that the current run is worse (i.e. slower).

5.2.3 Stepwise Performance Diagnosis

Once Jack gets a visual comparison of the performance differences for the first scenario,

Jack clicks the link below the event sequences to find out the exact cause for the perfor-

mance deviations (Figure 5.1(c)). Sample log lines from the execution logs are shown

along with the average durations between the adjacent steps. In addition, deviations from
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Figure 5.2: Our Approach to Generate the Performance Analysis Report

the adjacent event pairs between the previous and current runs are also shown.

For the investigated scenario, Jack concludes that the scenario performance degradation

is mostly caused by a slow down between the browsing (E2) and purchasing (E3) events.

The average duration of this event pair jumps from 0.5 second in the previous run to 1.8

seconds in the current run. The deviation between these two events, flagged (in red), is the

highest deviation (0.9) among all the event pairs in this scenario. Jack then clicks the hy-

perlink below the 0.9 deviation to get a visual comparison of the performance differences in

the E2 → E3 pair. The report is again expanded to display similar graphs as in Figure 5.1(b)

but for specific event pairs.

5.2.4 Reporting

Based on the analysis of the first scenario, Jack concludes that there is a performance prob-

lem between the browsing and purchasing events. He then performs similar analysis on

the other two scenarios. Jack can now compose an email, which explains the performance

problems. The email is sent to the appropriate developers with the performance analysis

report attached.

5.3 Our Approach to Create the Performance Analysis Report

We now present our approach to generate the performance analysis report discussed in Sec-

tion 5.2. As shown in Figure 5.2, our approach consists of five phases. For both tests, we
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conduct log abstraction, recovery the performance of sequences and performance summa-

rization. Then we flag the performance deviating scenarios by statistically analyzing the

recovered performance data. Finally, a performance analysis report, ranked by the degree

of performance deviation, is generated.

We explain our approach using the running example shown in Table 5.1.

Phase 1. Log Abstraction

Since additional instrumentation or profiling of the system slows down its execution, these

techniques are not feasible for load testing analysis. As a result, our approach analyzes the

readily available execution logs. Table 5.1(a) shows the first 8 log lines from an execu-

tion log file. We use the log abstraction technique proposed in Chapter 3 to automatically

transform the execution logs into execution events as shown in Table 5.1(b).

Phase 2. Recovery the Performance of Sequences

As the system handles concurrent client requests, log lines from different scenarios are

intermixed with each other in the execution logs. As shown in Table 5.1(a), scenarios

related to users Tom, John and Mike are mangled together. Furthermore, some log lines

(e.g., the 8th log line), which only output the system status information, are not related to

any customer scenarios. These log lines should be filtered from our performance analysis.

In order to recover the performance from all the customer scenarios, we need to first re-

cover the event sequences. We recover the sequences by linking the appropriate parameter

values.

The first phase abstracts each log line into an execution event. Here, we use the dynamic

values ($v) as well as their parameter names in the execution event. The parameter name-

value pairs are used to link the related log lines into sequences. For example, the first line

contains 3 parameter name-value pairs: sessionId with value 1, time with value 1, and user



CHAPTER 5. AUTOMATIC DETECTION OF PERFORMANCE PROBLEMS 137

with value John.

Table 5.1(c) shows the results after extracting and linking information from the log lines

using the sessionId values of the log lines in Table 5.1(a). For example, the second (E1),

third (E2), fourth (E3), and sixth (E4) log lines all share the same sessionId (2), so we

group them together. The 8th log line in Table 5.1(a) corresponds to a periodic health

check event, which has no sessionId and is used to determine if the system is alive. This log

line is filtered out.

The performance of the recovered sequence is calculated by taking the time difference

between the first and the last events. In our running example, the overall response time of

the sequence (E1 → E2 → E3 → E4) with sessionId = 2 is 2 seconds. Since there is only

one log line with sessionId 3, there is no duration information for this session.

The durations between every adjacent event pair are also calculated. The pairwise

duration information is used later for stepwise performance diagnosis. The time duration

between the first two events (E1 from the 2nd log line and E2 from the 3rd log line) is 0

seconds, and so on.

Phase 3. Performance Summarization

The previous phase has recovered the performance from the individual sequences. Iden-

tical event sequences correspond to the same scenario. As a load test repeatedly executes

scenarios over and over, the sequence E1 → E2 → E3 → E4 can appear multiple times. In

the third phase, we summarize the performance of each scenario.

Tables 5.1(a), 5.1(b) and 5.1(c) only process the first 8 log lines from the logs. Execution

logs usually contain millions of lines. Table 5.1(d) shows an example of the summarized

scenario performance using the entire execution logs. In total, we have 2 scenarios. The

first scenario (E1 → E2 → E3 → E4) occurs 300 times. Among them, 100 times occurs with

a duration of 2 seconds and 200 times with 3 seconds. The performance of the adjacent
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event pairs from each scenario is also summarized. For example, the event pair E2 → E3

from the first scenario takes on average 1.7 seconds. Among the total 300 occurrences of

this event pair in this scenario, it takes 1 second in 100 times and 2 seconds in the other

200 times.

Phase 4. Statistical Analysis

Phrase 3 uncovers the performance of all the scenarios from the previous and current runs.

The fourth phase evaluates the overall performance of each scenario and pin-points the

performance deviating event-pairs.

We compare each scenario’s performance in the previous and current runs using a sta-

tistical test. We use the unpaired student-t test to compare the scenario response time

distributions from the previous run against the current run. Furthermore, we use the type

of student-t test [151], which outputs a confidence interval. Compared with hypothesis

testing, whose output only answers whether the two distributions are statistically the same,

a confidence interval also provides possible ranges. Depending on the relative position of

the confidence interval to zero, we can tell which run has better performance (i.e. timing)

for this scenario. We only show the scenarios, whose performance is statistically different

between the two runs, in our report.

Once the scenarios with deviated performance are flagged, we need to pin-point the

event pairs which cause the performance deviations. We achieve this by applying the same

statistical test on all the adjacent event pairs. For example, for the flagged scenario (E1 →

E2 → E3 → E4), we compare the performance of E1 → E2 , E2 → E3 , and E3 → E4

between the previous and the current runs.
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Phase 5. Report Generation

As the load testing practitioner has limited time, we rank the potentially troublesome sce-

narios to help him prioritize his time. We rank each scenario by the degree of the perfor-

mance deviation between the previous and current runs.

Cosine distance, which measures the degree of similarity between two distributions,

outputs a value between 0 and 1. If the two distributions are very similar, the cosine distance

is close to 1. If they are very different, the cosine distance is close to 0. As deviation is the

opposite of similarity, we use the following formula to calculate the deviation:

deviation(P,C) = 1− cosine(P,C) (5.1)

cosine(P,C) =

∑
x P (x)C(x)√∑

x P (x)2
√∑

xC(x)2
(5.2)

Note that P(x) and C(x) correspond to the number of instances in the previous and

current runs which have response time x for a particular scenario/ For example, if the

cosine distance of the first scenario in Table 5.1(d) is 0.2, their deviation value is 0.8.

5.4 Case Studies

We conducted 3 case studies on 3 different systems (2 open source applications and 1 large

enterprise application). We seek to verify whether our performance analysis report can help

load testing practitioners in their usual tasks. As our approach only flags the performance

deviated scenarios, it is up to his knowledge to decide whether the deviated performance

leads to performance problems.

We use precision to evaluate the performance of our approach. The precision is defined

as follows:
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precision(%) = (1− # of false alarm scenarios

Total # of flagged scenarios
)× 100%

Multiple scenarios with deviating performance can be caused by the same performance

problem, which can be an indication of the impact of this problem. If a flagged scenario

does not lead to a performance problem, then this scenario is considered as a false alarm.

A load testing practitioner conducts and analyzes a load test of an evolving system

seeking to accomplish many of the following tasks: to recommend optimal system settings,

to certify software/hardware platforms, and to study the impact of design changes. We

use this to structure our case study. For each study, we first give a brief description of

the studied system and an overview of the task which the load testing practitioner needs

to complete. Then we explain the steps to conduct the experiments and data collection

procedure. Finally, we present our results and conclusions.

Our performance analysis prototype is written in Perl and uses R [30] to generate the

graphs.

5.4.1 Task 1: Recommending Optimal Configurations

Enterprise systems interact often with other software components like databases or mail

servers. Sub-optimal configurations of these components can impact the performance of

the system. A load testing practitioner needs to explore these configurations and provide

recommendations for deployment. In this task, we use the Dell DVD Store (DS2) as our

case study system.

Studied System: the Dell DVD Store

The Dell DVD Store (DS2) application is an open source online application used for bench-

marking Dell hardware. [6]. DS2 provides basic e-commerce functionality, including: user

registration, user login, product search, and item purchase.
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DS2 contains a database, a load generator and a web application. It comes in different

distribution packages which support various web platforms (e.g. Apache Tomcat or JBoss)

and database vendors (MySQL, Microsoft SQL Server, and Oracle). The web application

consists of four JSP pages which interact with the database and display dynamic contents.

The DS2 load generator supports a range of configuration parameters to specify the work-

load. In this task, we use MySQL as the backend database and Apache Tomcat as our web

server engine.

Goal: Recommending Optimal MySQL Configuration

We seek to evaluate the performance impact due to the following two software configura-

tion options for the MySQL database:

Caching: Whether to cache the query results or not;

Storage Engines: Whether to use MyISAM or InnoDB as the storage engine.

Experiments and Data Collections

DS2 has no logs, thus we manually instrumented its four JSP pages. We run 4 one-hour load

tests: InnoDB with and without query caching, and MyISAM with and without caching. All

4 runs are exercised under the same workload and are all conducted on a single core CPU

machine with 1 GB of RAM and a 5, 400 rpm hard disk. Each test generated over 120, 000

log lines.

Result Analysis and Conclusions

We conduct the performance analyses on the results of these 4 runs.

To determine the performance impact of caching, we perform two comparisons. First,

we compare the results from InnoDB with/without caching, then MyISAM with/without
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caching. We use the session ids to recover the sequences. Both of our performance analysis

reports have flagged 18 performance deviated scenarios. Examining the stepwise perfor-

mance diagnosis sub-tables across all the event pairs, we find events, which invoke database

operations, perform better with caching enabled.

To determine the performance impact of different storage engines, we compare the re-

sults from MySQL configured with MyISAM engine against those with the InnoDB engine.

Since our previous analysis shows that enabling caching yields better performance, we only

compare the two runs with caching enabled. Again, 18 scenarios are flagged. By investi-

gating stepwise performance diagnosis sub-tables, we find database-related events perform

better with the InnoDB engine. Our finding agrees with prior benchmark studies [14].

Using our performance analysis reports, we conclude that DS2 should be deployed with

the following MySQL configurations to achieve optimal performance: InnoDB as the storage

engine and cache-enabled. The precision is 100% among all three performance analysis

reports.

5.4.2 Task 2. Certifying Software/Hardware Platforms

Nowadays, systems support various software platforms (e.g., operating systems) as well as

hardware platforms. A load testing practitioner needs to check whether a system under

test can make optimal use of the available services and resources. In this task, we use the

JPetStore as our case study system.

Studied System: JPetStore

JPetStore [11] is a larger and more complex open source web application relative to DS2.

Unlike Sun’s original version of Pet Store which is more focused on demonstrating the

capability of the J2EE platform, JPetStore is a re-implementation with a more efficient

design [13] and is targeted on benchmarking the J2EE platform against other web platforms
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such as .Net. Unlike DS2 which embeds all the application logic into the JSP code, JPetStore

uses the “Model-View-Controller” framework and XML files for object/relational mappings.

In this task, we have deployed the JPetStore application on Apache Tomcat and used MySQL

as the database backend.

Goal: Certifying a Multicore Server

In this case study, we seek to certify the hardware platform by checking whether there is

a performance gain by migrating JPetStore from a single core machine to a more powerful

multi-core server.

Experiments and Data Collection

As JPetStore does not come with a load generator, we use Webload [32], an open source

web load testing tool, to load test the application. Using Webload, we have recorded a single

customer scenario for replay during load testing. In addition, we configure the Webload so

that it incrementally increases the workload as the load test progresses.

On each hardware platform, we conduct one one-hour run. The first run uses one

machine which has a single CPU with 1G of memory and one 5, 400 rpm hard-disk. The

second run uses another machine which has a Quad-Core CPU with 8G of memory and one

7, 200 rpm hard-disk. Both runs generate over 770, 000 log lines.

Result Analysis and Conclusions

Figure 5.3 shows the performance analysis report for JPetStore. The report has flagged

our only scenario. The colour of deviation (blue) shows that the run on the Quad-core

machine statistically out-performs the run on the single CPU machine. However, the visual

comparison of the two runs reveals that:

1. The contrast of the maximum and minimum response time from both runs is very
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Figure 5.3: The performance analysis report on JPetStore

large, especially for the run on the multi-core server. As shown in the beanplot of Fig-

ure 5.3, the minimum response time for the Quad-core machine is around 30 seconds

and maximum is around 200 seconds.

2. As shown in the lower graph of Figure 5.3, both runs slow down as the load test

progresses due to the steady increase in the workload. However, the response time

on the Quad-core machine during the last few seconds is about 3 times longer than

the single core machine during heavy load (around 200 seconds on the Quad-core

machine versus around 80 seconds on the single core machine).

We repeat both runs and still obtain the same patterns. Through close examination

of the stepwise performance diagnosis sub-table in our report, we reveal a MySQL perfor-

mance bug. The MySQL InnoDB storage engine has trouble scaling to multi-core machines.

Our finding is confirmed by MySQL developer postings [9].
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Using our performance analysis approach, we conclude that the JPetStore performance

improves on a more powerful machine. However, there is a MySQL performance bug which

prohibits the efficient use of the multi-core hardware architecture under heavy load. The

precision of this report is 100%.

5.4.3 Task 3. Studying the Impact of System Changes

Systems are constantly undergoing maintenance changes to fix bugs and to cope with new

standards or new interfaces. Changes can cause suboptimal system performance. In this

task, we use a large enterprise application as our case study system.

Studied System: A Large Enterprise Application

The system we studied is a large distributed enterprise application. This application sup-

ports a large number of scenarios which are used by thousands of users simultaneously.

Goal: Evaluating Different Software Designs

There is a new software build which uses a different communication mechanism. We want

to determine the performance impact of the new design.

Experiments and Data Collection

A load testing practitioner has conducted the experiments. Two 8-hour load tests are run

on different software builds under the same load. Both runs generate over 2 million log

lines.

Result Analysis and Conclusions

This is a large enterprise application with readily available execution logs. After briefly

going through the log lines, we find three main parameters which can be used to link log
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lines to form scenarios.

Our report flags around 30 performance deviating scenarios. Most of the scenarios

are executed more than 4, 000 times. Our report reveals that the current build performs

worse than the previous build. Examining the step-wise performance diagnosis sub-tables,

this load testing practitioner is able to pin-point the performance deviating steps and to

subsequently identify the performance problems of the new design.

Our performance analysis report has a precision of 77%. A few flagged sequences are

not scenarios. Thus, false alarms are caused by the random time intervals between the

adjacent event pairs.

We conclude that our performance analysis report has helped the load testing practi-

tioner evaluate the performance impact of different designs. The precision of our perfor-

mance analysis report is 77%.

5.5 Discussion of Results

In this section, we present some discussions.

Performance Comparisons

Our approach uses results from a prior run as an informal performance baseline. The per-

formance baseline can also be derived from the data in one or more runs. For example,

we can form the performance baseline by combining the results from 10 runs conducted

last year. The large resulting data is more desirable to infer the past common performance

behavior.

We believe both the performance improving and degrading scenarios are worth inves-

tigating for two reasons. First, a load testing practitioner needs to verify the performance

bug fixes by comparing the current run against a test which suffers from performance prob-

lems. In this case, the performance improvement cases are also of interest to him. Second,
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we do not want to miss potential performance problems. Take our JPetStore case study for

example. Performance on a powerful server is generally better but suffers from severe slow

down under stress conditions.

Scenario Recovery

Our approach requires some manual work at the beginning as we need to find what are

the identifying parameters in the logs. This is a one-time effort and requires minimal effort.

These parameters can either be obtained by asking a domain expert or by skimming through

the logs.

Statistical Analysis

Our approach uses a student-t test to compare the response time distributions. A student

t-test is a parametric statistical test which assumes that the response time is normally dis-

tributed. Non-parametric statistical tests, like the Kolmogorov-Smirnov test [75], can also

be used in our analysis. These tests hold no assumptions about the distribution of the data.

Parametric tests are less strict than non-parametric tests. In other words, non-parametric

tests tend to say there are no statistical differences between two data sets whereas the para-

metric tests would indicate a statistical significant difference. We choose to use the less

strict student t-test, since we want to find all the possible performance problems. Further-

more, we have also tried using the Kolmogorov-Smirnov test to verify the findings in our

case studies. We find that Kolmogorov-Smirnov test results agree with the student-t test.

This finding confirms with the results reported by Bulej et al. [79].

Analyzing System Performance Using Execution Logs

Our approach uses readily available execution logs and infers system performance based on

the time differences between log lines. Therefore, our approach is limited by the granularity
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of the log lines. Furthermore, we assume that logs are relatively stable over time. This

assumption holds true for many industrial systems. Since the logs are already processed

by many other tools, log changes are usually minimized. In the future, we plan to apply

approximate matching on different sequences between runs.

New Scenarios

Since there are no formal performance objectives or data from previous runs for new sce-

narios, our current approach will not analyze them. In the future, we plan to infer the

expected scenario performance based on existing scenarios.

5.6 Related Work

We discuss two areas of related work.

Load Testing

Most existing load testing research focuses on the automatic generation of load test suites [48,

54, 55, 66, 78, 121, 251]. The previous chapter (Chapter 4) focuses on automatically uncov-

ering functional problems in a load test. Bulej et al. [79] propose the concept of regression

benchmarking as a variant of regression testing for performance regression. Regression

benchmarking compares the performance across different versions of the systems using the

same benchmarking suite. Our work is an improvement over the regression benchmarking

in four aspects. First, our approach recovers the scenarios automatically without specifi-

cation. Second, our approach is more fine-grained, as we analyze the performance of the

scenarios as well as the individual steps in each scenario. Third, our approach minimizes

the amount of manual processing. Fourth, the reported problems in our performance anal-

ysis report are ranked so that a load testing practitioner can prioritize his efforts and make

optimal use of his time.
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Automated Performance Monitoring and Analysis of Production Systems

Automated performance monitoring and analysis of production systems can be divided into

two subcategories: analyzing the performance metrics and analyzing the logs.

The following work analyzes the performance metrics: Avritzer et al. [50, 49] propose

various algorithms to detect the need for software rejuvenation by monitoring the changing

values of various system metrics. Mi et al. [89, 202] and Cohen et al. [90, 254] develop

application signatures based on the various system metrics (like CPU, memory). The ap-

plication metrics are further used for efficient capacity planning and anomaly detection.

The main difference between these approaches and ours is that we use execution logs for

our analysis. Compared with system metrics, execution logs provide more in-depth domain

specific information.

The following work analyzes the readily logs with no additional instrumentations: Aguil-

era et al. [42, 216] developed various algorithms to perform black-box performance debug-

ging on distributed systems. They use the header information on the TCP packet traces

(source, destination and time) to infer the dominant causal paths through a distributed

system. Unfortunately, the accuracy of the inferred causal paths decreases as the degree

of parallelism increases. This is not ideal for load testing analysis as there are many mes-

sage exchanges occurring simultaneously. Marwede et al. [189] use the timing anomaly to

automatically uncover functional problems.

5.7 Conclusion

It is difficult to conduct a performance analysis of load testing results due to the absence

of a documented performance baseline, time pressure, monitoring overhead and large vol-

ume of data. In this chapter, we propose an approach which automatically flags possible

performance problems by adopting a previous run as a performance baseline and compar-

ing against it. Our approach is easy to adopt and scales well to large systems with high
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precision (77%). In the next chapter, we will take a different perspective of the analysis of

system behavior under load: rather than detecting load-related problems for a single load

test, we will propose an automated approach to estimate the overall system quality by using

data from several load tests.



CHAPTER 6

Automatic Estimation of System Reliability

The current agile continuous delivery process requires each version of the software system to pass
the quality criteria before the system can be released to the field. However, current release criteria
mainly focuses on the functionality at a small user level (e.g., passing the functional tests) but
not on load. In this chapter, we propose to use reliability as a quality index to assess the quality
of a system under load in the continuous delivery process. Software reliability is defined as the
probability of failure-free operation for a period of time, under certain conditions. Many large
commercial systems are marketed to have very high software reliability requirements (e.g., “three-
nine” reliability). However, the general software reliability estimates provided are usually derived
from synthetic benchmark workload runs, which is not representative of the actual field usage. The
discrepancy in usage patterns could lead to inaccurate reliability estimates for each field deployment.

In this chapter, we propose an approach, which provides a customized reliability estimate for
each deployment field based on mining repositories of execution logs. Rather than focusing on one
specific load test like we did in our previous two chapters, we use data from many load tests to es-
timate the system reliability. Our approach abstracts the system behavior into system states, which
represents the current active requests. We extract the customer usage, which is the occurrence
information of systems states, from the field pre-deployment logs. Then, we extract the failure infor-
mation for the same system states from load testing and other pre-deployment logs. By combining
the usage and failure information of these states, we can derive a customized reliability.

6.1 Introduction

N
OWADAYS, many software systems employ the agile software development pro-

cess, in which software systems are developed and released continuously to the

field as soon as the systems pass the quality criteria [46, 110]. However, most
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of these quality criteria is focused on functionality (e.g., passing all the the unit testing,

integration testing, and end-to-end functional testing). Quality-related metrics, which de-

scribe the system performance under load, are seldom included. However, as studies show

that many field problems are not due to feature bugs, but rather due to systems not scaling

to field workloads [38, 242]. It is important to include the software performance under

load as a quality measure into the release criteria.

Software reliability is defined as the probability of failure-free operation for a period

of time, under certain conditions [113, 205]1. In the traditional software development

process, software reliability is used as a quality index to monitor and assess the quality

of the large mission-critical systems under load [55]. These systems can range from web

applications to telecommunication infrastructures, and they must support concurrent access

by thousands or millions of users while functioning over a long period of time. In this

chapter, we propose the use of software reliability as a quality metric in the agile continuous

delivery process.

However, the major challenge of adopting reliability measurements in the continuous

delivery process is that one size does not fit all. The general reliability estimates are usually

derived based on workloads from synthetic benchmark load runs and/or early field deploy-

ments of the system. These benchmark workloads rarely match the actual field workload,

leading to estimates that do not match the expected field reliability of the system [73, 237].

This means that the general reliability estimates might not be realistic, i.e., not reflective of

the actual field reliability [47]. For example, if deployment field A does not use one buggy

feature as much, then the expected reliability of the system will be much higher than the

estimate provided by the general reliability estimate.

The previous two chapters (Chapters 4 and 5) use history of prior tests to detect func-

tional and performance problems. This chapter uses history of all prior tests to generate a

1There are also other definitions of reliability (e.g., [36, 37]). In this chapter, we use the definition from
Musa et al. [113, 205].
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quality index using software reliability for the system under test using execution logs. Our

approach analyzes rarely used, yet readily available execution logs to produce empirically

validated and customized reliability estimates for mission-critical systems. Basically, our

approach uses logs generated from customer sites (e.g., user acceptance testing or previ-

ous customer logs) to identify the usage patterns (“system states”) that are important for

a customer, and the “occurrence probability”. Then, our approach uses logs derived from

thousands of hours of execution from prior deployments and earlier tests of the same ver-

sion of the system to provide a good estimate of how often the identified system states fail

(“failure probabilities”). By combining the occurrence probabilities from the previous pre-

deployment testing with the failure probabilities from log repositories, we can produce an

accurate, customized reliability estimate using less resources and time.

The main contributions of this chapter are as follows:

– Our approach requires no additional instrumentation or profiling, instead it leverages

widely available, yet rarely used execution logs.

– Our approach provides a useful enhancement for the existing agile continuous deliv-

ery process with minimal disruptions.

Organization of the Chapter

The remainder of this chapter is organized as follows: Section 6.2 provides an example

to motivate the benefits of using deployment-specific reliability estimates. Section 6.3 first

presents an overview of our reliability estimation approach, then describes the three phases

(Sections 6.3.1, 6.3.2 and 6.3.3) involved in our approach. Section 6.4 evaluates our ap-

proach on a large mission-critical system. Section 6.5 presents the threats to validity. Sec-

tion 6.6 presents related work. Section 6.7 concludes this chapter.
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6.2 Motivating Example

In this section, we present an example to motivate our approach. Jack’s company is de-

veloping a software system, which is an application platform enabling various e-commerce

business. Jack’s software system can be deployed either in the cloud (cloud deployment) or

on the customer premise (on-prem deployment). Jack’s system, which is developed using

an agile process and produces a new software version every other week, currently serves

many e-commerce vendors across the world. These versions pass the quality criteria, which

includes passing all the unit, integration and end-to-end functional testing. Rather than

rolling out the new release to all the vendors, Jack decides to follow a more cautious ap-

proach: only upgrading the system whose performance under load is satisfactory. However,

the challenge that Jack faces is how to accurately assess the software performance under

load for each vendor, as each vendor has different usage patterns and deployment config-

urations (on-prem or cloud) may vary. One approach is to conduct on-site user acceptance

testing (field load testing) for the on-prem deployment and customer workload specific load

testing for the cloud deployment. However, such specialized load testing is costly and time

consuming.

Tom, one of the developers of the system, proposes to use software reliability as a quality

index to assess the software performance under load and only upgrade the vendors, whose

estimated reliability reaches the advertised “three-nines” (0.999). A reliability of 1 means

that the system never fails. A reliability of 0.999 indicates that 99.9% of the time the system

will function correctly with no crashes and no Service Level Agreement (SLA) violations.

Tom further added that he has an approach to calculate the reliability of the system for each

vendor efficiently and accurately.

Tom’s approach is based on work done by Avritzer [57] to model the reliability of

telecommunication systems. Tom explained his approach by drawing the analysis of one
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Table 6.1: System State and Failure Profile Derived from Synthetic Runs and Other Deploy-
ments

System States Occurrence Failure
(Search, Browse, Purchase) Probability Probability

(0,0,0) 0.40 0
(0,1,0) 0.30 0
(1,1,0) 0.20 0
(1,1,1) 0.10 0.10

Table 6.2: System State Profile Recovered from Previous Customer Logs
System States Occurrence

(Search, Browse, Purchase) Probability
(0,0,0) 0.15
(0,1,0) 0.15
(1,1,0) 0.10
(1,1,1) 0.60

vendor, vendor A, as an example. Instead of simply capturing the workload using a black-

box approach (e.g., by measuring metrics like the number of transactions per second), Tom

uses a white-box approach that captures the internal state of the system as it processes the

workload. These states are influenced by the deployment environment and workload. Tom

defines the system state for the system as a 3-value tuple that captures the usage of the

system in terms of the following three currently executing scenarios: browsing, purchasing

and searching. Tom opts for this simple high-level definition, although other more complex

low-level definitions are also possible. For example, the browsing scenarios could be further

divided into browsing catalogs and browsing recommendations.

Using this system state model, Tom samples the execution of the system at run-time

and determines which states it resides in. He defines each value in the tuple to be the

number of active scenarios at the moment. For example, the system state (0, 0, 0) indicates

the system is in the idle state. The state (1, 1, 1) indicates that the system is currently

processing 1 search, 1 browse and 1 purchase scenario concurrently. Other models, such as

those including the percentage of utilization, are possible as well.

By continuously sampling the data from the in-house testing and other deployments,
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Tom derives a system state profile for the system, i.e., an overview of the system states that

occur together with their frequency. Table 6.1 shows the system state profile derived from

synthetic runs and other deployments. The profile indicates that the system is in idle state

(0,0,0) 40% of the time. At each sample, Tom also determines if there are any reported

failures of the system (e.g., crashes or SLA violations). He can then calculate the reliability

for each system state. Looking back at Table 6.1, we find that no failures are reported in

the occurrences of state (0,0,0), while 10% of the occurrences of state (1,1,1) exhibit some

type of failure. Using the sampled failure distribution and the system state profile, Tom can

derive a reliability estimate for the system. By combining data from multiple deployments,

Tom concludes that based on the lab testing and other deployments, the general reliability

for this system is 0.99 (failure occurs only in 0.40 ∗ 0+ 0.30 ∗ 0+ 0.20 ∗ 0+ 0.10 ∗ 0.10 = 1%

of the cases).

However, this in-house reliability estimate does not consider the differences in customer

usage and deployment patterns in different deployments. For example, based on last Mon-

day’s logs from vendor A (cloud deployment), Tom notices that state (1,1,1) occurs at a

much higher frequency (60% in Table 6.2 showing the occurrence probability of system

states) compared to the data used to calculate the in-house reliability estimate (10% in Ta-

ble 6.1). It is clear that vendor A’s deployment spends more time in state (1,1,1), which has

a high failure probability (based on in-house testing). This knowledge should be used to

customize the reported in-house reliability estimate. The customized reliability estimate for

vendor A’s is 0.94 (failure occurs in 0.15∗0+0.15∗0+0.10∗0+0.60∗0.10 = 6% of the cases)

instead of the general in-house estimate of 0.99. Based on our customized reliability calcu-

lation, the new upgrade should not be rolled to vendor A’s site. This deployment estimate is

derived from the occurrence probabilities of states in a single day of testing (second column

of Table 6.2), and the failure probabilities of states in hundreds of hours of execution in

the lab and other deployments (third column of Table 6.1). Therefore, upgrading vendor A

should put on hold until later versions.
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We note three novel contributions of our approach:

1. It is important to capture the internal system states and their failure probability when

we estimate the system reliability. The system state profile is influenced by both

the customer usage pattern and the deployment characteristics. Given two deploy-

ments with the same usage pattern, they might still end up with different system state

profiles because of different deployment characteristics. For example, if one of the

deployments has a much slower database, the system might not be able to process

searches as fast, causing the system states to have a higher number of active “Search”

requests. The deployment with a slower database will likely have lower reliability

even under the same workload.

2. Our approach makes use of the execution logs of the system to calculate the system

state profiles, instead of instrumenting or profiling the system during runtime. Sam-

pling a system during runtime is not feasible in a production setting due to the high

overhead [59, 182]. Execution logs are readily available and are often used for re-

mote issue resolution and for legal compliance purposes (e.g., “Sarbanes-Oxley Act of

2002” [23]). By sampling the logs at a constant frequency (e.g., once a second), we

can create a system state profile and failure profile without impacting the performance

of a system.

3. The use of execution logs permits Tom to continuously improve the reliability estimate

of the system, since he can keep on integrating new logs coming from field deploy-

ments in an automated fashion. As for each vendor, he would need to provide a log

that captures the expected usage patterns. To provide such a log, vendors could pro-

vide logs from past execution or logs from a limited deployment of the new version of

the system (e.g., user acceptance testing logs). For example, based on vendor A’s past

usage data, Tom can provide a reliability estimate based on hundreds of deployments

that have been running over the past six months.
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Figure 6.1: An Overview of Our Deployment-specific Reliability Estimation Approach

6.3 Approach Overview

Figure 6.1 gives an overview of our approach, which consists of the following three phases:

1. Log Analysis: Recover the executed scenario instances and identify the reported errors

from execution logs.

2. System State Derivation: Derive the system states and calculate the occurrence prob-

ability and failure probability for each system state.

3. Reliability Estimation: Estimate the deployment-specific reliability using Bayesian

Networks.

The Log Analysis and System State Derivation phases both analyze two sources of execu-

tion logs:

– An execution log repository, which stores the load test and other field deployment logs

for the new version of the system. We analyze the execution log repository to get a

collection of all possible system states as well as their failure probability.

– Customer usage logs, which can be user-acceptance testing or past usage data con-

taining the customer usage profiles. We analyze these logs to obtain the occurrence

probability distribution of those system states that occur in practice at the deployment

site.
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Table 6.3: Example log lines

# Log Lines

1 time=1, thread=1, session=1, receiving new user registration request
2 time=1, thread=1, session=1, inserting user information to the database
3 time=1, thread=2, session=2, user=Jack, browse catalog=novels
4 time=1, thread=2, session=2, user=Jack, sending search queries to the database
5 time=3, thread=1, session=1, user=Tom, registration completed, sending confirmation email to the user
6 time=3, thread=2, session=2, database connection error: session timeout
7 time=4, thread=1, session=1, fail to send the confirmation email, number of retry = 1
8 time=6, thread=2, session=2, user=Jack, successfully retrieved data from the database
9 time=7, thread=2, system health check
10 time=8, thread=1, session=1, registration email sent successfully to user=Tom
11 time=9, thread=2, session=3, user=Tom, browse catalog=travel
12 time=10, thread=2, session=3, user=Tom, sending search queries to the database
13 time=10, thread=3, session=4, user=Jim, updating user profile
14 time=11, thread=3, session=4, user=Jim, database error: deadlock

Then, we calculate the deployment-specific reliability by matching the occurrence prob-

ability distribution of the system states obtained from the customer usage logs with the

corresponding failure probability distribution of these system states obtained from the exe-

cution log repository.

In the next three subsections, we will use logs from a small online bookstore as a running

example to explain the aforementioned three steps of our approach.

6.3.1 Log Analysis

Instead of instrumenting an system, we make use of the readily available execution logs to

recover the needed information for our analysis. The techniques that we use for abstracting

the logs into events, recovering scenario instances and their timing information from logs

are explained in Chapters 3 and 5, but here we briefly summarize the technique using a

sample execution log. Table 6.3 shows the first fourteen log lines from the log repository

of an online bookstore. These log lines record software activities (e.g., line one), system

health (e.g., line nine) as well as errors (e.g., line fourteen).

Each usage scenario in the logs consists of a sequence of steps. For example, as shown

in Table 6.3, a user registration scenario consists of the following steps:

1. A user sends a request to the web server;
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Table 6.4: Abstracted Execution Events and Corresponding Log Lines

ID Event Template #

E1 time=$v, thread=$v, session=$v, receiving new user registration request 1
E2 time=$v, thread=$v, session=$v, inserting user information to the database 2
E3 time=$v, thread=$v, session=$v, user=$v, browse catalog=$v 3, 11
E4 time=$v, thread=$v, session=$v, user=$v, sending search queries to the database 4, 12
E5 time=$v, thread=$v, session=$v, user=$v, registration completed, sending confirmation email to the user 5
E6 time=$v, thread=$v, session=$v, database connection error: session timeout 6
E7 time=$v, thread=$v, session=$v, fail to send the confirmation email, number of retry=$v 7
E8 time=$v, thread=$v, session=$v, user=$v, retrieving data successfully from the database 8
E9 time=$v, thread=$v, system health check 9

E10 time=$v, thread=$v, session=$v, registration email sent successfully to user=$v 10
E11 time=$v, thread=$v, session=$v, user=$v, updating user profile 13
E12 time=$v, thread=$v, session=$v, user=$v, database error: deadlock 14

2. The web server processes the request and stores the user information in a database

server;

3. A confirmation email is sent out to the user.

Furthermore, each step in these scenarios shares certain identification values such as

session and user ids. We need to know the frequency of different scenarios as well as how

long each of them takes. Therefore, we recover the scenario instances by first abstracting

log lines into execution events. Then we link related log lines (events) into sequences,

whose frequency and duration can then be determined easily.

Step 1. Log Abstraction

Log lines are the output of the debug statements that developers insert into the source

code. Each log line is a mixture of static and dynamic information. The static information

describes the execution event (i.e., the context), whereas the varying (i.e., dynamic) parts

are parameter values generated at run-time. Different values for the latter parameters cause

the same execution event to result in different log lines. For example, the fourth and the

twelfth log lines are generated from the same code location, but they are different since

they are generated by the execution of different sessions.

In Chapter 3, we have proposed an approach that automatically abstracts log lines into
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Table 6.5: Recovered Scenario Instances

Session Log lines (Start, End) Keywords
1 1,2,5,7,10 (1,8) Register
2 3,4,6,8 (1,6) Browse
3 11,12 (9,10) Browse
4 13,14 (10,11) Update

execution events and marks the dynamic and static parts, such that log lines that are related

to the same session can be grouped into sequences later on (step 2). Furthermore, the

abstracted events can also be used to identify failure events. Table 6.4 shows the results of

log abstraction in our running example.

Step 2. Scenario Sequence Recovery

As the system handles concurrent client requests, log lines from different scenarios are

intermixed with each other in the execution logs. The log lines in Table 6.3 are generated

as a result of the activities of different users: Tom, Jack and Jim. Furthermore, there

are two scenarios related to Tom: user registration and catalog browsing. We recover the

sequences and the timing information by linking the appropriate parameter values using

the same techniques presented in Chapter 5. In our running example, we use session ids

to automatically link related log lines. The results are shown in Table 6.5. In addition,

the third column of the table also shows the timestamp of the first and last steps of each

recovered sequence. For example, session two started at time one and ended at time six.

6.3.2 State Derivation

We can now derive the system states and estimate the occurrence probability and failure

probability associated with these system states based on the recovered scenario sequences

from the log analysis.

We first categorize the scenario sequences into groups and identify any failures. Then,

we derive the system states by taking a snapshot of the system’s scenarios at a fixed time
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interval. The associated occurrence probability and failure probability for each state are

also calculated.

Step 1. Sequence Labeling

Executing one scenario can exercise different code paths, therefore, resulting in different se-

quences. Hence, at the end of our Scenario Sequence Recovery step, there can be hundreds

of sequences corresponding to only a handful of scenarios. We need to further reduce the

amount of sequence data by properly categorizing (labeling) sequences into scenarios. We

label each sequence with keywords specified by a domain expert. This process is done once

for a system using keyword matching in the corresponding log entries. For new versions of

a system, the domain expert might need to update some of the keyword mappings.

Our online bookstore example supports four types of operations: register, browse, pur-

chase and update. These are the keywords used to label the sequences. When we match

the keywords against each execution event in the scenario sequences, each word from the

event’s log entry is mapped into its root form (i.e. word stemming). For example, words

like “browsing” and “browsed” will be mapped to the same root form “browse”. The last

column of Table 6.5 shows the labeled scenario names for each sequence.

Step 2. Failure Identification

We identify two types of failures in the logs based on domain knowledge. We identify and

categorize failures as follows:

1. Functional Failures (or Severity 1 failures) are associated with system-wide outages.

Examples of functional failures are system crashes, system restarts and system dead-

locks. A domain expert is used to identify severity 1 failures by marking specific

keywords (e.g., “thread dump”) in the log files. For the example shown in Table 6.3,

there is one functional error which occurs at line 14. It is a deadlock error.
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Table 6.6: Derived System States and Their Failure Occurrences (Sampling Interval == 1)
Time (t) States (Sr(t)) Failure

(Register, Browse, Purchase, Update) (-/x)
0 (0, 0, 0, 0) -
1 (1, 1, 0, 0) -
2 (1, 1, 0, 0) -
3 (1, 1, 0, 0) -
4 (1, 1, 0, 0) -
5 (1, 1, 0, 0) -
6 (1, 1, 0, 0) x
7 (1, 0, 0, 0) x
8 (1, 0, 0, 0) x
9 (0, 1, 0, 0) -

10 (0, 1, 0, 1) -
11 (0, 0, 0, 1) x

2. Performance Failures (or Severity 2 failures) are associated with performance slow-

downs. Performance failures impact the user experience. Examples of performance

failures are Service Level Agreement (SLA) violations. We basically compare the du-

ration for each scenario’s instances and see if it takes longer than the time specified

by the SLA. If the SLA for the online bookstore states that all the scenarios should be

executed within 5 seconds, there are two severity 2 errors at time 6 for session 1 and

session 2 (as both sessions started at time 1). In Chapter 5, we presented an approach

and a tool to provide automated support for rapidly identifying such failures.

Step 3. System States Derivation

We derive the system states by taking a snapshot at a fixed time interval based on the

scenario durations. The snapshot interval must be smaller than the response time of any

scenario, to ensure we do not miss any scenario information. We define the system state

from the log repository at time t Sr(t) to be: Sr(t) = (s1 , s2 , . . . , sn), where si is the number

of active scenarios of type i at time t and n represents the total number of scenarios. The

state (0, 0, . . . , 0) refers to the idle state. The state is denoted as Sr(t) if it is derived from

the log repository, and as Sa(t) for customer usage logs.
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Table 6.7: Estimated Occurrence Probability and Failure Probability for Each System State

States Occurrences Failure Occurrences Failure Probability
Sr

i
pf (S

r
i
)

(0, 0, 0, 0) 2000 0 0
(0, 0, 0, 1) 500 100 0.2
(0, 1, 0, 0) 250 0 0
(0, 1, 0, 1) 400 0 0
(1, 0, 0, 0) 40 20 0.5
(1, 1, 0, 0) 500 50 0.1
(1, 1, 0, 1) 250 0 0
(2, 2, 2, 0) 60 0 0

In our running example, there are four types of scenarios: Register, Browse, Purchase

and Update. Therefore, the system state, Sr(t), is a four-dimensional state vector (s1 , s2 , s3 , s4).

Table 6.6 shows the derived system states from the recovered scenario instances. For ex-

ample, at time 2, we have one register scenario and one browse scenario that are executing

simultaneously (see Table 6.5). Therefore, the system state at time 2 is Sr(2) = (1, 1, 0, 0).

In addition, Table 6.6 also keeps track of the failure information at each time instance. As

shown in the last column of this table, if there is at least one identified system failure at

time t, the corresponding system state Sr(t) is marked with an “x”. If there is no failure at

time t, the state is tagged with a “-”. The states at time 6, 7 and 8 contain errors because of

the SLA violation in sessions 1 and 2.

Step 4. Occurrence Probability and Failure Probability Calculations

Table 6.6 shows the system states derived from the first 14 log lines. In practice, the log

repository would contain thousands or millions of log lines. The second column of table 6.7

shows the aggregated occurrences of all system states based on a large execution log repos-

itory.

As mentioned earlier, we need to calculate failure probabilities for the system states

from the log repository and occurrence probabilities for the system states from the customer
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usage logs. The failure probability for each state, p
f
(Sr

i
) is calculated using the following

formula:

pf (S
r
i
) =

# Failure Occurrences of Sr
i

# Occurrences of Sr
i

(6.1)

For example, the failure probability for state (1, 1, 0, 0) is calculated as: pf ((1, 1, 0, 0)) =

50
500 = 0.1. The 4th column of Table 6.7 shows the failure probabilities for each system state

based on the execution log repository.

To calculate the occurrence probability of a system state, p(Sa
i
), from the usage data, we

use the following formula:

p(Sa
i
) =

# Occurrences of Sa
i
in the usage data

Total # occurrences of all states in the usage data
(6.2)

If we assume that the data from Table 6.7 comes from a customer usage log, the 2nd

column of Table 6.7 would show the number of occurrences of each system state in the

customer usage log. The total number of occurrences of all the system states in the customer

usage logs is 4, 000 (sum of entries in second column). The occurrence probability of the

idle state is then calculated as p((0, 0, 0, 0)) = 2000
4000 = 0.5.

6.3.3 Deployment-Specific Reliability Estimation

In this section, we present our technique to provide a deployment-specific reliability esti-

mate using Bayesian Networks. Our technique consists of the following three steps:

1. System States Selection - Identifying the system states that are common between the

customer usage logs and the log repository;
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Table 6.8: System States Derived from the Usage Data

System States Occurrence Probability
(0, 0, 0, 0) 0.5
(0, 1, 0, 1) 0.25
(1, 1, 0, 0) 0.125
(2, 3, 2, 0) 0.125

2. Test Coverage Calculation - Calculating the test coverage of the log repository on the

customer usage logs;

3. Reliability Estimation - Estimating the deployment-specific reliability using Bayesian

Networks.

Step 1. System States Selection

The system states Sr=a
i

that are common between the log repository and the customer usage

data are selected. Based on the occurrence probability in the real world (customer usage

data) and the past failure probability (Log Repository) for these states, we can calculate the

deployment-specific reliability estimates in the next step.

Table 6.8 shows the system states and their occurrence probabilities after analyzing

usage data. After comparing the states from the log repository (Table 6.7) and the customer

usage data (Table 6.8), there are three states in common: (0,0,0,0), (0,1,0,1) and (1,1,0,0).

Step 2. Test Coverage Calculation

For system states that are tested in the lab or in other field deployments, we know the

likelihood of failure. For system states that do not show up in the repository, we have no

prior knowledge about their failure probability. In order to obtain a lower bound estimate

of the system reliability, we need to take into account for how many system states we have

failure data, i.e., we need to measure test coverage.
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The Test Coverage (TC) is calculated using the following formula:

TC(S) =
∑

Sr=a
i
∈S

p(Sr=a
i

) (6.3)

where Sr=a
i

are the common states between the log repository and the deployment logs;

p(Sr=a
i

) denotes the occurrence probability of state Sr=a
i

based on data from the customer

usage data, and S is the set of covered system states. In our example, there are three states

in common. Therefore, the test coverage is calculated as: TC = 0.5 + 0.25 + 0.125 = 0.875.

The test coverage in the motivating example of Section 6.2 was 1.0, as all states that were

observed in the customer usage data were also observed in the log repository.

Step 3. Reliability Estimation

Once the failure and occurrence probability for each state are calculated, we use Bayesian

Networks to estimate the deployment-specific reliability R(TC, S). Since we have no prior

knowledge about the reliability of states that are not included in the log repository, we

assume that all previously unseen system states derived from the customer usage data con-

tain failures. Hence, the maximum possible reliability is TC(S). This leads to a lower

bound (worse case) estimate of the system reliability based on test coverage. R(TC, S) is

calculated as follows:

R(TC, S) = TC(S)−
∑

Sr=a
i
∈S

p(Sr=a
i

) ∗ p
f
(Sr=a

i
) (6.4)

where R(TC, S) denotes the estimated reliability given the field test coverage TC and

the set of covered system states S; p(Sr=a
i

) denotes the occurrence probability of state Sr=a
i
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in the customer usage data; and p
f
(Sr=a

i
) denotes the failure probability of state Sr=a

i
based

on data from the log repository.

In our running example, the deployment-specific reliability is calculated as: 0.875−(0.5∗

0+0.25∗0+0.125∗0.1) = 0.8625. Thus, the estimated deployment reliability is 0.8625. Once

the reliability is estimated, deployers can match it with their targeted reliability threshold

and decide whether or not to upgrade this new version of the system.

6.4 Industrial Case Studies

In this section, we present two case studies to demonstrate our log-based reliability estima-

tion approach. The first case study (Section 6.4.1) validates the correctness of our approach

on a large mission critical system. The second case study (Section 6.4.2) demonstrate the

usefulness of our approach by applying our reliability estimates for enhancing pre-release

field testing.

Our case study system is a large mission-critical system. It is a telecommunication sys-

tem that is responsible for processing thousands of simultaneous client requests and has

very stringent reliability requirements. This system has been deployed into hundreds of

customer sites (on-prem), which have different numbers of users, usage characteristics and

reliability requirements.

6.4.1 Providing Deployment Specific Reliability Estimates

In this case study, we aim to validate our approach by comparing our estimated reliability

against a five day (work-week) reliability that has been produced for a large mission-critical

system.

For our case study, we used a repository with around 125 GB of log data. The repos-

itory contains logs derived from load and stress tests of the system and from other field
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deployments of the system. For customer usage data, we use data from the User Accep-

tance Testing of two different deployments, which have different configuration and usage

patterns. Both deployments were tested over five days using the same version of the sys-

tem. One deployment generated 4 GB of logs while the other generated 23 GB of logs. We

measure the reliability of the system for both deployments using:

– five days worth of logs (full User Acceptance Testing);

– our approach, which uses just one day worth of logs and estimates the reliability using

the log repository.

We then compare both reliability estimates. Due to confidentiality, we cannot list the

actual estimate values. However, we note that our estimation error relative to the five-day

estimate is 2.5% for the first deployment and 3.6% for the second deployment. As explained

in section 6.3, the error is an over-estimate, i.e., the estimate is a safe estimate to use when

deciding to deploy since the system is likely to have a higher reliability than reported by

our estimate.

After examining the system state of both deployments, we note that for both deploy-

ments a small portion of the system states (5% and 8.8%) covers the majority (90%) of

the occurrence probability of system states from both deployments. These small portions

of system states never fail. The system states that suffer from performance slow-down are

very rare, leading to a high reliability. However, if the deployed system spends considerable

time in failure-prone states, we expect that our approach will provide a better estimate than

the estimates based on the full acceptance testing logs. The reason for this is that the log

repository contains much more accurate failure probability information than the logs from

even the full acceptance testing. We draw an analogy to coin flipping to make this more

clear. The more we flip a coin, the better the empirically estimated probability that a coin

falls on its head side. As the log repository contains weeks or even months of system behav-

ior, the failure probability estimated based on the log repository will be closer to the real
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Figure 6.2: Estimated Reliability for six Different Software Builds

failure probability, and therefore providing a better reliability estimate in the long run.

In summary, our deployment-specific reliability estimates using just one day of User

Acceptance Testing provide a relatively good estimate with little loss in accuracy, while

providing substantial savings in consulting and testing time.

6.4.2 Speeding up Pre-release Field Testing

In this case study, we want to show that our reliability estimates can be used to speed up the

development process by picking builds that are most suitable for limited test deployment

prior to the release of an system (e.g., alpha testing). Alpha testing involves deploying

the system in the field to explore its use by real users. Potential alpha candidate builds

often support the main functionality, but might contain bugs in the system or miss certain

features.

Figure 6.2 shows the reliability estimates for two internal deployments (A and B). The

dashed line in the Figure shows the minimum acceptable reliability of the alpha build of
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the system. For deployment A, any of the builds could be safely deployed, whereas for

deployment B only the third build could be deployed safely. Using this information, the de-

velopment team could start gathering user feedback much sooner by deploying the system

at site A first. In addition, the team should have waited until the third build to deploy at site

B and should have avoided upgrading from the currently installed version of the software

in order to avoid frustrating the users due to a high chance of failure. By deploying the

system earlier at site A and only at the appropriate time at site B, we are able to gain a

better understanding of the reliability and usage characteristics of the system in a real-life

setting. This information would help improve future builds and speed up the development

process.

6.5 Threats to Validity

This section discusses various possible threats to the validity of our approach.

6.5.1 Construct Validity

6.5.1.1 Snapshot Interval

To accurately capture the change of system states, we need to pick a snapshot interval

smaller than the shortest response time of any scenario in the large scale system used in

our case study. Shorter intervals lead to more accurate system states. However, the length

of the snapshot interval is limited by the logging interval.

In our industrial case study, the timestamp in the execution logs is accurate up to mil-

liseconds. However, if we pick the snapshot interval to be every millisecond or every 10

milliseconds, the state derivation step will lead to a huge number of repeated states with no

changes between them. For this reason, we picked a one-second interval. Our state deriva-

tion step and our reliability estimation finish within one hour on a Quad-core machine. We
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cannot pick any interval longer than 1 second, as most of the scenarios in the system finish

within 1 to 2 seconds.

6.5.1.2 System States

As there can be an infinite number of combinations of different workload requests, there can

be an infinite number of system states. However, in our large industrial study, there are only

a limited number of system states. Furthermore, the distribution of system states follows

the Pareto-principle: a small percentage (5% and 8.8%) of states covers the majority (90%)

of the system behavior. However, many of the states in the remaining 10% of the system

behavior can be equivalent, so we plan in the future to apply fuzzy-clustering techniques

on these states to group them and further reduce the number of system states.

In this chapter, we only consider the failure probability and occurrence probability of

system states, since we believe that a system fails or slows down due to the current state

(i.e., heavy workload). In the future, we plan to look into transitions between system states

to see whether they might be the reason for system failure. In particular, a state might be a

failure state just because of the previous states that eventually lead it to fail.

6.5.2 Internal Validity

6.5.2.1 Customer Usage Logs

In this chapter, we use previous user acceptance testing or past customer logs for our sources

of customer usage data. However, using logs from different versions of the system brings

many challenges to our analysis, in particular:

1. Contingency of Workload

Our deployment-specific reliability estimates are based on the workload in the field

deployment at a particular point in time. In reality, this workload might shift over
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time leading to different reliability estimates. Our approach could be used to track

such shifts in workload and warn about the impact of such a shift on the reliability of

the system.

One method of checking if the system’s behavior changes over time, is to check the

distribution of system states over time. If the distribution of system states changes

over time, then the system reliability will likely change as well. The distribution of

system states remained stable in both of our case studies (the alpha testing and the

User Acceptance Testing in two different sites).

2. Performance improvement

The new version might run faster under the same workload than the older version due

to architectural and design changes. Therefore, the resulting occurrence probability

distribution will shift with the system spending more or less time in different states. In

this case, we cannot directly match the distribution from the old logs with the failure

information from the log repository for the new version. To overcome this concern, we

can apply our performance analysis technique 5 to detect if there are any performance

problems before we apply our reliability estimation.

3. Addition of new features

Because there is no information about the usage information in the old system for

new features, we are not able to match the system states from the old logs.

6.5.2.2 Limitation of Execution Logs

In the studied mission-critical system, there is a dedicated component that monitors the

overall health. Thus, business level information as well as error messages are logged. Our

current approach may not work if the studied system does not log all the necessary system

information. In addition, we assume that all the errors are recorded in the logs, which is
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usually true for large mission-critical systems. Last but not the last, not all errors reported in

the logs are operational or performance-related. Errors from which the system recovers are

not considered as failures. Examples of such errors are temporary communication failures

that do not impact the overall system health or SLA. In this chapter, we manually verified

all failures included in our analysis.

6.5.3 External Validity

In this chapter, we introduced a novel approach to estimate the reliability based on customer

usage context. We evaluate our approach against a large mission-critical telecommunication

system and showed that our estimate lies within 4% of the more traditional longer User

Acceptance testing. To show the general applicability of our approach, we should evaluate

it on other large mission-critical systems. However, such systems are usually developed by

large commercial companies and their data is hard to obtain due to legal and confidentiality

concerns.

6.6 Related Work

In this section, we discuss two areas of work related to our log-based empirical reliability es-

timation approach: approaches that estimate the system quality in the field and approaches

that use log analysis.

Empirical Estimation of Software Availability and Reliability

Mockus [203] uses information from operational customer support systems to estimate the

availability of a large telecommunication system. Information from customer support sys-

tems is more straight-forward to obtain than extracting failure information from the execu-

tion logs. However, the customer support systems may not contain all failure information,
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as they miss externally unnoticeable problems and problems that are not reported by cus-

tomers. Nagappan et al. [98, 208] provide a reliability estimate based on information from

the static source code metrics and dynamic test coverage. Their approach is implemented

as an Eclipse IDE plugin to provide rapid feedback for unit testing.

Avritzer et al. [51, 55, 57] have proposed several approaches for generating test suites

based on the operational profile and for estimating the reliability of mission-critical systems.

In [55], Avritzer et al. use Markov chains to generate load testing suites based on an

operational profile. In [51, 57], Avritzer et al. introduce a transient analysis of the failure-

based Markov chain to model reliability decay as a function of time. Our approach is similar

to [51, 57], as we incorporate the occurrence probability distribution from the deployment

and the failure probability from the repository. However, rather than using the failure

information from vendors, we use the log framework and a large data set of field data to

empirically derive failure and occurrence probability distributions. In addition, since we

have the actual logs to estimate the occurrence probability of system states, we do not need

Markov chains to model workload usage.

Log Analysis

In general, there are two sources of non-invasive data that can be used to understand, moni-

tor, and analyze the various aspects of the system behavior: execution logs and performance

logs.

Execution logs are generated by output statements that developers insert into the source

code. Execution logs are widely available and are often used for remote issue resolution

and for legal compliance purposes (e.g., “Sarbanes-Oxley Act of 2002” [23]). Aguilera et

al. [42, 216] developed various algorithms to perform black-box performance debugging

on distributed systems. They use the header information of the TCP packet traces (source,
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destination and time) to infer the dominant causal paths through a distributed system. Un-

fortunately, the accuracy of the inferred causal paths decreases as the degree of parallelism

increases. Marwede et al. [189] use timing anomalies to automatically uncover functional

problems. Hassan et al. [139] propose a light-weight approach to extract customer opera-

tional profiles from the execution logs. Chapters 4 and 5 propose automated log analysis

approaches to detect functional and performance problems in the load tests. The log analy-

sis approach presented in this chapter is related to the approach presented in [53], because

in both papers we abstract the log information into a set of different system states. How-

ever, in [53] the state definition used was the set of rules that were fired as a result of a

change in object memory, while in this paper the system state is defined as a set of active

scenarios present in the system at a particular moment in time.

Performance logs, which are generated by third party monitoring tools like PerfMon [21],

record the system resource utilizations like CPU, memory and disk. Avritzer et al. [50, 49]

propose algorithms to detect the need for software rejuvenation by monitoring the chang-

ing values of performance metrics. Mi et al. [89, 202] and Cohen et al. [90, 254] develop

application signatures based on various system metrics (like CPU and memory usage). The

application signatures are further used for efficient capacity planning and anomaly detec-

tion. The main difference between these approaches and ours is that we use execution logs

for our analysis. Execution logs provide more in-depth domain-specific information.

6.7 Conclusion

Studies show that many field failures are due to load problems rather than functional prob-

lems. Software reliability is a useful quality index to determine the quality of a system under

load. Large software systems are deployed to many customers, which could have different

usage patterns. Therefore, one general reliability cannot accurately reflect the quality of all

customer deployments. In this chapter, we propose an automated approach that estimates
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the deployment specific reliability based on mining the large sets of execution logs. Dif-

ferent from previous two chapters, which focus on detecting load-related problems from a

single load test, we use data from many load tests to estimate the overall quality of a sys-

tem under load. Case studies show that our approach is accurate and enhances the existing

continuous delivery process.



CHAPTER 7

Conclusions and Future Work

L
ARGE SOFTWARE SYSTEMS must be load tested to ensure they can support a large

number of concurrent users. Analyzing a load test is challenging, because it is

hard to build models from the large set of load testing data. Current industrial

practice consists mainly of high-level manual checks. Such practice is not efficient, nor

is it sufficient. Existing load testing research focuses on the test design and execution.

There is very little research on analysis of the load testing results. In this dissertation, we

propose automated approaches to assess various aspects (i.e., functional, performance and

reliability) of the quality of a system under load by analyzing the recorded load testing data.

Some of our research results (Chapters 3, 4 and 5) are already adopted in practice.

This chapter is organized as follows: First, we summarize our thesis findings and con-

tributions (Section 7.1). Then, we present some future works (Section 7.2). Finally, we

provide our closing remarks (Section 7.3).

179
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7.1 Thesis Findings and Contributions

– A Survey on Load Testing Large Scale Software Systems

We have provided a taxonomy of load testing in terms of defining the phases of a

load test (design, execution and analysis) as well as an in-depth survey of approaches

inside each phases (e.g., realistic v.s. fault-inducing load design approaches in the

load design phase).

– Automated Abstraction of Execution Logs

Execution logs are unstructured and have an infinite set of vocabulary. Since many

statistical and artificial intelligence techniques operate on the structured data, there

is a need to abstract execution logs into structure data to enable automated analysis.

Existing log abstraction approaches, which work for generic log formats, either cannot

scale to large log files [227] or cannot uniquely map one log line to one execution

event [233]. Log lines generated by the same output statements will have identical

static information and the same structure of dynamic information. Our approach

is influenced by source code clone detection techniques to automatically recognize

the static and dynamic parts of log lines. The resulting abstracted forms are called

execution events. Case studies show that our approach can handle large log file sizes

with satisfying results.

– Automated Detection of Functional Problems

We can detect functional problems of a system by analyzing its execution logs. As

a load test repeatedly executes a set of scenarios and is conducted after the func-

tional testing is complete, the execution of the same scenario should generate identi-

cal event sequences. Any variations of these sequences might indicate potential prob-

lems. We have proposed an approach that derives the pair-wise temporal relations out

of abstracted execution logs. Unlike many temporal specification mining approaches
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(e.g., [45, 118, 248]), which profile and analyze the systems at the method-invocation

level, our analysis examines the execution logs to avoid big performance overhead

during a load test. Compared to method-invocation level data, execution logs are

hard to abstract and group into scenario sequences. Our approach automatically un-

covers the dominant behavior and flags deviations from execution logs by analyzing

event pairs. Case studies show that our approach detects various types of problems in

the load testing environment, load generators, the system under test, and scales well

to large enterprise systems.

– Automated Detection of Performance Problems

We can detect performance problems of a system by comparing the current test against

other load tests. As similar loads are applied on load tests, performance data should

be comparable across tests and informal performance baselines can be derived. We

evaluate the performance of a system in terms of the end-user experience (response

time). Response time throughout a test is not constant, as a typical workload usu-

ally consists of periods simulating peak usage and periods simulating off-hours usage.

Therefore, we need to evaluate the end-user experience by examining the entire re-

sponse time distribution instead of merely comparing the average response time. If

the current run has scenarios that follow a different response time distribution than

the baseline, this run is probably troublesome and worth investigating. We have pre-

sented an approach that automatically flags scenarios with response time problems

by comparing the durations of execution sequences from the current test against prior

test(s). We recover execution sequences from logs and calculate the duration of these

sequences using the time stamps associated with each log line. Then, we compare the

duration of various sequences using statistical techniques and visualize the problems

in a report. Our approach not only reports scenarios with performance problems but

also pin-points the steps with performance bottlenecks within these scenarios. Case
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studies show that our approach produces few false alarms and scales well to large

industrial systems. Unlike [90], our approach detects performance problems without

specifications like SLAs (Service Level Agreements). In contrast to [89], our approach

provides more context for developers to reproduce and diagnose problems.

– Automated Estimation of System Reliability

Nowadays, many software systems adopt the agile continuous delivery process. One

of the challenges is to decide when the system is ready to release to the field. Current

quality measurement in the agile process does not include any metrics related to the

system performance under load. We have proposed to use software reliability as a use-

ful quality index to summarize the quality of a system under load. We can estimate

the software reliability by mining the execution log repository, which contains the

in-house testing and customer usage data. Accurate reliability estimates can help to

determine whether a system has a reliability problem (i.e., not meeting the target re-

liability requirement). The general reliability estimates are usually derived from syn-

thetic benchmark workload runs. These benchmark workloads rarely match the actual

field workload, leading to estimates that do not match the expected field reliability of

the system. We have proposed an approach, which derives an empirically-validated

and customized field reliability based on mining the execution log repositories. First,

we recover the customer usage patterns (“system states”) from the deployment load

testing data. Then, we use logs generated from thousands of hours of execution (in-

house testing and other customer deployment load testing) of the same version of

the system to provide a good estimate of how often the identified system states fail

(“failure probabilities”). By combining the customer usage and failure information of

these system states, we can produce an accurate and customized reliability estimate.



CHAPTER 7. CONCLUSIONS AND FUTURE WORK 183

7.2 Future Work

7.2.1 Enhancing Execution Logs for Effective Load Testing Analysis

Execution logs, which are generated from debug statements, are free-form, unstructured

text. The anomalous behavior, obtained by mining large volumes of data, could potentially

lead to load-related problems, but cannot provide more insight into the root cause of the

problem (e.g., the input causing the problems). One possible avenue of future work is to

explore the possibility of enriching the execution logs to ease the root cause analysis of

a load test without imposing high overhead of the system. This log enhancement process

could be an iterative process, as developers or load testing professionals actively investigates

the problems.

7.2.2 Building An Efficient Repository for Load Testing

Like code and bug repositories, load testing repositories contain rich software historical

data, which records the software behavior under load for different versions. In this thesis,

we have demonstrated that effective and automated load testing analysis can be performed

by mining such data. However, current state of storing load testing data (execution logs,

metrics and analysis results from the load testing professionals) are ad-hoc. Building an

efficient load testing repository, which provides fast search and retrieval of load testing

data as well as linkage to other repositories (e.g., code, bug and mailing lists), could greatly

enhance the automated load testing analysis and software quality as a whole.

7.2.3 Benchmarks for Evaluating Approaches Which Analyze the Results of

Load Tests

The goal of load testing analysis is to detect various load-related problems. In this thesis,

we use execution logs to detect functional, performance and reliability problems under
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load. There are works proposed to detect load-related problems using metrics [115, 154,

156, 157, 185, 186, 187, 210]. As more and more load testing analysis techniques have

been proposed, a benchmark, similar as the Siemens benchmark suite for functional bug

detection [4], is needed to evaluate the effectiveness of various approaches to detect load-

related problems.

7.2.4 Leveraging Big-Data Analysis Infrastructures for Analyzing the Results

of Load Tests

As load tests generate large volume of data, the load test analysis techniques need to be

scalable and efficient. However, as data grows larger (e.g., bigger than one machine’s hard-

drive to store), we might need to look into using the big-data analysis infrastructures (e.g.,

Hadoop) for analyzing the results of load tests. However, most of these infrastructures

provide limited mechanisms to express the problems (e.g., only Map/Reduce for Hadoop).

Existing analysis techniques may need to be adapted or even re-written to work on these

infrastructures.

7.3 Closing Remarks

To ensure the quality of large scale systems, load testing is required in addition to con-

ventional functional testing procedures. Load testing is becoming more important, as an

increasing number of services are being offered in the cloud to millions of users. Load test-

ing is a challenging area, in which industry has invested large amount of resources. Yet,

there are few academic research efforts devoted to load testing. In this thesis, we have

proposed automated approaches to assess the system quality under load by analyzing large

sets of readily-available execution logs. We hope that this thesis will raise awareness and

highlight the lack of research in this important and practical research topic.
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APPENDIX A

Our Paper Selection Process

Our paper selection process is illustrated in Figure A.1, which consists of the following three

steps:

1. Picking the most suitable search engine(s): There are three types of search en-

gines available: General research article search engines (e.g., Microsoft Academic

Search [17], and Google Scholar [8]), specific organizational search engine (e.g.,

search engine from ACM Portal and IEEE Explore), and online indexing database

search engines (e.g. CiteSeer and DBLP searches [5]).

We have decided against specific organizational paper repositories like ACM Portal

and IEEE Explore due to concerns on the search efforts and search quality:

Picking the most 

suitable search engine(s)

Searching and refining 

using keywords
Adding cross-referenced 

papers

Step 1. Step 2. Step 3.
 

Figure A.1: Our Paper Selection Process
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First, some papers appear in only one organization’s repository or all of them. For ex-

ample, papers like [55] appear in both IEEE Explore and ACM Portal, but some other

papers like [156, 157] only appear in the IEEE Explore repository and papers like [48]

only appears in the ACM repositories. Furthermore, these organizational search re-

sults are more focused on the search quantity rather than search quality. A single

search on the term “load testing” from the IEEE Explore returns 17, 504 records as of

June 27th, 2010; yet many of these entries are false positives, such as “Power mini-

mization technique for induction motor load test”. Although the IEEE portal provides

search refinement by Authors, by Affiliations, by Publication Title and by Subject,

these lists are not exhaustive. For example, the refinement by Publication title tab

only lists the 25 top journal titles with the terms “load test” and misses the most rel-

evant venues like “IEEE Transactions on Software Engineering”, which contains [55].

ACM Portal suffers from similar search quality and search refinement problems. Fi-

nally, the terms “load test” or “load tests” are not considered the same by the ACM or

IEEE search engines, since the search results for “load tests” will not contain papers

with “load test” in them.

Therefore, we conduct our survey mainly based on the results of the General scholarly

article search engines, which provide a more user friendly and higher quality search

results. For example, a search with the terms like “load test” in DBLP would return not

only all the papers whose titles contain “load test”, but other terms like “load testing”

or “test ... load”.

2. Keyword-based search and refinement: Our initial search with the term “load test”

returns 100 papers in DBLP on March 28, 2012. We have filtered 74 irrelevant papers

based on the paper titles, publication venues and abstracts. For example, results

like “Test front loading in early stages of automotive software development based on

AUTOSAR” are filtered out.
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After reading through some papers, we realized that other terms are also used inter-

changeably with “load testing”. In particular, the terms “performance testing” (e.g.

[192, 191]) and “stress testing” (e.g. [247]) are used as synonyms for the term load

testing. Therefore, we expand our search keywords into: “load test”, “performance

test”, and “stress test”.

Unfortunately, there is no standard definition of load test, which all papers agree on.

Each interpretation has its limitations and/or vagueness. Furthermore, not all per-

formance tests and stress test papers are related to load testing. Therefore, we have

provided our unified definition of load testing (see Section 2.2), which combines all

the different load testing interpretations in a concise view. Based on our interpreta-

tions, we first removed performance and stress testing papers that are not related to

software (e.g., “Backdrive Stress-Testing of CMOS Gate Array Circuits”). Then, we fil-

ter out performance and stress testing papers unrelated to our interpretations of load

testing.

Table A.1 shows the number of papers obtained from the above three keywords before

and after filtering. Some of these papers can appear in more than one search result.

For example, [157] appears both in “load test” and “performance test”.

3. Adding cross-referenced papers and tools: DBLP only searches through the pa-

per titles, but not the actual paper contents or tools for the above three keywords.

Therefore, we add more papers based on the related work sections from relevant load

testing papers. Finally, we also include relevant papers that cite these papers, based

on the “Cited by” feature from Microsoft Academic Search [17], Google Scholar [8],

ACM Portal [1] and IEEE Explore [12]. For example, papers like [51, 229] is included,

because they cite [55] and [157], respectively.

In the end, we have surveyed a total of 120 papers and tools between the year 1993 −

2011 as shown in Table A.1. To verify the completeness of the surveyed papers, the final
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Table A.1: Number of Papers Found at Each Step
Steps Number of Papers and Tools

Keyword-based Search and Refinement

Keyword Initial Refined
Load test 100 26

Performance test 669 60
Stress test 139 14

Adding Cross-Referenced Papers and Tools 120

results include all the papers we knew beforehand to be related to load testing [48, 55, 66,

67, 191].
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