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Abstract 
Monitoring the execution of large enterprise systems is 

needed to ensure that such complex systems are 
performing as expected. However, common techniques for 
monitoring, such as code instrumentation and profiling 
have significant performance overhead, and require 
access to the source code and to system experts. In this 
paper, we propose using execution logs to monitor the 
execution of applications. Unfortunately, execution logs 
are not designed for monitoring purposes. Each 
occurrence of an execution event results in a different log 
line, since a log line contains dynamic information which 
varies for each occurrence of the event. We propose an 
approach which abstracts log lines to a set of execution 
events. Our approach can handle log lines without having 
strict requirements on the format of a log line. Through a 
case study on a large enterprise application, we 
demonstrate that our approach performs well when 
abstracting execution logs for large enterprise 
applications. We compare our approach against the SLCT 
tool which is commonly used to find line patterns in logs. 
 
1. Introduction 
Large commercial software systems require runtime 
monitoring to ensure Quality of Service [20, 22]. 
Erroneous behavior or long waiting times will result in 
user dissatisfaction and loss of revenue. Runtime 
monitoring compares the runtime behavior of an 
application against a documented or expected behavior. 
Runtime monitoring techniques, such as source code 
instrumentation and profiling, require a good 
understanding of an application to determine the most 
appropriate subsystems or components to monitor. Such 
understanding is rarely available in practice. 

Source code instrumentation [5, 6] is commonly used 
to insert monitoring points in large software systems. 
However, code instrumentation requires rebuilding and 
redeploying the monitored system. This is a time 
consuming task which causes service disruption. 
Furthermore, code instrumentation is not feasible when 
the source code of the application is not available. This is 
the case for many large enterprise systems, which make 
use of Commercial-Off-the-Shelf (COTS) components. 
COTS components are usually purchased from a third 
party and are shipped without the source code.   

Code profiling [8, 18, 19] is another common 
technique for monitoring an application. Code profiling 

avoids the need for rebuilding the source code. However, 
profiling introduces significant slowdowns and is not 
desirable in a production setting.  

Software developers mark the execution of high level 
events in an application by outputting log lines during 
development. For example, the event of charging a user 
account may be marked by outputting the following log 
line: “Charged User Account, account=1000, 
amount=200”. Such log lines indicate high level 
information about the progress of execution for an 
application, in contrast to code instrumentation events 
which are at a much lower level. These logs lines are 
helpful during remote issue resolution by customer 
support representatives. Also recent legal acts, such as the 
Sarbanes-Oxley Act of 2002, have made the logging of 
the execution for telecommunication and financial 
companies a legal requirement [4].  

We propose using these commonly available logs to 
monitor the execution of an application. Monitoring 
techniques which make use of execution logs are the least 
invasive (no disruption or degradation of an application) 
and most applicable (logs are available). However, 
execution logs are not designed for monitoring. Although 
each log line is an instantiation of an execution event, 
each log line contains dynamic information that is specific 
to the particular occurrence of an event. The dynamic 
information causes the same execution event to result in 
different log lines. For example a log line indicating the 
event of charging a user’s credit account would contain 
different account numbers and charge amounts for each 
instantiation of that particular execution event as shown in 
Table 1. All three log lines correspond to different 
instantiations of the same execution event. 

 
Log Lines 

1: Charged User Account, account=1000, amount=200 
2: Charged User Account, account=1234, amount=100 
3: Charged User Account, account=500, amount=250

Table 1. Sample log lines 
 

Abstracting log lines to execution events is a 
challenging and time consuming task. A system expert is 
needed to determine that two logs lines represent the same 
execution event. Such system experts are rarely available 
and if they are available they have limited time. Due to 
the large size of enterprise systems, this process is time 
consuming. Moreover, the system expert must update the 
abstractions for each version of the software system. 



At first glance it may appear that the process of 
abstracting log lines to execution events could be solved 
if the source code of an application is available. Simply 
searching for “LOG” statements (e.g., “printf” or 
“System.out”) is not sufficient since in many instances an 
execution event may be generated dynamically using 
several output statements in the source code. Table 2 
shows one example.  

Log Lines Source Code 

User Shopping 
Basket 

contains: 2, 3, 5 

LOG("User Shopping Basket contains: "); 
for (int i=0; i<shoppingBasket.size(); i++) { 
    itemId = shoppingBasket[i]; 
    if(i > 0) { 
          LOG(" , ” + itemId); 
    } else { 
          LOG(itemId); 
    } 
} 

Table 2. An example of an execution event generated by 
multiple output statements 

 
In this paper, we introduce a lightweight approach to 

abstract log lines to execution events. Our approach can 
handle free-form log lines with limited requirements on 
the format of the log lines. Experiments on a large 
enterprise application show that our approach abstracts 
log lines with high precision and recall.  

 
Organization of the Paper 
This paper is organized as follows. Section 2 overviews 
related work in the field and places our contributions 
relative to prior work. Section 3 presents our approach of 
abstracting log lines to execution events. Section 4 
demonstrates the effectiveness of our approach through a 
case study using log files from a large enterprise software 
application. Section 5 concludes the paper.  
 
2. Related Work 
Prior approaches for abstracting log lines to execution 
events could be grouped under three general approaches: 
Rule-based, Codebook-based and AI-based approaches.  

Rule-based approaches [13, 14, 15, 26, 27] use a set of 
hard coded rules to abstract log lines to execution events. 
These approaches are commonly used in practice since 
they are very accurate. However these approaches require 
a substantial effort for encoding and updating the rules.  

Codebook-based approaches [7, 24, 28] are similar to 
the rule-based approach. However codebook approaches 
process a subset of execution events (“alarms”) instead of 
all events. The subset of events, which forms the 
codebook, is used in real-time to match the observed 
symptoms.  

 AI-based approaches [1, 2, 3, 9, 10, 12, 21] use various 
types of artificial intelligent techniques such as, Bayesian 
networks and frequent-itemset mining, to abstract 
execution logs to events. 

Our approach, presented in Section 4, is similar to a 
rule-based approach. However, our approach requires less 
system knowledge and effort. Rather than encoding rules 
to recognize specific execution events, our approach uses 
a few general heuristics to recognize static and dynamic 
parts in log lines. Log lines with identical static parts are 
grouped together to abstract log lines to execution events.  

Approach Transparency 
Amount of 

System 
Knowledge 

Needed 
Effort  Coverage 

Rule-based 
[13, 14, 15,  
26,27] 

Y High High N 

Codebook-
based 
[7, 24, 28] 

Y Medium High N 

AI-based 
 [1, 2, 3, 9, 
10, 12, 21] 

N Low Low N 

Our 
approach 

Y Low Low Y 

Table 3. Summary of related work 
 

We define several criteria to evaluate a log abstraction 
approach:  
1. Transparency: Can a user easily understand the 

rationale for abstracting a log line to an execution 
event? For example, in a neural-network AI approach, 
the user cannot determine the rationale for abstracting 
a log line to a particular event. We desire an approach 
with high transparency so users would trust it. 

2. Amount of system knowledge: What is the amount 
of knowledge needed about the system to use the 
approach? For example, in a rule approach a domain 
expert is needed to encode all rules. 

3. Amount of required effort: What is the amount of 
effort required for the approach to work properly? 
Rule-based approaches and cookbook-based 
approaches require a large amount of human effort to 
encode the rules or alarms. These encodings must be 
updated with every version of a software system. 

4. Coverage: Is each log line abstracted to a unique log 
event? For example, AI-based approaches may not 
abstract log lines which do not occur above a 
particular threshold. 

 
3. Our Log Abstraction Approach 
Log lines are generated by output statements in the source 
code. Log lines generated by the same set of output 
statements correspond to the same execution event. Such 
log lines will be similar to each other. Table 1 shows three 
log lines generated by the same execution event. The 
identical (i.e., static) parts in each log line are static 
information describing the execution event (i.e., the 
context), whereas the varying parts (i.e., dynamic) are 
parameter values generated during runtime.  

Not all log lines contain static and dynamic parts. For 
example, “All accounts initialized” contains only a static 



part. Most of the time, a log line has both dynamic and 
static parts. Log lines with same static parts and same 
structure of dynamic parts belong to the same execution 
events. If we can parameterize each log line, we can  
abstract log lines to execution events properly. 

 
3.1. Clone Detection Approach 
Log lines generated by the same execution events should 
look the same if we can properly parameterize the 
dynamic contents from each log line. This process is 
similar to the “Parameterized Token-Matching 
Algorithms” used in the source code Clone Detection 
research [11]. To verify the feasibility of using clone 
detection techniques to abstraction log lines, we used the 
CCFinder [11] tool which implements the parameterized 
token matching approach. The tool can detect similarities 
on multiple programming languages and plain text.  

Although CCFinder works on large source code bases, 
it is not able to process large log files. For example, 
CCFinder performs clone detections on multiple lines and 
cannot handle large file size. Based on a closer analysis, 
we feel CCFinder cannot process large log files as good 
as large source files due to the following reasons: 
1. Programming languages or plaintext wrap around 

lines but have delimiters for each statement (like “;”, 
“.” or “!”); whereas a log line does not use similar 
delimiters. Thus, CCFinder cannot find the end of 
each log line and treats all log lines as one chuck.  

2. Source code contains control keywords like if, else, 
for, while etc. These keywords are the static parts in 
the source code and are used by CCFinder in the 
lexical analysis and transformation steps to analyze 
and mark up the source code. Log lines have a less 
strict grammar and unlimited vocabulary; CCFinder 
cannot mark up any specific parts when processing.  

 
3.2. Our Approach 
Based on lessons learned from running CCFinder on log 
files, we have derived a new approach to detect 
similarities among log lines, then parameterize and 
abstract these lines. Our approach  treat end of line 
characters as the delimiter for each log line. Our approach 
scales up to process log files which contain thousands or 
millions of log lines. 

Log Lines 
1. Start check out 
2. Paid for, item=bag, quality=1, amount=100 
3. Paid for, item=book, quality=3, amount=150 
4. Check out, total amount is 250 
5. Check out done 

Table 4. Sample log lines 
 
As shown in Figure 3, our approach consists of three steps: 
Anonymize, Tokenize and Categorize. In the rest of this 
section, we demonstrate our approach using a small 
example that is shown in Table 4. The example has 5 log 
lines. 

 
The Anonymize step 
The Anonymize step uses heuristics to recognize tokens 
in log lines which correspond to dynamic parts. Once the 
tokens are recognized they are replaced with generic 
tokens ($v). Heuristics can be added or removed from our 
approach. We use the following two heuristics to 
recognize dynamic parts in log lines: 

1. Assignment pairs like “word=value”;  
2. Phrases like “is[are|was|were] value”  

Table 5 shows the sample log lines after the Anonymize 
step. In the second and third lines, contents after the equal 
signs (=) are replaced with the generic term $v. In the 
fourth line, the phrase “is 250” is replaced with the term 
“=$v”. There are no changes made to the first and last line. 

Log Lines 
1. Start check out 
2. Paid for, item=$v, quality=$v, amount=$v 
3. Paid for, item=$v, quality=$v, amount=$v 
4. Check out, total amount=$v 
5. Check out done 

Table 5. The sample logs after the anonymize step 
 
The Tokenize step 
The Tokenize step separates the anonymized log lines into 
different groups (i.e., bins) according to the number of 
words and parameters in each log line. Separating log 
lines into different bins narrows down the search space 
during the Categorize step. The bins enable us to process 
large log files in a timely fashion by limiting our search 
space. We estimate the number of parameters in a log line 
by counting the number of generic terms (i.e., $v). Log 
lines with the same number of tokens and the same 
number of parameters are placed in the same bin. Table 6 
shows the sample log lines after the Anonymize and 
Tokenize steps. The left column indicates the name of a 
bin. Each bin is named with a tuple: number of words and 
number of parameters that are contained in the log line 
associated with that bin. The right column in Table 6 
shows the log lines. Each row shows the bin and its 
corresponding log lines. The second and the third log 
lines contain 8 words and are likely to contain 3 
parameters. Thus the second and third log lines are 
grouped together in the 8_3 bin. Similarly, the first and 
last log lines are grouped together in the 3_0 bin as they 
both contain 3 words and are likely to contain no 
parameters.  

Bin Name Log Lines 
3_0 1. Start check out 

5. Check out done 
5_1 4. Check out, total amount=$v 
8_3 2. Paid for, item=$v, quality=$v, amount=$v 

3. Paid for, item=$v, quality=$v, amount=$v 
Table 6. Sample logs after the tokenize step 

 
  



  
Figure 3. High level overview of our approach for abstracting execution logs to execution events

The Categorize step  
The Categorize step compares log lines in each bin and 
abstracts them to the corresponding execution events. The 
inferred execution events are stored in an execution event 
database for future references. Our algorithm goes 
through the log lines bin by bin. After this step, each log 
line should be abstracted to an execution event. Table 7 
tabulates the results of our working example after the 
Categorize step. Our algorithm starts with the 3_0 bin. 
Initially, there are no execution events which correspond 
to this bin yet. Therefore the execution event 
corresponding to the first log line becomes the first 
execution event namely 3_0_1 (the first execution event 
corresponds to the bin which has 3 words and no 
parameters). Then the algorithm moves to the next log 
line in the 3_0 bin which contains the fifth log line. The 
algorithm compares the fifth log line with all the existing 
execution events corresponds to the 3_0 bin. Currently, 
there is only one execution event: 3_0_1. As the fifth log 
line is not similar to the 3_0_1 execution event, we create 
a new execution event 3_0_2 for the fifth log line. With 
all the log lines in the 3_0 bin processed, we can move on 
to the 5_1 bin. As there are no execution events which 
correspond to the 5_1 bin initially, the fourth log line gets 
assigned to a new execution event 5_1_1. Similar log 
applies when we process the log lines from the 8_3 bin 
are processed with the same algorithm. 
Execution event Log Lines 

3_0_1 1. Start check out 
3_0_2 5. Check out done 
5_1_1 4. Check out, total amount=$v 
8_3_1 2. Paid for, item=$v, quality= $v, amount=$v 
8_3_1 3. Paid for, item=$v, quality=$v, amount=$v 

Table 7. Sample logs after the categorize step 
 
4. Case Study 
We conducted a case study to evaluate the effectiveness 
of our approach. We ran an implementation of our 
approach against logs for a large enterprise software 
system. Since we have limited knowledge of the software 
system, we could not use rule-based or codebook-based 
approaches. We can only use an AI-based approach. 
There are two AI tools which we could compare our 
approach against. The tools are: teirify [16] and SLCT 
(Simple Logfile Clustering Tool) [12]. The teirify tool 
uses a bio-informatics algorithm [17] to detect line 
patterns, whereas the SLCT tool makes use of frequent-

itemset mining to cluster similar log lines. Unfortunately, 
teirify requires a large amount of memory and cannot 
handle large log files (exceeding 10,000 log lines).  Thus, 
we compared the performance of our log line 
parameterization approach against the result obtained 
from SLCT, which was able to scale to handle large files. 
We briefly describe the SLCT approach, explain the setup 
of our case study, report the results of our study, and 
discuss lessons learned from our study. In this paper, we 
use average precision and average recall [25] to measure 
the performance of different approaches. An approach 
with high recall classifies most of the log lines. An 
approach with high precision implies there are few log 
lines which are mis-classified.  
 
4.1. SLCT 
Abstracting log lines to execution events can be 
considered as the process of discovering common patterns 
among log lines. Consequently, we can consider using a 
data mining algorithm which analyzes large volumes of 
data to report interesting patterns and relations in the data. 
SLCT (Simple Logfile Clustering Tool) [12] is an open 
source tool which uses the Frequent-Itemset Mining 
technique [23] to detect patterns and spot abnormal events 
in the streams of logs. SLCT outputs execution events as 
a regular expression. Table 8 shows one example. SLCT 
by default attempts to create patterns which do not 
intersect. If the support count is 3, then only “In 
Checkout, user is Tom” will be shown. However, if the 
support count is 4, only the first pattern (In Checkout, 
user is *) will be reported. Each of these reported line 
pattern can be considered as an execution event. 

Log Lines Line Patterns 
In Checkout user is Tom 
In Checkout user is Jerry 
In Checkout user is Tom 
In Checkout user is Tom 

In Checkout, user is * 
In Checkout, user is Tom 

Table 8. An example of multiple line patterns 
 
4.2. Case Study Setup 
We conducted three experiments on the log files for a 
large enterprise application. In the first experiment, we 
study the feasibility of an approach by running it against 
small-size log files. Small log files are generated by 
randomly picking 100 log lines from a larger log file. We 
ran each approach (our approach and the SLCT approach) 
on 100 different randomly generated small-size log files. 



Since the files are small in size, we can manually verify 
the correctness of each approach and gain a better 
understanding of the limitations and strengths of each 
approach. We also use the experiment to fine tune the 
input parameters. In the second experiment, we examine 
the stability of an approach by running it against a 
medium-size log files. Each medium-size log files 
consists of 10,000 log lines randomly picked from a larger 
log file. We ran each approach on 100 different log files. 
We use the experiments to measure the average, 
minimum and maximum performance of an approach. In 
the third experiment, we test the scalability of an 
approach by running it against a large log file, with 
around three quarter of a million (723,608) log lines.  

The studied application was internationalized and part 
of the internationalization efforts involved the manual 
abstracting log lines to execution events. The execution 
events are stored in a separate file which is translated to 
different languages. We use this file as the gold standard 
in our performance evaluation of each approach. We now 
present the results of the three experiments using the two 
approaches.  
 
4.3. Results 
In this section, we present the performance results of 
SLCT and our log abstraction approach.  

 
SLCT 

For our experiments, we used the support count of 10, 
100, and 100 for the small, medium and large log files, 
respectively. Unfortunately, as the log files gets bigger 
SLCT suffers from an ambiguity problem, as it shows 
general patterns like lines begins with “Start”. To avoid 
ambiguity, we remove the general patterns before 
abstracting log lines to patterns (i.e., events). Table 9 
tabulates the precision and recall values for SLCT. SLCT 
can handle log files with various sizes with stable 
performance. However, the performance is not satisfying. 
The low precision and recall is due to the following two 
reasons. First, SLCT won’t abstract every log line to an 
execution event since the log line must occur often 
enough for a frequent pattern to emerge. Second, SLCT 
reports many sub-patterns.  Table 8 shows one example. 
The pattern “In Checkout, user is Tom” is a sub-pattern of 
“In Checkout, user is *”. In our case study, if log lines 
have more than one line patterns reported, we just match 
these log lines with the line patterns which have the 
highest support count.  

Experiments Precision Recall 

Small 3.9% ± 0.45% 11.4% ± 4.8% 

Medium 2.6% ± 0.14% 12.3% ± 1.8% 

Large 2.4% 18.4% 

Table 9. The performance for SLCT 
 

Our Log Abstraction Approach 
For our approach, we first examine the logs and we add 
an additional rule to anonymize email addresses in log 
lines. For the Categorize step, we assign log lines to a 
particular execution event when the log line and the event 
have the same number of tokens after the anonymize step. 
Table 10 shows the results of the three experiments for 
our approach. As we can see, our approach can handle 
different size log files with high precision and recall.  

Experiments Precision Recall 

Small 95.9% ± 3.1% 99.9% ± 0.31% 

Medium 90.0%  ± 2.5% 97.8%  ± 0.44% 

Large 90.0%  98.4% 

Table 10. The performance for our approach 
 
We manually investigated the remaining 5-10% of the log 
lines which our approach could not correctly abstract to 
their corresponding execution events. Our investigation 
revealed that these log lines followed a peculiar pattern 
for their dynamic information which our approach did not 
account for. For example, our approach will incorrectly 
abstract the log lines shown in Table 11 to different 
execution events. We then updated the heuristics in the 
Anonymize step to account for such a pattern by adding 
the line pattern (“Start processing for user $v”). 
 

Log Lines 
1: Start processing for user Jen 
2: Start processing for user Tom Lee 
3: Start processing for user Henry

Table 11. An example of log lines which our approach fails  
 
4.4. Limitations and Discussion 
Our approach considerably outperforms SLCT since our 
approach does not suffer from the problem of limited 
frequencies and subpattern merging. However, our case 
study was performed on a single application so we must 
explore the performance of our approach on applications 
from various domains. In addition, our approach requires 
some human involvement. Our approach requires users to 
go through some log lines to compose the anonymization 
rules. Our approach also requires users to quickly go 
through the abstracted execution events making sure there 
are all log lines which have been abstracted. The example 
shown in Table 11 can be easily spotted by skimming 
through the abstracted events. It can be resolved by 
adding in one rule for replacing the words after “for user”.  
 
5. Conclusion 
Complex enterprise applications must be monitored to 
ensure that they are functioning properly. However, many 
enterprise applications were not built with monitoring in 
mind. Monitoring must be added to these applications. 
Traditional techniques to add monitoring to an application 



require access to the source code, and may result in 
unacceptable performance degradations. Moreover all 
techniques require extensive knowledge of the 
application. Such knowledge rarely exists in practice. 

We propose monitoring application by means of the 
execution logs which are used by support staff and 
developers to understand the execution of an application. 
To use such logs, we must abstract each log line to its 
corresponding execution event. We call this process the 
log abstraction problem. In this paper, we developed an 
approach that addresses many of the shortcomings and 
limitations of other approaches. We conducted a case 
study using logs from a large enterprise application. Our 
case study shows that our approach abstracts events with  
high precision and recall. 
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