
Abstracting Execution Logs to Execution Events for Enterprise Applications

Zhen Ming Jiang1, Ahmed E. Hassan2, Parminder Flora3 and Gilbert Hamann4

Queen’s University1,2, Research In Motion3,4

{zmjiang1, ahmed2}@cs.queensu.ca, {pflora3, ghamann4}@rim.com

Abstract
Monitoring the execution of large enterprise systems is

needed to ensure that such complex systems are
performing as expected. However, common techniques for
monitoring, such as code instrumentation and profiling
have significant performance overhead, and require
access to the source code and to system experts. In this
paper, we propose using execution logs to monitor the
execution of applications. Unfortunately, execution logs
are not designed for monitoring purposes. Each
occurrence of an execution event results in a different log
line, since a log line contains dynamic information which
varies for each occurrence of the event. We propose an
approach which abstracts log lines to a set of execution
events. Our approach can handle log lines without having
strict requirements on the format of a log line. Through a
case study on a large enterprise application, we
demonstrate that our approach performs well when
abstracting execution logs for large enterprise
applications. We compare our approach against the SLCT
tool which is commonly used to find line patterns in logs.

1. Introduction
Large commercial software systems require runtime
monitoring to ensure Quality of Service [20, 22].
Erroneous behavior or long waiting times will result in
user dissatisfaction and loss of revenue. Runtime
monitoring compares the runtime behavior of an
application against a documented or expected behavior.
Runtime monitoring techniques, such as source code
instrumentation and profiling, require a good
understanding of an application to determine the most
appropriate subsystems or components to monitor. Such
understanding is rarely available in practice.

Source code instrumentation [5, 6] is commonly used
to insert monitoring points in large software systems.
However, code instrumentation requires rebuilding and
redeploying the monitored system. This is a time
consuming task which causes service disruption.
Furthermore, code instrumentation is not feasible when
the source code of the application is not available. This is
the case for many large enterprise systems, which make
use of Commercial-Off-the-Shelf (COTS) components.
COTS components are usually purchased from a third
party and are shipped without the source code.

Code profiling [8, 18, 19] is another common
technique for monitoring an application. Code profiling

avoids the need for rebuilding the source code. However,
profiling introduces significant slowdowns and is not
desirable in a production setting.

Software developers mark the execution of high level
events in an application by outputting log lines during
development. For example, the event of charging a user
account may be marked by outputting the following log
line: “Charged User Account, account=1000,
amount=200”. Such log lines indicate high level
information about the progress of execution for an
application, in contrast to code instrumentation events
which are at a much lower level. These logs lines are
helpful during remote issue resolution by customer
support representatives. Also recent legal acts, such as the
Sarbanes-Oxley Act of 2002, have made the logging of
the execution for telecommunication and financial
companies a legal requirement [4].

We propose using these commonly available logs to
monitor the execution of an application. Monitoring
techniques which make use of execution logs are the least
invasive (no disruption or degradation of an application)
and most applicable (logs are available). However,
execution logs are not designed for monitoring. Although
each log line is an instantiation of an execution event,
each log line contains dynamic information that is specific
to the particular occurrence of an event. The dynamic
information causes the same execution event to result in
different log lines. For example a log line indicating the
event of charging a user’s credit account would contain
different account numbers and charge amounts for each
instantiation of that particular execution event as shown in
Table 1. All three log lines correspond to different
instantiations of the same execution event.

Log Lines

1: Charged User Account, account=1000, amount=200
2: Charged User Account, account=1234, amount=100
3: Charged User Account, account=500, amount=250

Table 1. Sample log lines

Abstracting log lines to execution events is a
challenging and time consuming task. A system expert is
needed to determine that two logs lines represent the same
execution event. Such system experts are rarely available
and if they are available they have limited time. Due to
the large size of enterprise systems, this process is time
consuming. Moreover, the system expert must update the
abstractions for each version of the software system.

At first glance it may appear that the process of
abstracting log lines to execution events could be solved
if the source code of an application is available. Simply
searching for “LOG” statements (e.g., “printf” or
“System.out”) is not sufficient since in many instances an
execution event may be generated dynamically using
several output statements in the source code. Table 2
shows one example.

Log Lines Source Code

User Shopping
Basket

contains: 2, 3, 5

LOG("User Shopping Basket contains: ");
for (int i=0; i<shoppingBasket.size(); i++) {
 itemId = shoppingBasket[i];
 if(i > 0) {
 LOG(" , ” + itemId);
 } else {
 LOG(itemId);
 }
}

Table 2. An example of an execution event generated by
multiple output statements

In this paper, we introduce a lightweight approach to

abstract log lines to execution events. Our approach can
handle free-form log lines with limited requirements on
the format of the log lines. Experiments on a large
enterprise application show that our approach abstracts
log lines with high precision and recall.

Organization of the Paper
This paper is organized as follows. Section 2 overviews
related work in the field and places our contributions
relative to prior work. Section 3 presents our approach of
abstracting log lines to execution events. Section 4
demonstrates the effectiveness of our approach through a
case study using log files from a large enterprise software
application. Section 5 concludes the paper.

2. Related Work
Prior approaches for abstracting log lines to execution
events could be grouped under three general approaches:
Rule-based, Codebook-based and AI-based approaches.

Rule-based approaches [13, 14, 15, 26, 27] use a set of
hard coded rules to abstract log lines to execution events.
These approaches are commonly used in practice since
they are very accurate. However these approaches require
a substantial effort for encoding and updating the rules.

Codebook-based approaches [7, 24, 28] are similar to
the rule-based approach. However codebook approaches
process a subset of execution events (“alarms”) instead of
all events. The subset of events, which forms the
codebook, is used in real-time to match the observed
symptoms.

 AI-based approaches [1, 2, 3, 9, 10, 12, 21] use various
types of artificial intelligent techniques such as, Bayesian
networks and frequent-itemset mining, to abstract
execution logs to events.

Our approach, presented in Section 4, is similar to a
rule-based approach. However, our approach requires less
system knowledge and effort. Rather than encoding rules
to recognize specific execution events, our approach uses
a few general heuristics to recognize static and dynamic
parts in log lines. Log lines with identical static parts are
grouped together to abstract log lines to execution events.

Approach Transparency
Amount of

System
Knowledge

Needed
Effort Coverage

Rule-based
[13, 14, 15,
26,27]

Y High High N

Codebook-
based
[7, 24, 28]

Y Medium High N

AI-based
 [1, 2, 3, 9,
10, 12, 21]

N Low Low N

Our
approach

Y Low Low Y

Table 3. Summary of related work

We define several criteria to evaluate a log abstraction
approach:
1. Transparency: Can a user easily understand the

rationale for abstracting a log line to an execution
event? For example, in a neural-network AI approach,
the user cannot determine the rationale for abstracting
a log line to a particular event. We desire an approach
with high transparency so users would trust it.

2. Amount of system knowledge: What is the amount
of knowledge needed about the system to use the
approach? For example, in a rule approach a domain
expert is needed to encode all rules.

3. Amount of required effort: What is the amount of
effort required for the approach to work properly?
Rule-based approaches and cookbook-based
approaches require a large amount of human effort to
encode the rules or alarms. These encodings must be
updated with every version of a software system.

4. Coverage: Is each log line abstracted to a unique log
event? For example, AI-based approaches may not
abstract log lines which do not occur above a
particular threshold.

3. Our Log Abstraction Approach
Log lines are generated by output statements in the source
code. Log lines generated by the same set of output
statements correspond to the same execution event. Such
log lines will be similar to each other. Table 1 shows three
log lines generated by the same execution event. The
identical (i.e., static) parts in each log line are static
information describing the execution event (i.e., the
context), whereas the varying parts (i.e., dynamic) are
parameter values generated during runtime.

Not all log lines contain static and dynamic parts. For
example, “All accounts initialized” contains only a static

part. Most of the time, a log line has both dynamic and
static parts. Log lines with same static parts and same
structure of dynamic parts belong to the same execution
events. If we can parameterize each log line, we can
abstract log lines to execution events properly.

3.1. Clone Detection Approach
Log lines generated by the same execution events should
look the same if we can properly parameterize the
dynamic contents from each log line. This process is
similar to the “Parameterized Token-Matching
Algorithms” used in the source code Clone Detection
research [11]. To verify the feasibility of using clone
detection techniques to abstraction log lines, we used the
CCFinder [11] tool which implements the parameterized
token matching approach. The tool can detect similarities
on multiple programming languages and plain text.

Although CCFinder works on large source code bases,
it is not able to process large log files. For example,
CCFinder performs clone detections on multiple lines and
cannot handle large file size. Based on a closer analysis,
we feel CCFinder cannot process large log files as good
as large source files due to the following reasons:
1. Programming languages or plaintext wrap around

lines but have delimiters for each statement (like “;”,
“.” or “!”); whereas a log line does not use similar
delimiters. Thus, CCFinder cannot find the end of
each log line and treats all log lines as one chuck.

2. Source code contains control keywords like if, else,
for, while etc. These keywords are the static parts in
the source code and are used by CCFinder in the
lexical analysis and transformation steps to analyze
and mark up the source code. Log lines have a less
strict grammar and unlimited vocabulary; CCFinder
cannot mark up any specific parts when processing.

3.2. Our Approach
Based on lessons learned from running CCFinder on log
files, we have derived a new approach to detect
similarities among log lines, then parameterize and
abstract these lines. Our approach treat end of line
characters as the delimiter for each log line. Our approach
scales up to process log files which contain thousands or
millions of log lines.

Log Lines
1. Start check out
2. Paid for, item=bag, quality=1, amount=100
3. Paid for, item=book, quality=3, amount=150
4. Check out, total amount is 250
5. Check out done

Table 4. Sample log lines

As shown in Figure 3, our approach consists of three steps:
Anonymize, Tokenize and Categorize. In the rest of this
section, we demonstrate our approach using a small
example that is shown in Table 4. The example has 5 log
lines.

The Anonymize step
The Anonymize step uses heuristics to recognize tokens
in log lines which correspond to dynamic parts. Once the
tokens are recognized they are replaced with generic
tokens ($v). Heuristics can be added or removed from our
approach. We use the following two heuristics to
recognize dynamic parts in log lines:

1. Assignment pairs like “word=value”;
2. Phrases like “is[are|was|were] value”

Table 5 shows the sample log lines after the Anonymize
step. In the second and third lines, contents after the equal
signs (=) are replaced with the generic term $v. In the
fourth line, the phrase “is 250” is replaced with the term
“=$v”. There are no changes made to the first and last line.

Log Lines
1. Start check out
2. Paid for, item=$v, quality=$v, amount=$v
3. Paid for, item=$v, quality=$v, amount=$v
4. Check out, total amount=$v
5. Check out done

Table 5. The sample logs after the anonymize step

The Tokenize step
The Tokenize step separates the anonymized log lines into
different groups (i.e., bins) according to the number of
words and parameters in each log line. Separating log
lines into different bins narrows down the search space
during the Categorize step. The bins enable us to process
large log files in a timely fashion by limiting our search
space. We estimate the number of parameters in a log line
by counting the number of generic terms (i.e., $v). Log
lines with the same number of tokens and the same
number of parameters are placed in the same bin. Table 6
shows the sample log lines after the Anonymize and
Tokenize steps. The left column indicates the name of a
bin. Each bin is named with a tuple: number of words and
number of parameters that are contained in the log line
associated with that bin. The right column in Table 6
shows the log lines. Each row shows the bin and its
corresponding log lines. The second and the third log
lines contain 8 words and are likely to contain 3
parameters. Thus the second and third log lines are
grouped together in the 8_3 bin. Similarly, the first and
last log lines are grouped together in the 3_0 bin as they
both contain 3 words and are likely to contain no
parameters.

Bin Name Log Lines
3_0 1. Start check out

5. Check out done
5_1 4. Check out, total amount=$v
8_3 2. Paid for, item=$v, quality=$v, amount=$v

3. Paid for, item=$v, quality=$v, amount=$v
Table 6. Sample logs after the tokenize step

Figure 3. High level overview of our approach for abstracting execution logs to execution events

The Categorize step
The Categorize step compares log lines in each bin and
abstracts them to the corresponding execution events. The
inferred execution events are stored in an execution event
database for future references. Our algorithm goes
through the log lines bin by bin. After this step, each log
line should be abstracted to an execution event. Table 7
tabulates the results of our working example after the
Categorize step. Our algorithm starts with the 3_0 bin.
Initially, there are no execution events which correspond
to this bin yet. Therefore the execution event
corresponding to the first log line becomes the first
execution event namely 3_0_1 (the first execution event
corresponds to the bin which has 3 words and no
parameters). Then the algorithm moves to the next log
line in the 3_0 bin which contains the fifth log line. The
algorithm compares the fifth log line with all the existing
execution events corresponds to the 3_0 bin. Currently,
there is only one execution event: 3_0_1. As the fifth log
line is not similar to the 3_0_1 execution event, we create
a new execution event 3_0_2 for the fifth log line. With
all the log lines in the 3_0 bin processed, we can move on
to the 5_1 bin. As there are no execution events which
correspond to the 5_1 bin initially, the fourth log line gets
assigned to a new execution event 5_1_1. Similar log
applies when we process the log lines from the 8_3 bin
are processed with the same algorithm.
Execution event Log Lines

3_0_1 1. Start check out
3_0_2 5. Check out done
5_1_1 4. Check out, total amount=$v
8_3_1 2. Paid for, item=$v, quality= $v, amount=$v
8_3_1 3. Paid for, item=$v, quality=$v, amount=$v

Table 7. Sample logs after the categorize step

4. Case Study
We conducted a case study to evaluate the effectiveness
of our approach. We ran an implementation of our
approach against logs for a large enterprise software
system. Since we have limited knowledge of the software
system, we could not use rule-based or codebook-based
approaches. We can only use an AI-based approach.
There are two AI tools which we could compare our
approach against. The tools are: teirify [16] and SLCT
(Simple Logfile Clustering Tool) [12]. The teirify tool
uses a bio-informatics algorithm [17] to detect line
patterns, whereas the SLCT tool makes use of frequent-

itemset mining to cluster similar log lines. Unfortunately,
teirify requires a large amount of memory and cannot
handle large log files (exceeding 10,000 log lines). Thus,
we compared the performance of our log line
parameterization approach against the result obtained
from SLCT, which was able to scale to handle large files.
We briefly describe the SLCT approach, explain the setup
of our case study, report the results of our study, and
discuss lessons learned from our study. In this paper, we
use average precision and average recall [25] to measure
the performance of different approaches. An approach
with high recall classifies most of the log lines. An
approach with high precision implies there are few log
lines which are mis-classified.

4.1. SLCT
Abstracting log lines to execution events can be
considered as the process of discovering common patterns
among log lines. Consequently, we can consider using a
data mining algorithm which analyzes large volumes of
data to report interesting patterns and relations in the data.
SLCT (Simple Logfile Clustering Tool) [12] is an open
source tool which uses the Frequent-Itemset Mining
technique [23] to detect patterns and spot abnormal events
in the streams of logs. SLCT outputs execution events as
a regular expression. Table 8 shows one example. SLCT
by default attempts to create patterns which do not
intersect. If the support count is 3, then only “In
Checkout, user is Tom” will be shown. However, if the
support count is 4, only the first pattern (In Checkout,
user is *) will be reported. Each of these reported line
pattern can be considered as an execution event.

Log Lines Line Patterns
In Checkout user is Tom
In Checkout user is Jerry
In Checkout user is Tom
In Checkout user is Tom

In Checkout, user is *
In Checkout, user is Tom

Table 8. An example of multiple line patterns

4.2. Case Study Setup
We conducted three experiments on the log files for a
large enterprise application. In the first experiment, we
study the feasibility of an approach by running it against
small-size log files. Small log files are generated by
randomly picking 100 log lines from a larger log file. We
ran each approach (our approach and the SLCT approach)
on 100 different randomly generated small-size log files.

Since the files are small in size, we can manually verify
the correctness of each approach and gain a better
understanding of the limitations and strengths of each
approach. We also use the experiment to fine tune the
input parameters. In the second experiment, we examine
the stability of an approach by running it against a
medium-size log files. Each medium-size log files
consists of 10,000 log lines randomly picked from a larger
log file. We ran each approach on 100 different log files.
We use the experiments to measure the average,
minimum and maximum performance of an approach. In
the third experiment, we test the scalability of an
approach by running it against a large log file, with
around three quarter of a million (723,608) log lines.

The studied application was internationalized and part
of the internationalization efforts involved the manual
abstracting log lines to execution events. The execution
events are stored in a separate file which is translated to
different languages. We use this file as the gold standard
in our performance evaluation of each approach. We now
present the results of the three experiments using the two
approaches.

4.3. Results
In this section, we present the performance results of
SLCT and our log abstraction approach.

SLCT

For our experiments, we used the support count of 10,
100, and 100 for the small, medium and large log files,
respectively. Unfortunately, as the log files gets bigger
SLCT suffers from an ambiguity problem, as it shows
general patterns like lines begins with “Start”. To avoid
ambiguity, we remove the general patterns before
abstracting log lines to patterns (i.e., events). Table 9
tabulates the precision and recall values for SLCT. SLCT
can handle log files with various sizes with stable
performance. However, the performance is not satisfying.
The low precision and recall is due to the following two
reasons. First, SLCT won’t abstract every log line to an
execution event since the log line must occur often
enough for a frequent pattern to emerge. Second, SLCT
reports many sub-patterns. Table 8 shows one example.
The pattern “In Checkout, user is Tom” is a sub-pattern of
“In Checkout, user is *”. In our case study, if log lines
have more than one line patterns reported, we just match
these log lines with the line patterns which have the
highest support count.

Experiments Precision Recall

Small 3.9% ± 0.45% 11.4% ± 4.8%

Medium 2.6% ± 0.14% 12.3% ± 1.8%

Large 2.4% 18.4%

Table 9. The performance for SLCT

Our Log Abstraction Approach
For our approach, we first examine the logs and we add
an additional rule to anonymize email addresses in log
lines. For the Categorize step, we assign log lines to a
particular execution event when the log line and the event
have the same number of tokens after the anonymize step.
Table 10 shows the results of the three experiments for
our approach. As we can see, our approach can handle
different size log files with high precision and recall.

Experiments Precision Recall

Small 95.9% ± 3.1% 99.9% ± 0.31%

Medium 90.0% ± 2.5% 97.8% ± 0.44%

Large 90.0% 98.4%

Table 10. The performance for our approach

We manually investigated the remaining 5-10% of the log
lines which our approach could not correctly abstract to
their corresponding execution events. Our investigation
revealed that these log lines followed a peculiar pattern
for their dynamic information which our approach did not
account for. For example, our approach will incorrectly
abstract the log lines shown in Table 11 to different
execution events. We then updated the heuristics in the
Anonymize step to account for such a pattern by adding
the line pattern (“Start processing for user $v”).

Log Lines
1: Start processing for user Jen
2: Start processing for user Tom Lee
3: Start processing for user Henry

Table 11. An example of log lines which our approach fails

4.4. Limitations and Discussion
Our approach considerably outperforms SLCT since our
approach does not suffer from the problem of limited
frequencies and subpattern merging. However, our case
study was performed on a single application so we must
explore the performance of our approach on applications
from various domains. In addition, our approach requires
some human involvement. Our approach requires users to
go through some log lines to compose the anonymization
rules. Our approach also requires users to quickly go
through the abstracted execution events making sure there
are all log lines which have been abstracted. The example
shown in Table 11 can be easily spotted by skimming
through the abstracted events. It can be resolved by
adding in one rule for replacing the words after “for user”.

5. Conclusion
Complex enterprise applications must be monitored to
ensure that they are functioning properly. However, many
enterprise applications were not built with monitoring in
mind. Monitoring must be added to these applications.
Traditional techniques to add monitoring to an application

require access to the source code, and may result in
unacceptable performance degradations. Moreover all
techniques require extensive knowledge of the
application. Such knowledge rarely exists in practice.

We propose monitoring application by means of the
execution logs which are used by support staff and
developers to understand the execution of an application.
To use such logs, we must abstract each log line to its
corresponding execution event. We call this process the
log abstraction problem. In this paper, we developed an
approach that addresses many of the shortcomings and
limitations of other approaches. We conducted a case
study using logs from a large enterprise application. Our
case study shows that our approach abstracts events with
high precision and recall.

Acknowledgement
We are grateful to Research In Motion (RIM) for providing
access to the execution logs of the large telecom applications
used in this study. The findings and opinions expressed in this
paper are those of the authors and do not necessarily represent or
reflect those of RIM and/or its subsidiaries and affiliates.
Moreover, our results do not in any way reflect the quality of
RIM's software products.

References
[1] Huard, J., and Lazar, A. Fault isolation based on decision-
theoretic troubleshooting. Technical Report 442-96-08.
Columbia University, New York, NY. 1996.
[2] J. Huard, Probabilistic reasoning for fault management on
XUNET. Technical Report, AT&T Bell Labs. 1994.
[3] D.W. Guerer, I. Khan, R. Ogler, R. Keffer. An Artificial
Intelligence Approach to Network Fault Management. SRI
International, 1996.
[4] Summary of Sarbanes-Oxley Act of 2002.
http://cpcaf.aicpa.org/Resources/Sarbanes+Oxley/Summary+of+
the+Provisions+of+the+Sarbanes-Oxley+Act+of+2002.htm
[5] D.F. Jerding, J.T. Stasko, and T. Ball. Visualizing
Interactions in Program Executions. In Proc. Int’l Conf.
Software Eng. (ICSE), pp. 360-370, 1997.
[6] L.C. Briand, Y. Labiche, and Y. Miao. Towards the Reverse
Engineering of UML Sequence Diagrams. Proc. IEEE Working
Conference Reverse Eng., pp. 57-66, 2003.
[7] Yemini, S. A., Sliger, S., Eyal, M., Yemini, Y. and Ohsie, D.
High Speed and Robust Event Correlation. IEEE
Communications Magazine, 1996, 82--90.
[8] The Eclipse Test and Performance Tools Platform.
http://eclipse.org/tptp.
[9] Lin, A.: A hybrid approach to fault diagnosis in network and
system management. In Proceedings of the ACM SIGCOMM
Conference. 2002.
[10] Hermann Wietgrefe, Klaus-Dieter Tuchs, Klaus Jobmann,
Guido Carls, Peter Froehlich, Wolfgang Nejdl, Sebastian
Steinfeld. Using Neural Networks for Alarm Correlation in
Cellular Phone Networks. International Workshop on
Applications of Neural Networks in Telecommunications.1997.

[11] Toshihiro Kamiya, Shinji Kusumoto and Katsuro Inoue.
CCFinder: A Multi-Linguistic Token-based Code cloning
Detection System for Large Scale Source Code. IEEE
Transactions on Software Engineering. July, 2002.
[12] Risto Vaarandi. A Data Clustering Algorithm for Mining
Patterns From Event Logs. Proceedings of the 2003 IEEE
Workshop on IP Operations and Management. 2003.
[13] Risto Vaarandi. Simple Event Correlator for real-time
security log monitoring. Hakin9 Magazine 1/2006 (6) 2006.
[14] Hansen, S. E. and Atkins, E. T. 1993. Automated System
Monitoring and Notification With Swatch. In Proceedings of the
7th USENIX Conference on System Administration. System
Administration Conference. Berkeley, CA. November, 1993.
[15] Wolfgang Ley and Uwe Ellerman. 1996.
http://www.cert.dfn.de/eng/logsurf/.
[16] Stearley, J. 2004. Towards informatic analysis of syslogs.
In Proceedings of the 2004 IEEE international Conference on
Cluster Computing. Washington, DC. September, 2004
[17] Teiresias. http://cbcsrv.watson.ibm.com/Tspd.html
[18] Java Virtual Machine Profiler Interface (JVMPI).
http://java.sun.com/j2se/1.4.2/docs/guide/jvmpi/jvmpi.html
[19] Salah, M. and Mancoridis, S. Toward an environment for
comprehending distributed systems. In Proceedings of the 10th
Working Conference on Reverse Engineering. Nov., 2003.
[20] Steinle, M., Aberer, K., Girdzijauskas, S., and Lovis, C.
Mapping moving landscapes by mining mountains of logs:
novel techniques for dependency model generation. In
Proceedings of the 32nd international Conference on Very Large
Data Bases. Seoul, Korea. September, 2006.
[21] Sheppard, J. W. and Simpson, W. R. Improving the
accuracy of diagnostics provided by fault dictionaries. In
Proceedings of the 14th IEEE VLSI Test Symposium. 1996.
[22] Oliner, A. and Stearley, J. What Supercomputers Say: A
Study of Five System Logs. In Proceedings of the 37th Annual
IEEE/IFIP international Conference on Dependable Systems and
Networks. Washington, DC. June, 2007.
[23] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar
Introduction to Data Mining. Addison-Wesley (2005).
[24] Gupta, M. and Subramanian, M. Preprocessor algorithm
for network management codebook. In Proceedings of the 1st
Conference on Workshop on intrusion Detection and Network
Monitoring. Berkeley, CA. 1999.
[25] Hassan, A. E. and Holt, R. C. Replaying development
history to assess the effectiveness of change propagation tools.
Empirical Softw. Engg. Sep. 2006..
[26] R. Vaarandi. SEC - a lightweight event correlation tool. In
Proc. of IEEE Workshop on IP Operations & Management
(IPOM2002), 2002.
[27] Carlos Viegas Damásio, Peter Fröhlich, Wolfgang Nejdl,
Luís Moniz Pereira, and Michael Schroeder. Using Extended
Logic Programming for Alarm-Correlation in Cellular Phone
Networks. Appl. Intell. 17(2): 187-202 (2002).
[28] Klinger, S., Yemini, S., Yemini, Y., Ohsie, D., and Stolfo,
S. 1995. A coding approach to event correlation. In Proceedings
of the Fourth international Symposium on integrated Network
Management IV. London, UK.

