
Retrieving Relevant Reports from a Customer Engagement Repository

Dharmesh Thakkar, Zhen Ming Jiang, Ahmed E. Hassan

Software Analysis and Intelligence Lab (SAIL)

Queen’s University, Kingston, ON, Canada

{thakkar, zmjiang, ahmed}@cs.queensu.ca

Gilbert Hamann, Parminder Flora

Research In Motion (RIM)

Waterloo, ON, Canada

Abstract

Customers of modern enterprise applications

commonly engage the vendor of the application for on-

site troubleshooting and fine tuning of large

deployments. The results of these engagements are

documented in customer engagement reports. The

reports contain valuable information about the observed

symptoms, identified problems, attempted workarounds

and the final solution. Such information is valuable in

supporting analysts in future engagements. Engagement

reports are stored in a customer engagement repository.

Retrieving relevant reports from such a repository is

usually ad-hoc and is based on using basic text search.

We present a technique to retrieve relevant reports

from an engagement repository. The technique takes as

input an execution log for a particular deployment and

retrieves relevant engagement reports. The technique

identifies relevant reports by comparing execution logs

attached to the report stored in the engagement

repository. The technique returns two types of relevant

reports: (1) reports for engagement with similar

operational profiles to identify prior engagements with

similar workloads and (2) reports for engagement with

similar signature profiles to identify prior engagements

with similar problems. Using our technique, support

analysts can locate relevant engagement reports and use

the knowledge in them to quickly resolve problems at

hand. To demonstrate the feasibility of our technique, we

present two case studies: one case study uses an industry

standard open source application, the Dell DVD Store,

while the other case study uses a large enterprise

application. The results of our case study show that our

technique performs well in identifying relevant reports

with high precision and high recall.

1. Introduction
Modern enterprise applications are used by a large

and varied customer base. Support analysts must

interface with hundreds or thousands of customers for

troubleshooting and fine tuning their deployments.

Techniques are needed to help the support analysts by

making use of their acquired knowledge from prior

support engagements.

Application

Support

Analyst

Symptoms
Identified

Problems
Solutions

Execution

Logs

Customer

Engagement

Report

Customer

Engagement

Repository

Create Store

Contains

Attempted

Workarounds

Figure 1: Customer Engagement Reporting

Support analysts often use their experience to

troubleshoot the application deployment according to the

operation profile, problem symptoms, operating system

and hardware platform of the deployment at the client

site. As shown in Figure 1, at the end of a customer

engagement, the application support analyst creates a

customer engagement report, which captures observed

symptoms, identified problems, attempted workarounds

and the final solution. One or more execution log files

from the customer site are attached to the report. At

mature software development organizations, these

customer engagement reports are archived in a Customer

Engagement Repository. The repository contains

practically acquired invaluable information, which can

be useful in many ways [1]. However, retrieval of

information from this repository is not well explored.

There exist no systematic techniques to retrieve and use

information in such a knowledge base for future

engagements. In this paper we present a technique to

support future engagements by reusing information

stored in the customer engagement repository. This idea

is represented by the dotted line connecting the

repository to the analyst in Figure 1.

When working on a particular engagement, support

analysts rely on their experience in identifying prior

engagements with similar circumstances. Analysts

commonly use basic text search technology to retrieve

relevant reports of prior engagements using specific

keywords. However, such an approach requires

consistent entry of the data in the reports and the use of

the appropriate keywords in the search. For example, a

search for “hung thread” would not return a report which

talks about a “non-responsive thread”. The use of basic

search technology all too often prevents the analyst from

quickly locating the appropriate reports.

In this paper we present a technique which uses the

execution logs attached to the engagement reports to

help retrieve relevant customer engagement reports from

the engagement repository. The log files provide certain

advantages over other pieces of information attached to

report (see Figure 1). Execution logs are consistent since

they are automatically generated by the application,

while all other information in the report is manually

entered. The manually entered information might suffer

from issues like, (a) varying level of completeness of

information (b) inconsistent use of terms (b) analysts’

incomplete knowledge of all operations and features of

the application (c) analysts’ inexperience, leading to bias

towards documenting known territories. On the other

hand, the execution logs are a direct representative of the

application’s operations and problems.

Our technique takes as input an execution log file for

a particular deployment and returns relevant engagement

reports. The technique returns two types of relevant

reports:

(1) Reports of engagement with a similar operational

profile. The operational profile identifies the

workload characteristics of a particular application

deployment. For example, given a deployment of an

email server with an operational profile where 80%

of the traffic is outgoing email and 20% in incoming

email, our technique would return engagement

reports for deployments with similar profiles. These

reports are valuable when investigating workload

problems (e.g. slow response time under a particular

workload).

(2) Reports of engagement with a similar signature

profile. Whereas an operational profile summarizes

the workload characteristics of an application, a

signature profile identifies the characteristics which

are most peculiar for a particular deployment

relative to all other deployments. For example, if a

deployment has a relatively high number of

deadlock events, then our technique would return

engagement reports for deployments with relatively

high number of deadlock events, even though that

deployment might be similar to some other

deployment with respect to its workload

characteristics. These reports are valuable when

investigating configuration and environment

problems (e.g., environment error messages, hung

threads, and restarts).

Our technique uses readily available yet hardly used

information in the customer engagement repository.

Analysts can pick the type of retrieval method to use

depending on the situation at hand. For example, if a

deployment is facing a problem of higher response time

in some transactions, it would be appropriate to retrieve

reports based on the operational profile. If a deployment

is facing isolated occurrences of applications restarts or

hung threads, it might be appropriate to retrieve relevant

reports based on the signature profile. We show the

validity and usability of our technique in practice

through case studies performed on two applications –

first the Dell DVD Store application, and second a large

enterprise application. Our results confirm the high

performance (i.e., precision and recall) of our technique.

2. Related Work
Due to space constraint, we will focus on works

related to mining customer engagement repository.

However, we believe the technique itself is independent

of engagement reports: for instance, it could be used for

retrieving related bug reports based on logs attached to

bug reports. Related areas of research also include path

profiling and fault diagnosis techniques.

The work most closely related to our work is by Hui

and Jha [1] who mine the customer engagement

repository in the manufacturing industry to retrieve

relevant reports. The authors apply machine learning

techniques on the textual service records stored in the

repository. In contrast, because of the inherent

limitations in entering and searching textual information

noted earlier, our work is based on applying statistical

techniques on the execution logs attached to the

engagement reports.

We use execution logs as representatives of

operational profiles which capture the workload

characteristics of an application. There are many

techniques to create operational profiles, such as [2, 5

and 12]. Our work is different from the aforementioned

approaches in that it goes on to compare execution logs

based on the operational profiles that they represent,

without actually retrieving operational profiles.

Unlike operational profiles, signature profiles are not

well explored by researchers and practitioners.

Researchers working in areas related to software quality

and reliability often analyze signature events in an

application [3, 15]. However, retrieval of engagement

reports based on the signature profile, as done in this

work, has not been proposed.

3. Structure of Execution Logs
An operational feature of an application is made up of

one or more code modules. A code module can generate

Customer

Execution

Logs

Convert Log

Lines to Event

Distribution

Compare

Event

Distributions

Customer

Engagement

Repository

Compare

Event

Distributions

Identify Rare

Signature

Events

Rare Signature

Event

Distribution

OUTPUT RESULT SET

Closest Customer

Engagement Reports

wrt

Rare Event Profile

Closest Customer

Engagement Reports

wrt

Operational Profile

Event

Distribution

Figure 2: Our Technique to Retrieve Relevant Engagement Reports

one or more events in the execution log once it is

executed. Thus, one of the most readily available

information related to application usage at any customer

deployment site is the execution logs (or activity logs).

The execution logs typically contain time-stamped

sequence of events at run-time. Table 1 shows a sample

execution log for an enterprise collaboration suite, such

as Zimbra [10] or Microsoft Exchange Server [11]. Note

that execution logs tend to be quite large in size, as they

record code module level activities at runtime.

Execution logs help remote debugging by providing a

detailed context for field issues. While many

applications are designed with their own logging

mechanisms, logging frameworks such as the Apache

Logging Services [4] can be used to enable event-

logging in applications.
Table 1: An Example of Execution Logs

<time> Queuing new mail msgid=ABC threadid=XYZ
<time> Instant msg. Sending packet to client msgid=ABC threadid=XYZ
<time> New meeting request msgid=ABC threadid=XYZ
<time> Client established IMAP session emailid=ABC threadid=XYZ
<time> Client disconnected. Cannot deliver msgid=ABC threadid=XYZ
<time> New contact in address book emailid=ABC threadid=XYZ
<time> User initiated appointment deletion emailid=ABC threadid=XYZ

Legal Requirements on Application Logging

In response to increased accounting and security

regulations, governments in various nations created laws

requiring the logging of the execution of enterprise and

financial applications. For instance, the Sarbanes-Oxley

Act of 2002 [16] in the US, and the EU directive of 2006

on data retention [13] are major steps in that direction.

These legal requirements helped increase the availability

of the execution logs required as an input for our

technique. There has also been an increased concern over

privacy and security information present in the execution

logs. It is common to remove such sensitive information

from the logs before passing it for application analysis.

Our log mining technique works equally well on such

anonymized execution logs.

Execution Logs vs. Tracing Logs

Execution logs are routinely generated at customer

installation site according to selected logging levels.

Execution logs contain activity events (such as “Account

verified” or “Message delivered”) as well as error events

(such as “Message queue full” or “Too many requests,

server busy”). In contrast, tracing logs (or

implementation logs) are generated by code

instrumentation or statistical sampling using profiling

tools. Tracing logs provide lower level details, such as

logging of each function call during runtime (such as

“Function CheckPassword() called”).

While tracing logs provide more accurate details, they

are mainly used during development [6] and result in a

high overhead on the application. Hence tracing logs are

not normally available at customer sites, though they

might provide a better representation of the operational

and signature profiles. For this work, we use the readily

available execution logs.

4. Our Technique for finding Related

Reports
Our technique takes the execution log files for a

customer as an input and retrieves the relevant execution

log files and corresponding customer engagement reports

from the engagement repository. The execution log

retrieval is based on (a) similar operational profile, and

(b) similar signature profile. Figure 2 summarizes the

steps of our technique. Each step in the Figure is

discussed in the following subsections.

4.1 Convert Log Lines to Event Distribution
Execution logs are composed of dynamic and static

information. Each log line has static information about

the execution event and dynamic information that is

Table 2: Example Event Distribution

ID Event
Original Event Distributions Operational Event Distributions Signature Event Distributions

R1 R2 R3 P1 P2 P3 S1 S2 S3

E1 New Message 4000 3500 1000 44.39 46.66 22.16 0.02 0.02 0.05

E2 New Contact 3500 3000 1500 38.84 39.99 33.24 0.03 0.03 0.03

E3 New Meeting Request 1500 1000 2000 16.64 13.33 44.33 0.06 0.08 0.03

E4 Message Queue Full 5 1 6 0.06 0.01 0.13 18.02 75.01 7.52

E5 Connection Lost 7 0 6 0.08 0.00 0.13 12.87 0.02 7.52

Total 9012 7501 4512 100 100 100 31.01 75.13 15.14

specific to the particular occurrence of that event. We

must convert execution log lines to log events, so we can

recognize if two log lines correspond to the same event

even if they are processing different data. We use an

approach which employs clone detection techniques to

identify for each log line the variation points relative to

their log lines [17]. For example, given the two log lines

“Open inbox user=A” and “Open inbox user=B”, our

technique would map both lines to the event “Open

inbox user=?”.

Once the log lines are abstracted to events, we obtain

a distribution of log events by event counting. The event

distribution is then normalized as the percentage of each

event in the event log, so that we can compare event logs

for different running times without bias. For retrieval

based on signature profile, we want to give higher

weight to the events occurring at lower than normal rate

(rare events) over events occurring at higher than normal

rate. To give events with lower than average occurrence

a boost in the distribution, the frequency for each event

is inverted in the signature distribution.

An example of three logs files is shown in Table 2.

R1, R2 and R3 represent the original event distributions

of three log files F1, F2 and F3 respectively. Their

corresponding operational event distributions P1, P2,

and P3 are used for operational profile based retrieval.

The last three columns S1, S2 and S3 show the inverted

event distributions used for signature profile based

retrieval. This example is used as a running example in

this section. Looking at the frequencies of the events in

R1, R2 and R3, we expect our technique to show that F1

is closer to F2 in terms of operational profile, while F1 is

closer to F3 in terms of signature profile. Note that this

is a very small example intended to show our technique

at work. For real applications, the number of events is

expected to run into hundreds or thousands, instead of

just five events as considered in this example.

4.2 Identify Signature Events
A signature event is a rare, i.e., infrequent event in a

log file relative to the occurrences of all events in other

log files from other deployment stored in the repository.

Events such as dropped connections, thread dumps, and

full queues are examples of signature events. Instead of

searching for such events in log files in a hard-coded

way, we examine the distribution of the events in all log

files and we pick the events that are occurring at rates

that vary considerably from the norm. These signature

events indicate potential problems or outlier execution

paths that are experienced by the application. We need to

create a signature event distribution which is a subset of

the operational event distribution, as it contains only the

signature events.

Table 3: Contingency Table for Chi-Square Test

Frequency of

Event (E)

Frequency of

Other Events

In input log file 18.02 12.99

In all other log files 41.26 3.87

We use a chi-square test with a p-value of 0.1 to

identify events occurring at frequencies that are

statistically different (higher or lower) than their usual

occurrence frequency. The chi-square test determines if

for the input file whether a particular event (E) is

occurring at a frequency that is consistent with

occurrence of that event (E) in the rest of the log files in

the repository or not. Table 3 shows a contingency table

for the event E4 in the log file F1 from the example

considered in Table 2. The chi-square test flags that

event E4 is occurring at a different rate in the input file

F1 than usual. For the events in Table 2, the chi-square

test flags events E4 and E5 as signature events for S1;

E4 for S2; and E4 and E5 for S3. Only these events are

considered part of the signature event distribution for

each log file. The events filtered out by chi-square test

are grayed out in the columns S1, S2, and S3 in Table 2.

4.3 Compare Event Distributions
After the previous two steps, we have an operational

event distribution and a signature event distribution for

the input log file and all the log files in the repository.

The characteristics of the event distributions vary

depending on the operational profile and problem

symptoms of a customer. If two customers have similar

operational profiles, they would have similar event

distributions. Figure 3 shows three different distributions

of events for visual examination. The horizontal axis

represents different events in the event distributions and

the vertical axis represents the frequencies of those

events. Visual inspection reveals that distributions D1

and D2 are similar to each other, compared to D1 and

D3, or D2 and D3. We measure the distance between

event distributions using two metrics: the Kullback-

Leibler divergence and the cosine distance.

Figure 3: Visually examining distributions similarity

In the next two subsections, we discuss the distance

metrics that we used to measure the similarity between

two event distributions. We also apply these metrics on

the example presented in Table 2. For a given input log

file, our technique calculates the distance from all the

log files in the repository, to find the most relevant. Our

algorithm is summarized as follows:

For the input execution log

 Obtain operational events distribution P

 Obtain signature events distribution S

End For

For each execution log in the engagement repository

 Obtain operational events distribution Pi

 Obtain signature events distribution Si

 Calculate operational distance between P and Pi

 Calculate signature distance between S and Si

End For

Sort and present engagement reports by ascending order of

operational and signature distances

4.3.1 Kullback-Leibler Divergence Metric

Given two distributions P and Q, the Kullback-

Leibler divergence [8] (here after called K-L divergence)

between P and Q is defined as:

𝐾𝐿 𝑃, 𝑄 = 𝑃 𝑥 𝑙𝑜𝑔
𝑃 𝑥

𝑄 𝑥
𝑥

K-L divergence is sometimes referred to as relative

entropy or information gain. K-L divergence is not a

distance metric in the strictest sense, because it is not

symmetric, and the triangle inequality does not hold.

That is, KL(P,R) is not equal to KL(R,P), and KL(P,R)

can be greater than KL(P,Q)+KL(Q,R). To surmount the

asymmetry limitation, we define distance DKL(P,Q) as

the sum of KL(P,Q) and KL(Q,P). The smaller the DKL

value, the closer the distributions are.

We now show the use of K-L divergence using the

example of Table 2. For this example, the operational

profile distance DKL(P1,P2) is 0.41, DKL(P1,P3) is 18.9,

which confirms that the operational profiles for F1 and

F2 are closer compared to F1 and F3. The signature

profile distance DKL(S1,S2) is 35.29, and DKL(S1,S3) is

5.24, which confirms that signature profiles for F1 and

F3 are closer compared to F1 and F2.

4.3.2 Cosine Distance Metric

To compare two event distributions, they can be

represented as vectors and similarity can be drawn in

terms of the geometric distance. Each event type can be

considered as a dimension and the frequency of

occurrence of an event type can be considered as the

weight in that dimension. Thus, for a given event log, the

relevant event log is the one with the minimum distance

in the vector space. One widely used distance metric in

this context is the cosine distance, which is defined as:

𝐷𝐶 𝑃, 𝑄 =
 𝑃 𝑥 𝑄(𝑥)𝑥

 𝑃(𝑥)2𝑄(𝑥)2
𝑥

In information retrieval systems, the cosine distance

has been used as a similarity measure between two

vectors representing two entities, such as queries,

documents or web pages. If the two vectors are similar

(congruent in geometric representation), the cosine

distance reaches its maximum value, 1. If the vectors

have least in common (perpendicular to each other in the

geometric representation), the cosine distance reaches its

minimum value, 0.

For the example in Table 2, the cosine distance for

operational profiles DC(P1,P2) is 0.998 and DC(P1,P3) is

0.824, which quantify that F1 is closer to F2, compared

to F3. The cosine distance for signature profiles

DC(S1,S2) is 0.814 and DC(S1,S3) is 0.986, which

confirms that signature profile for F1 is closer to F3,

compared to F2. In this example, the results for both K-L

and cosine distance metrics are consistent, but in practice

the results may vary. We explore both distance metrics

in our case studies in Section 5.

4.4 Measuring Performance
To measure the performance of our technique, we

employ traditional metrics for information retrieval:

precision and recall [7]. Our technique retrieves the most

relevant log files for a given execution log file. For

example, if the set of relevant log files for a given a log

file F is C = {F1, F2, F3} and our technique returned the

set R = {F1, F3, F4, F5}, as shown in Figure 4, then we

measure precision and recall as follows:

CR = {F1, F3} is the intersection of the sets C and R.

For our example, the precision would be 2/4 = 50% and

the recall would be 2/3 = 66%. An optimal retrieval

technique is the one which produces the best values for

both precision and recall.

D1 D2 D3

C

Closest

Log Files

R

Retrieved

Log Files

F2

F1

F3

F4

F5

CR

Figure 4: Precision and Recall

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝐶𝑅

𝑅
 𝑅𝑒𝑐𝑎𝑙𝑙 =

𝐶𝑅

𝐶

The precision and recall measures above are

applicable to a single log file. To measure the accuracy

of our technique over several log files, we use the

average precision and recall as follows:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝑁
∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝑁

𝑖=1

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =
1

𝑁
∗ 𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑁

𝑖=1

Here N is the total number of log files on which we

applied our technique.

5. Case Study
To study the effectiveness of our technique, we

conducted a case study using synthetic and field

deployment logs for a test application and an enterprise

application. Using the synthetic logs we could measure

the performance of our technique under specific

simulated settings. Using the field deployment logs, we

can measure the performance of our technique in a real

life setting. We present the two case studies in the

following subsections.

5.1 Case Study on a Test Application
The application

Our first test application is the Dell DVD Store

application. The DVD Store (DVD Store 2 or DS2)

application is an open source enterprise software

application. The DS2 application is developed by Dell as

a benchmarking workload for white papers and

demonstrations of Dell’s hardware solutions [14]. DS2

seeks to emulate today’s online stores, architecturally

and functionally. DS2 has a three-tier architecture. DS2

includes application server components, database server

components and a load generator engine (client

emulator).

The DS2 load generator emulates website users by

sending HTTP requests to the application front-end. The

DS2 application front-end encodes the various business

rules, such as ordering new titles, declining an order in

case of insufficient inventory. All customers, titles and

transactional data are stored in the database server tier.

We chose DS2 over other applications since it is an open

source application which others can download to easily

compare our results with their work.
Table 4: List of Log Files Tested for Retrieval

 New

Customer

Percentage

Average

Number of

Searches

per Order

Average

Number of

Items

Returned in

each Search

Average

Number

of Items

per Order

F1 100 5 5 5

F2 50 5 5 5

F3 20 5 5 5

F4 0 5 5 5

F5 20 1 5 5

F6 20 10 5 5

F7 20 5 1 5

F8 20 5 10 5

F9 20 5 5 1

F10 20 5 5 10

Experiment Setup

To demonstrate the feasibility of our technique, we need

to create a repository of log files. We generate a large

number of log files based on various simulated runs of

the application. For each log file we ensure that we

produce other relevant log files. Once we have these log

files, we can pick each log file and use our technique to

retrieve other relevant log files. We can then measure

the precision and recall of our technique.

Since the DS2 application is a benchmarking

application that is not intended for production

deployment, it is not designed to generate execution

logs. So for the purpose of our case study, we

instrumented the application code to generate logs for

execution events. The main operational features in the

DS2 application are: Create Account, Login, Search the

Store, Add to Cart and Checkout. We instrumented the

code so that each of these operational features would

generate a balanced number of execution events (four

events each). So we have 20 different execution events

in total.

We applied different synthetic workloads and collected

the resulting execution log files. Table 3 lists the log

files we collected. Each column in the table is a

workload parameter, whose unique value makes

operational features exercised in corresponding

proportion, leading to unique execution logs. New

Customer Percentage parameter identifies percent of the

order cycles that would exercise the Create Account

feature. Its value can be between 0 and 100, its typical

Table 5: Performance of Retrieval using Operational Profiles

Experiment Count of

Log Files

K-L Distance Cosine Distance

Precision Recall Precision Recall

Single Feature Group 28 67.71% 90.28% 67.71% 90.28%

Multiple Feature Groups 28 60.71% 80.95% 75.00% 100%

All Feature Groups 12 72.92% 97.22% 62.50% 83.33%

Real World Log Files 12 54.17% 72.22% 68.75% 91.67%

All the Log Files 80 59.93% 79.90% 56.72% 75.62%

value is 20. Average Number of Searches per Order

identifies the number of times the Search operation

should be performed in an order cycle, its typical value is

5 in the application. The remaining two parameters

Average Number of Items Returned in each Search and

Average Number of Items per Order are fairly self-

explanatory. To create our repository of logs, we conduct

load sessions with three different settings for each of the

parameters – the typical value for the parameter and a

value on either side of the typical value – for each of

these parameters, while keeping the other parameters at

their typical value. The resulting list of operational

profiles is presented in Table 4, in which each row is a

unique log file.

Since we aim to retrieve relevant log files with

similar operational profile, we reran all the load sessions

of Table 4 three times each. Thus, for each log file our

technique for similar operational profile should return

the three log files corresponding for the three reruns.

To test the performance of our technique for signature

profile based retrieval, we need log files with similar

signature events, as well as log files with different

signature events. We obtained log files with signature

events by introducing known problems in the DS2

application code, and sporadically invoking those

problem paths in a controlled fashion using the load

generator. For instance, we changed the application code

to submit an ill-formatted SQL command to the database

if a purchase order has more than 25 items, resulting in

an exception event in the execution log. To sporadically

invoke this problem path, we configure the load

generator to create less than 0.5% of all the purchase

orders with more than 25 items.

We introduce same sporadic problem events in

operationally different log files listed in the Table 4.

That is, similar problem events are added to groups of

log files as {F1, F2, F3, F4}, {F2, F3, F4, F5}, {F3, F4,

F5, F6}, and likewise. Hence the expected retrieval

results from the technique are the log files having similar

signature events, irrespective of the similarity in the

operational events. That is, the expected result set for F3

are F1, F2, F4, F5; expected result set for F4 are F2, F3,

F5, F6; and likewise.

Experiment Results

Using our technique, we could correctly retrieve the

relevant operational profile and relevant signature profile

with 100% precision and 100% recall using both the K-L

divergence and cosine distance metrics.

5.2 Case Study on an Industrial Application
Our second application is a multithreaded enterprise

application deployed at many organizations worldwide.

The application provides some of the common enterprise

communication features, such as email and calendar

synchronization. With more than 700 unique execution

events (compare to 20 unique execution events in DS2

application), we believe the application is a complex

real-life enterprise application.

5.2.1 Studying Retrieval by Operational Profile

We studied the effectiveness of our technique on

many different experiments. In the next subsections, we

present these experiments. Although these experiments

do not cover all possible real world operational profile

comparison situations, we believe they represent the

breadth of it. Table 5 summarizes results of all the

experiments. We discuss each of the experiments in the

following subsections.

5.2.1.1 Single Feature Group

In this experiment, we use log files of workloads with

a single feature group of the application. A feature group

is a set of related operational features of the application.

For example, a enterprise collaboration suite such as

Zimbra or Microsoft Exchange Server has feature groups

like emails, instant messages, calendar, and address

book. A feature group has features, for instance, email

feature group has operational features send email,

receive email and delete email. In this experiment, each

execution log file is obtained by exercising a different

feature group of the application using a workload

generator. We exercised seven individual feature groups

of the application, providing log files that represent

seven different operational profiles. Then we rerun each

of the seven workloads three times each, to obtain log

files which represent similar operational profiles. Thus

for each log file, our technique is expected to return the

three log files for the three reruns. We have a total of 28

log files, for each which, our technique tries to retrieve

the related log files.

5.2.1.2 Multiple Operational Features

In the previous experiment, the log files were

obtained by exercising different feature groups of the

application. Hence, log files corresponding to different

feature groups are likely to have few common events.

Only a few events logged by entry point and exit point

modules common to different feature groups will be seen

in multiple log files. All other events among those logs

would be different. Naturally, event logs having only a

few common events represent vastly different

distributions. It is possible to believe that this bias can

result in seeing higher effectiveness of our technique,

which is unlikely to exist in real world. Hence, we

conduct this experiment, having incremental addition of

feature groups to the log files.

We start this experiment with exercising a single

feature group of the application using the workload

generator, and collect the log files. For subsequent log

files, we keep adding the feature groups one by one to

the list of exercised feature groups. Thus, we build a

repository of seven log files which represent operational

profiles with incremental feature groups exercised in

those profiles. Now we rerun those workloads three

times each. Thus we have a pool of 28 log files for each

which, our technique tries to retrieve the related log files.

Now we apply our technique to retrieve the relevant log

files. For each log file, the expected relevant log files are

its three siblings from the three reruns, followed by the

neighboring log files in which one less and one more

feature group was exercised.

5.2.1.3 All Feature Groups

In the previous experiment, each log file had a mix of

feature groups exercised in it. However, because the

feature groups were exercised incrementally, it is

obvious that each log file would exhibit successively

more events. Thus the log files are likely to have

different set of events. The set of distributions which

have different set of events are likely to show greater

distance, compared to the set of distributions with

common events. It is arguable that this can result in

seeing higher effectiveness of our technique in such

situations, which are unlikely to exist in real world.

Hence, we conduct this experiment with real world

operational profiles.

The log files in this experiment have all the events in

common, but differ only in the frequencies of those

events. We conduct multiple load sessions on the

application, and exercise all the feature groups. We make

the load sessions to differ only in the intensities of

exercising the feature groups. We conduct three load

sessions with varying intensities of the seven operational

features. Then we rerun each of the seven load sessions

three times each, to obtain log files which represent

similar operational profiles. For each of the 12 log files,

the expected relevant log files are its three siblings from

the three reruns.

5.2.1.4 Real World Log Files

In the previous experiment, each log file had a mix of

operational features exercised in it. However, because

the operational features were exercised incrementally, it

is obvious that each log file would exhibit successively

more events. Thus the log files are likely to have

different set of events. The set of distributions which

have different set of events are likely to show greater

distance, compared to the set of distributions with

common events. It is arguable that this can result in

seeing higher effectiveness of our technique in such

situations, which are unlikely to exist in real world.

Hence, we conduct this experiment with real world

operational profiles.

We apply our technique on execution logs from three

deployments of the application. However, we do not

know the expected result set, unlike the previous two

experiments. So we divide each log file in four

segments, for which relevant log files are being

retrieved. Assuming that usage pattern for any field

deployment will not change to a great extent in short

duration, we expect that our technique should retrieve

the three segments of the same log file for each of the 12

log file segments.

5.2.1.5 Combining all the Log Files

In this final experiment for operational profiles, we

compare together all the log files generated in all the

previous experiments. As a result, we have some log

files that exhibit different operational feature, some

exhibiting incremental addition of operational features,

and some have same operational features, but different

intensities. This experiment includes all possible

scenarios and a large pool of log files to be compared. It

represents the most intense test of accuracy of our

technique. In total, we have 80 different log files profiles

– collection of all the log files listed in sections 5.2.1.1 to

5.2.1.4. For each log file, the expected relevant log files

are same as described in those sections.

5.2.2 Studying Retrieval by Signature Profile

Experiment Setup

The experiment setup for studying signature profile

retrieval needs log files with similar signature events, as

well as log files with different signature events. The

startup events are a set of known signature events in the

log files of the application under study. The startup

events are logged by the application at the application

startup. The startup events log the state of the

environment, such as list of processes running in the

system, system uptime, and configuration parameter

values. To use the startup events as signature events of

the log files, we split each of the log files in four

segments. Hence the first segment of each log file

contains the startup events, while the subsequent three

segments do not have those. For each first segment of

each log file, the expected relevant log files are the first

segments of other log files. For each the first segments,

the remaining segments of the same log file are likely to

be operationally similar, but we do not expect those in

the result set as we are trying to retrieve log files based

on similar signature profile.

Experiment Results

We took all the log files from the previous study on

the operational profile, except the reruns. Thus we have

20 log files, which are divided in four segments each.

We applied signature profile based retrieval technique on

the first segment of each of the log files. Our technique

correctly retrieved the first segment of other logs with

100% precision and 100% recall, even though the first

segment is likely to be operationally closer to the other

three segments of the same log.

6. Discussion of Results and Limitations
The experiments discussed in previous subsections

demonstrate the performance of our technique. We

achieved perfect results for the DS2 application because

of the simplicity of the application and balanced

instrumentation of all the operational features of the

application. For the industrial application, our technique

for operational profile performed well with the K-L

divergence metric, and marginally better with the cosine

distance metric. We believe the inaccuracies in the

results for the industrial application stem from the

complexities of real world applications, as listed below:

1. Real world applications often log a large number of

events which do not correspond directly to a particular

operational feature, such as idle time events, server

health check events, and startup and shutdown events.

Moreover, there can be an imbalance of such events,

which can lead to inaccuracies in the result of our

technique. For instance, if the application generates

the health check events more frequently while in idle

time, this is an example of imbalance.

2. Another root cause of inaccuracies in the industrial

application can stem from the imbalance in the number

of events per feature. As the exact event-to-feature

mapping is not known, our technique cannot detect

such issues. One simple way to handle such wide

imbalances is to create meta-events which group co-

occurring events together. These meta-events can be

used for measuring the distance between event

distributions.

Empirical research studies should be evaluated to

determine whether they are measuring what they were

designed to assess. In particular, we should examine if

our finding that a given log file is more relevant to a

particular log file compared to others is valid and

applicable in general; or if it is due to any flaws in our

experimental design. Four types of tests are used [9]:

construct validity, internal validity, external validity, and

reliability.

Construct Validity Construct validity is concerned

with the meaningfulness of the measurements – Do the

measurements quantify what we really intend to

measure? We claim that locating related execution logs

attached to customer engagement report will help

support analysts in resolving problems sooner. We have

not validated this claim, but based on our experience,

locating a relevant case is usually of great value and

provides many starting points if not the needed final

solution.

Precision and recall metrics do not capture the

internal rank among the retrieved operational profiles.

For example, consider that our technique retrieved OP2,

OP3 and OP4 (in that order) but the actual rank of

closeness among these three is OP3, OP2 and OP4 (in

that order). The precision and recall metrics do not seem

to reflect such unfairness in retrieving OP3 first instead

of OP2. In our experiments, we did not observe such

unfairness. Furthermore, we assume that all the related

engagement reports retrieved by our technique are useful

to the analyst working on a new customer engagement.

Internal Validity Internal validity deals with the

concern that there may be other plausible reasons to

explain our results – Can we show that there is a cause

and effect relation between differences in operational

profiles and ranking of those by our technique? We

assume here that execution logs capture the operational

profile and signature profile of an application. We

believe this is a valid assumption; however, the presence

of wide imbalances in event logging, as discussed above,

can invalidate our assumption. Moreover, our case study

uses logs from the same version of an application. We

did not test our technique on the execution logs of

different versions. We believe limitations might be

observed if there are large changes in the type of logged

events.

External Validity External validity tackles the issue

of the generalization of the results of our study – Can we

generalize our results to other software applications?

Although we applied our technique on a small test

application and a complex enterprise application

developed by a large number of practitioners, we only

looked at two applications. Therefore our results may not

generalize to other types of applications.

Reliability Reliability refers to the degree to which

someone analyzing the data would reach the similar

results as us. We believe that the reliability of our

technique is very high. Practitioners and researchers can

easily run the similar tests on their applications (or the

DS2 application) to produce findings specific to these

applications, and compare those to our findings.

7. Conclusion and Future Work
Retrieval of relevant engagement reports helps

support analysts resolve client issues quicker and better.

Retrieval of relevant engagement reports is based on

similar operational and signature profiles. We presented

a technique to analyze the execution logs from the

customer engagement repository and retrieve the

relevant execution logs and corresponding customer

engagement reports. Our technique can equally aid in

remote issue resolution by identifying relevant

engagement reports and recommending resolution steps.

Our technique can be applied immediately on an

application, since the execution logs of most applications

are readily available and are usually archived in the

customer engagement repository. It requires no code

changes, nor does it require any data collection from

customers. Hence it can be easily adopted by companies

and does not depend on a particular software application,

version, build, or platform. We plan to apply our

technique on other software applications to generalize

our findings across different types of software

applications.

Acknowledgement
We are grateful to Research In Motion (RIM) for

providing us access to large enterprise applications and

the deployment execution logs used in this paper. The

findings and opinions expressed in this paper are those

of the authors and do not necessarily represent or reflect

those of RIM and/or its subsidiaries and affiliates. Our

results do not in any way reflect the quality of products

and services offered by RIM, its subsidiaries or affiliates.

8. References
[1] S. C. Hui and G. Jha, Data mining for customer service

support, Inf. Manage. 38, 1 (Oct. 2000), 1-13.

[2] S. Elbaum and S. Narla, A methodology for operational

profile refinement, Proceedings of the Annual Reliability

and Maintainability Symposium, 22-25 Jan. 2001, pp. 142

– 149.

[3] J. H. Andrews, Testing Using Log File Analysis: Tools,

Methods, and Issues, Proceedings of 13th IEEE

International Conference on Automated Software

Engineering (October 13-16, 1998), ASE 1998, pp. 157-

166.

[4] Apache Logging Services Project.

http://logging.apache.org

[5] D. A. Menascé, V. A. Almeida, R. Fonseca, and M. A.

Mendes, A methodology for workload characterization of

E-commerce sites, Proceedings of the 1st ACM

Conference on Electronic Commerce (Denver, Colorado,

United States, November 03 - 05, 1999), EC '99, ACM,

New York, NY, pp. 119-128.

[6] A. Hamou-Lhadj and T. C. Lethbridge, A survey of trace

exploration tools and techniques, Proceedings of the 2004

Conference of the Centre For Advanced Studies on

Collaborative Research (Markham, Ontario, Canada,

October 04 - 07, 2004), IBM Press, pp. 42-55.

[7] P. Tan, M. Steinbach, and V. Kumar, Introduction to Data

Mining, (First Edition), Addison-Wesley Longman

Publishing Co., Inc., 2005.

[8] T. M. Cover and J. A. Thomas, Elements of Information

Theory, John Wiley, New York, 1991.

[9] R. K. Yin, Case Study Research: Design and Methods.

Sage Publications, Thousand Oaks, CA, 1994.

[10] Zimbra Collaboration Suite.

http://www.zimbra.com/products

[11] Microsoft Exchange Server

http://www.microsoft.com/exchange/default.mspx

[12] S. Ramanujam, H. E. Yamany and M. A. M. Capretz, An

Agent Oriented Approach to Operational Profile

Management, International Journal of Intelligent

Technology Volume 1 Number 4, 2006.

[13] DIRECTIVE 2006/24/EC OF THE EUROPEAN

PARLIAMENT AND OF THE COUNCIL.

http://europa.eu.int/eur-

lex/lex/LexUriServ/site/en/oj/2006/l_105/l_10520060413e

n00540063.pdf

[14] D. Jaffe and T. Muirhead, The Open Source DVD Store

Application.

http://www.dell.com/downloads/global/power/ps3q05-

20050217-Jaffe-OE.pdf 2005.

[15] W. Weimer and G. C. Necula, Mining Temporal

Specifications for Error Detection, Proceedings of

Eleventh International Conference on Tools and

Algorithms for the Construction and Analysis of Systems

(April 4-8, 2005), TACAS 2005.

[16] Summary of Sarbanes-Oxley Act of 2002.

http://www.soxlaw.com/

[17] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora, An

Automated Approach for Abstracting Execution Logs to

Execution Events, to appear in the Journal of Software

Maintenance and Evolution: Research and Practice, Sept.

2008.

