
Retrieving Relevant Reports from a Customer Engagement Repository 

 

Dharmesh Thakkar, Zhen Ming Jiang, Ahmed E. Hassan 

Software Analysis and Intelligence Lab (SAIL) 

Queen’s University, Kingston, ON, Canada  

{thakkar, zmjiang, ahmed}@cs.queensu.ca 

Gilbert Hamann, Parminder Flora 

Research In Motion (RIM) 

Waterloo, ON, Canada

 
Abstract 

Customers of modern enterprise applications 

commonly engage the vendor of the application for on-

site troubleshooting and fine tuning of large 

deployments. The results of these engagements are 

documented in customer engagement reports. The 

reports contain valuable information about the observed 

symptoms, identified problems, attempted workarounds 

and the final solution. Such information is valuable in 

supporting analysts in future engagements. Engagement 

reports are stored in a customer engagement repository. 

Retrieving relevant reports from such a repository is 

usually ad-hoc and is based on using basic text search. 

We present a technique to retrieve relevant reports 

from an engagement repository. The technique takes as 

input an execution log for a particular deployment and 

retrieves relevant engagement reports. The technique 

identifies relevant reports by comparing execution logs 

attached to the report stored in the engagement 

repository. The technique returns two types of relevant 

reports: (1) reports for engagement with similar 

operational profiles to identify prior engagements with 

similar workloads and (2) reports for engagement with 

similar signature profiles to identify prior engagements 

with similar problems. Using our technique, support 

analysts can locate relevant engagement reports and use 

the knowledge in them to quickly resolve problems at 

hand. To demonstrate the feasibility of our technique, we 

present two case studies: one case study uses an industry 

standard open source application, the Dell DVD Store, 

while the other case study uses a large enterprise 

application. The results of our case study show that our 

technique performs well in identifying relevant reports 

with high precision and high recall.  

1. Introduction 
Modern enterprise applications are used by a large 

and varied customer base. Support analysts must 

interface with hundreds or thousands of customers for 

troubleshooting and fine tuning their deployments. 

Techniques are needed to help the support analysts by 

making use of their acquired knowledge from prior 

support engagements. 
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Figure 1: Customer Engagement Reporting 

Support analysts often use their experience to 

troubleshoot the application deployment according to the 

operation profile, problem symptoms, operating system 

and hardware platform of the deployment at the client 

site. As shown in Figure 1, at the end of a customer 

engagement, the application support analyst creates a 

customer engagement report, which captures observed 

symptoms, identified problems, attempted workarounds 

and the final solution. One or more execution log files 

from the customer site are attached to the report. At 

mature software development organizations, these 

customer engagement reports are archived in a Customer 

Engagement Repository. The repository contains 

practically acquired invaluable information, which can 

be useful in many ways [1]. However, retrieval of 

information from this repository is not well explored. 

There exist no systematic techniques to retrieve and use 

information in such a knowledge base for future 

engagements. In this paper we present a technique to 

support future engagements by reusing information 

stored in the customer engagement repository. This idea 

is represented by the dotted line connecting the 

repository to the analyst in Figure 1. 

When working on a particular engagement, support 

analysts rely on their experience in identifying prior 

engagements with similar circumstances. Analysts 

commonly use basic text search technology to retrieve 

relevant reports of prior engagements using specific 

keywords. However, such an approach requires 



consistent entry of the data in the reports and the use of 

the appropriate keywords in the search. For example, a 

search for “hung thread” would not return a report which 

talks about a “non-responsive thread”. The use of basic 

search technology all too often prevents the analyst from 

quickly locating the appropriate reports.  

In this paper we present a technique which uses the 

execution logs attached to the engagement reports to 

help retrieve relevant customer engagement reports from 

the engagement repository. The log files provide certain 

advantages over other pieces of information attached to 

report (see Figure 1). Execution logs are consistent since 

they are automatically generated by the application, 

while all other information in the report is manually 

entered. The manually entered information might suffer 

from issues like, (a) varying level of completeness of 

information (b) inconsistent use of terms (b) analysts’ 

incomplete knowledge of all operations and features of 

the application (c) analysts’ inexperience, leading to bias 

towards documenting known territories. On the other 

hand, the execution logs are a direct representative of the 

application’s operations and problems. 

Our technique takes as input an execution log file for 

a particular deployment and returns relevant engagement 

reports. The technique returns two types of relevant 

reports:  

(1) Reports of engagement with a similar operational 

profile. The operational profile identifies the 

workload characteristics of a particular application 

deployment. For example, given a deployment of an 

email server with an operational profile where 80% 

of the traffic is outgoing email and 20% in incoming 

email, our technique would return engagement 

reports for deployments with similar profiles. These 

reports are valuable when investigating workload 

problems (e.g. slow response time under a particular 

workload). 

(2) Reports of engagement with a similar signature 

profile. Whereas an operational profile summarizes 

the workload characteristics of an application, a 

signature profile identifies the characteristics which 

are most peculiar for a particular deployment 

relative to all other deployments. For example, if a 

deployment has a relatively high number of 

deadlock events, then our technique would return 

engagement reports for deployments with relatively 

high number of deadlock events, even though that 

deployment might be similar to some other 

deployment with respect to its workload 

characteristics. These reports are valuable when 

investigating configuration and environment 

problems (e.g., environment error messages, hung 

threads, and restarts). 

Our technique uses readily available yet hardly used 

information in the customer engagement repository. 

Analysts can pick the type of retrieval method to use 

depending on the situation at hand. For example, if a 

deployment is facing a problem of higher response time 

in some transactions, it would be appropriate to retrieve 

reports based on the operational profile. If a deployment 

is facing isolated occurrences of applications restarts or 

hung threads, it might be appropriate to retrieve relevant 

reports based on the signature profile. We show the 

validity and usability of our technique in practice 

through case studies performed on two applications – 

first the Dell DVD Store application, and second a large 

enterprise application. Our results confirm the high 

performance (i.e., precision and recall) of our technique. 

 

2. Related Work 
Due to space constraint, we will focus on works 

related to mining customer engagement repository. 

However, we believe the technique itself is independent 

of engagement reports: for instance, it could be used for 

retrieving related bug reports based on logs attached to 

bug reports. Related areas of research also include path 

profiling and fault diagnosis techniques. 

The work most closely related to our work is by Hui 

and Jha [1] who mine the customer engagement 

repository in the manufacturing industry to retrieve 

relevant reports. The authors apply machine learning 

techniques on the textual service records stored in the 

repository. In contrast, because of the inherent 

limitations in entering and searching textual information 

noted earlier, our work is based on applying statistical 

techniques on the execution logs attached to the 

engagement reports. 

We use execution logs as representatives of 

operational profiles which capture the workload 

characteristics of an application. There are many 

techniques to create operational profiles, such as [2, 5 

and 12]. Our work is different from the aforementioned 

approaches in that it goes on to compare execution logs 

based on the operational profiles that they represent, 

without actually retrieving operational profiles. 

Unlike operational profiles, signature profiles are not 

well explored by researchers and practitioners. 

Researchers working in areas related to software quality 

and reliability often analyze signature events in an 

application [3, 15]. However, retrieval of engagement 

reports based on the signature profile, as done in this 

work, has not been proposed. 

 

3. Structure of Execution Logs 
An operational feature of an application is made up of 

one or more code modules. A code module can generate 
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Figure 2: Our Technique to Retrieve Relevant Engagement Reports

one or more events in the execution log once it is 

executed.  Thus, one of the most readily available 

information related to application usage at any customer 

deployment site is the execution logs (or activity logs). 

The execution logs typically contain time-stamped 

sequence of events at run-time. Table 1 shows a sample 

execution log for an enterprise collaboration suite, such 

as Zimbra [10] or Microsoft Exchange Server [11]. Note 

that execution logs tend to be quite large in size, as they 

record code module level activities at runtime. 

Execution logs help remote debugging by providing a 

detailed context for field issues. While many 

applications are designed with their own logging 

mechanisms, logging frameworks such as the Apache 

Logging Services [4] can be used to enable event-

logging in applications. 
Table 1: An Example of Execution Logs 

<time> Queuing new mail msgid=ABC threadid=XYZ 
<time> Instant msg. Sending packet to client msgid=ABC threadid=XYZ 
<time> New meeting request msgid=ABC threadid=XYZ 
<time> Client established IMAP session emailid=ABC threadid=XYZ 
<time> Client disconnected. Cannot deliver msgid=ABC threadid=XYZ 
<time> New contact in address book emailid=ABC threadid=XYZ 
<time> User initiated appointment deletion emailid=ABC threadid=XYZ 

Legal Requirements on Application Logging 

In response to increased accounting and security 

regulations, governments in various nations created laws 

requiring the logging of the execution of enterprise and 

financial applications. For instance, the Sarbanes-Oxley 

Act of 2002 [16] in the US, and the EU directive of 2006 

on data retention [13] are major steps in that direction. 

These legal requirements helped increase the availability 

of the execution logs required as an input for our 

technique. There has also been an increased concern over 

privacy and security information present in the execution 

logs. It is common to remove such sensitive information 

from the logs before passing it for application analysis. 

Our log mining technique works equally well on such 

anonymized execution logs. 

Execution Logs vs. Tracing Logs 

Execution logs are routinely generated at customer 

installation site according to selected logging levels. 

Execution logs contain activity events (such as “Account 

verified” or “Message delivered”) as well as error events 

(such as “Message queue full” or “Too many requests, 

server busy”). In contrast, tracing logs (or 

implementation logs) are generated by code 

instrumentation or statistical sampling using profiling 

tools. Tracing logs provide lower level details, such as 

logging of each function call during runtime (such as 

“Function CheckPassword() called”). 

While tracing logs provide more accurate details, they 

are mainly used during development [6] and result in a 

high overhead on the application. Hence tracing logs are 

not normally available at customer sites, though they 

might provide a better representation of the operational 

and signature profiles. For this work, we use the readily 

available execution logs. 

 

4. Our Technique for finding Related 

Reports 
Our technique takes the execution log files for a 

customer as an input and retrieves the relevant execution 

log files and corresponding customer engagement reports 

from the engagement repository. The execution log 

retrieval is based on (a) similar operational profile, and 

(b) similar signature profile. Figure 2 summarizes the 

steps of our technique. Each step in the Figure is 

discussed in the following subsections. 

4.1 Convert Log Lines to Event Distribution 
Execution logs are composed of dynamic and static 

information. Each log line has static information about 

the execution event and dynamic information that is 

 



Table 2: Example Event Distribution 

ID Event 
Original Event Distributions Operational Event Distributions Signature Event Distributions 

R1 R2 R3 P1 P2 P3 S1 S2 S3 

E1 New Message 4000 3500 1000 44.39 46.66 22.16 0.02 0.02 0.05 

E2 New Contact 3500 3000 1500 38.84 39.99 33.24 0.03 0.03 0.03 

E3 New Meeting Request 1500 1000 2000 16.64 13.33 44.33 0.06 0.08 0.03 

E4 Message Queue Full 5 1 6 0.06 0.01 0.13 18.02 75.01 7.52 

E5 Connection Lost 7 0 6 0.08 0.00 0.13 12.87 0.02 7.52 

Total 9012 7501 4512 100 100 100 31.01 75.13 15.14 

specific to the particular occurrence of that event. We 

must convert execution log lines to log events, so we can 

recognize if two log lines correspond to the same event 

even if they are processing different data. We use an 

approach which employs clone detection techniques to 

identify for each log line the variation points relative to 

their log lines [17]. For example, given the two log lines 

“Open inbox user=A” and “Open inbox user=B”, our 

technique would map both lines to the event “Open 

inbox user=?”. 

Once the log lines are abstracted to events, we obtain 

a distribution of log events by event counting. The event 

distribution is then normalized as the percentage of each 

event in the event log, so that we can compare event logs 

for different running times without bias. For retrieval 

based on signature profile, we want to give higher 

weight to the events occurring at lower than normal rate 

(rare events) over events occurring at higher than normal 

rate. To give events with lower than average occurrence 

a boost in the distribution, the frequency for each event 

is inverted in the signature distribution. 

An example of three logs files is shown in Table 2. 

R1, R2 and R3 represent the original event distributions 

of three log files F1, F2 and F3 respectively. Their 

corresponding operational event distributions P1, P2, 

and P3 are used for operational profile based retrieval. 

The last three columns S1, S2 and S3 show the inverted 

event distributions used for signature profile based 

retrieval. This example is used as a running example in 

this section. Looking at the frequencies of the events in 

R1, R2 and R3, we expect our technique to show that F1 

is closer to F2 in terms of operational profile, while F1 is 

closer to F3 in terms of signature profile. Note that this 

is a very small example intended to show our technique 

at work. For real applications, the number of events is 

expected to run into hundreds or thousands, instead of 

just five events as considered in this example. 

4.2 Identify Signature Events 
A signature event is a rare, i.e., infrequent event in a 

log file relative to the occurrences of all events in other 

log files from other deployment stored in the repository. 

Events such as dropped connections, thread dumps, and 

full queues are examples of signature events. Instead of 

searching for such events in log files in a hard-coded 

way, we examine the distribution of the events in all log 

files and we pick the events that are occurring at rates 

that vary considerably from the norm. These signature 

events indicate potential problems or outlier execution 

paths that are experienced by the application. We need to 

create a signature event distribution which is a subset of 

the operational event distribution, as it contains only the 

signature events.  

 
Table 3: Contingency Table for Chi-Square Test 

 

Frequency of 

Event (E) 

Frequency of 

Other Events 

In input log file 18.02 12.99 

In all other log files 41.26 3.87 

 

We use a chi-square test with a p-value of 0.1 to 

identify events occurring at frequencies that are 

statistically different (higher or lower) than their usual 

occurrence frequency. The chi-square test determines if 

for the input file whether a particular event (E) is 

occurring at a frequency that is consistent with 

occurrence of that event (E) in the rest of the log files in 

the repository or not. Table 3 shows a contingency table 

for the event E4 in the log file F1 from the example 

considered in Table 2. The chi-square test flags that 

event E4 is occurring at a different rate in the input file 

F1 than usual. For the events in Table 2, the chi-square 

test flags events E4 and E5 as signature events for S1; 

E4 for S2; and E4 and E5 for S3. Only these events are 

considered part of the signature event distribution for 

each log file. The events filtered out by chi-square test 

are grayed out in the columns S1, S2, and S3 in Table 2. 

4.3 Compare Event Distributions 
After the previous two steps, we have an operational 

event distribution and a signature event distribution for 

the input log file and all the log files in the repository. 

The characteristics of the event distributions vary 

depending on the operational profile and problem 

symptoms of a customer. If two customers have similar 



operational profiles, they would have similar event 

distributions. Figure 3 shows three different distributions 

of events for visual examination. The horizontal axis 

represents different events in the event distributions and 

the vertical axis represents the frequencies of those 

events. Visual inspection reveals that distributions D1 

and D2 are similar to each other, compared to D1 and 

D3, or D2 and D3. We measure the distance between 

event distributions using two metrics: the Kullback-

Leibler divergence and the cosine distance. 
 

 

Figure 3: Visually examining distributions similarity 

In the next two subsections, we discuss the distance 

metrics that we used to measure the similarity between 

two event distributions. We also apply these metrics on 

the example presented in Table 2. For a given input log 

file, our technique calculates the distance from all the 

log files in the repository, to find the most relevant. Our 

algorithm is summarized as follows: 

 
For the input execution log 

     Obtain operational events distribution P 

     Obtain signature events distribution S 

End For 

For each execution log in the engagement repository 

     Obtain operational events distribution Pi 

     Obtain signature events distribution Si 

     Calculate operational distance between P and Pi 

     Calculate signature distance between S and Si 

End For 

Sort and present engagement reports by ascending order of 

operational and signature distances 

4.3.1 Kullback-Leibler Divergence Metric 

Given two distributions P and Q, the Kullback-

Leibler divergence [8] (here after called K-L divergence) 

between P and Q is defined as: 

𝐾𝐿 𝑃, 𝑄 =  𝑃 𝑥  𝑙𝑜𝑔
𝑃 𝑥 

𝑄 𝑥 
𝑥

 

K-L divergence is sometimes referred to as relative 

entropy or information gain. K-L divergence is not a 

distance metric in the strictest sense, because it is not 

symmetric, and the triangle inequality does not hold. 

That is, KL(P,R) is not equal to KL(R,P), and KL(P,R) 

can be greater than KL(P,Q)+KL(Q,R). To surmount the 

asymmetry limitation, we define distance DKL(P,Q) as  

the sum of KL(P,Q) and KL(Q,P). The smaller the DKL 

value, the closer the distributions are. 

We now show the use of K-L divergence using the 

example of Table 2. For this example, the operational 

profile distance DKL(P1,P2) is 0.41, DKL(P1,P3) is 18.9, 

which confirms that the operational profiles for F1 and 

F2 are closer compared to F1 and F3. The signature 

profile distance DKL(S1,S2) is 35.29, and DKL(S1,S3) is 

5.24, which confirms that signature profiles for F1 and 

F3 are closer compared to F1 and F2. 

4.3.2 Cosine Distance Metric 

To compare two event distributions, they can be 

represented as vectors and similarity can be drawn in 

terms of the geometric distance. Each event type can be 

considered as a dimension and the frequency of 

occurrence of an event type can be considered as the 

weight in that dimension. Thus, for a given event log, the 

relevant event log is the one with the minimum distance 

in the vector space. One widely used distance metric in 

this context is the cosine distance, which is defined as: 

𝐷𝐶 𝑃, 𝑄 =
 𝑃 𝑥 𝑄(𝑥)𝑥

  𝑃(𝑥)2𝑄(𝑥)2
𝑥

 

In information retrieval systems, the cosine distance 

has been used as a similarity measure between two 

vectors representing two entities, such as queries, 

documents or web pages. If the two vectors are similar 

(congruent in geometric representation), the cosine 

distance reaches its maximum value, 1. If the vectors 

have least in common (perpendicular to each other in the 

geometric representation), the cosine distance reaches its 

minimum value, 0. 

For the example in Table 2, the cosine distance for 

operational profiles DC(P1,P2) is 0.998 and DC(P1,P3) is 

0.824, which quantify that F1 is closer to F2, compared 

to F3. The cosine distance for signature profiles 

DC(S1,S2) is 0.814 and DC(S1,S3) is 0.986, which 

confirms that signature profile for F1 is closer to F3, 

compared to F2. In this example, the results for both K-L 

and cosine distance metrics are consistent, but in practice 

the results may vary. We explore both distance metrics 

in our case studies in Section 5. 

 

4.4 Measuring Performance 
To measure the performance of our technique, we 

employ traditional metrics for information retrieval: 

precision and recall [7]. Our technique retrieves the most 

relevant log files for a given execution log file. For 

example, if the set of relevant log files for a given a log 

file F is C = {F1, F2, F3} and our technique returned the 

set R = {F1, F3, F4, F5}, as shown in Figure 4, then we 

measure precision and recall as follows: 

CR = {F1, F3} is the intersection of the sets C and R. 

For our example, the precision would be 2/4 = 50% and 

the recall would be 2/3 = 66%. An optimal retrieval 

technique is the one which produces the best values for 

both precision and recall. 
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Figure 4: Precision and Recall 
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The precision and recall measures above are 

applicable to a single log file. To measure the accuracy 

of our technique over several log files, we use the 

average precision and recall as follows: 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
1

𝑁
∗   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑖

𝑁

𝑖=1

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑐𝑎𝑙𝑙 =  
1

𝑁
∗   𝑅𝑒𝑐𝑎𝑙𝑙𝑖

𝑁

𝑖=1

 

Here N is the total number of log files on which we 

applied our technique. 

 

5. Case Study 
To study the effectiveness of our technique, we 

conducted a case study using synthetic and field 

deployment logs for a test application and an enterprise 

application.   Using the synthetic logs we could measure 

the performance of our technique under specific 

simulated settings. Using the field deployment logs, we 

can measure the performance of our technique in a real 

life setting. We present the two case studies in the 

following subsections. 

5.1 Case Study on a Test Application 
The application 

Our first test application is the Dell DVD Store 

application. The DVD Store (DVD Store 2 or DS2) 

application is an open source enterprise software 

application. The DS2 application is developed by Dell as 

a benchmarking workload for white papers and 

demonstrations of Dell’s hardware solutions [14]. DS2 

seeks to emulate today’s online stores, architecturally 

and functionally. DS2 has a three-tier architecture. DS2 

includes application server components, database server 

components and a load generator engine (client 

emulator).  

The DS2 load generator emulates website users by 

sending HTTP requests to the application front-end. The 

DS2 application front-end encodes the various business 

rules, such as ordering new titles, declining an order in 

case of insufficient inventory. All customers, titles and 

transactional data are stored in the database server tier. 

We chose DS2 over other applications since it is an open 

source application which others can download to easily 

compare our results with their work. 
Table 4: List of Log Files Tested for Retrieval 

 New 

Customer 

Percentage 

Average 

Number of 

Searches 

per Order 

Average 

Number of 

Items 

Returned in 

each Search 

Average 

Number 

of Items 

per Order 

F1 100 5 5 5 

F2 50 5 5 5 

F3 20 5 5 5 

F4 0 5 5 5 

F5 20 1 5 5 

F6 20 10 5 5 

F7 20 5 1 5 

F8 20 5 10 5 

F9 20 5 5 1 

F10 20 5 5 10 

 

Experiment Setup 

To demonstrate the feasibility of our technique, we need 

to create a repository of log files. We generate a large 

number of log files based on various simulated runs of 

the application. For each log file we ensure that we 

produce other relevant log files. Once we have these log 

files, we can pick each log file and use our technique to 

retrieve other relevant log files.  We can then measure 

the precision and recall of our technique. 

Since the DS2 application is a benchmarking 

application that is not intended for production 

deployment, it is not designed to generate execution 

logs. So for the purpose of our case study, we 

instrumented the application code to generate logs for 

execution events. The main operational features in the 

DS2 application are: Create Account, Login, Search the 

Store, Add to Cart and Checkout. We instrumented the 

code so that each of these operational features would 

generate a balanced number of execution events (four 

events each). So we have 20 different execution events 

in total. 

We applied different synthetic workloads and collected 

the resulting execution log files. Table 3 lists the log 

files we collected. Each column in the table is a 

workload parameter, whose unique value makes 

operational features exercised in corresponding 

proportion, leading to unique execution logs. New 

Customer Percentage parameter identifies percent of the 

order cycles that would exercise the Create Account 

feature. Its value can be between 0 and 100, its typical



Table 5: Performance of Retrieval using Operational Profiles 

Experiment Count of 

Log Files 

K-L Distance Cosine Distance 

Precision Recall Precision Recall 

Single Feature Group 28 67.71% 90.28% 67.71% 90.28% 

Multiple Feature Groups 28 60.71% 80.95% 75.00% 100% 

All Feature Groups 12 72.92% 97.22% 62.50% 83.33% 

Real World Log Files 12 54.17% 72.22% 68.75% 91.67% 

All the Log Files 80 59.93% 79.90% 56.72% 75.62% 

 

value is 20. Average Number of Searches per Order 

identifies the number of times the Search operation 

should be performed in an order cycle, its typical value is 

5 in the application. The remaining two parameters 

Average Number of Items Returned in each Search and 

Average Number of Items per Order are fairly self-

explanatory. To create our repository of logs, we conduct 

load sessions with three different settings for each of the 

parameters – the typical value for the parameter and a 

value on either side of the typical value – for each of 

these parameters, while keeping the other parameters at 

their typical value. The resulting list of operational 

profiles is presented in Table 4, in which each row is a 

unique log file. 

Since we aim to retrieve relevant log files with 

similar operational profile, we reran all the load sessions 

of Table 4 three times each. Thus, for each log file our 

technique for similar operational profile should return 

the three log files corresponding for the three reruns. 

To test the performance of our technique for signature 

profile based retrieval, we need log files with similar 

signature events, as well as log files with different 

signature events. We obtained log files with signature 

events by introducing known problems in the DS2 

application code, and sporadically invoking those 

problem paths in a controlled fashion using the load 

generator. For instance, we changed the application code 

to submit an ill-formatted SQL command to the database 

if a purchase order has more than 25 items, resulting in 

an exception event in the execution log. To sporadically 

invoke this problem path, we configure the load 

generator to create less than 0.5% of all the purchase 

orders with more than 25 items. 

We introduce same sporadic problem events in 

operationally different log files listed in the Table 4. 

That is, similar problem events are added to groups of 

log files as {F1, F2, F3, F4}, {F2, F3, F4, F5}, {F3, F4, 

F5, F6}, and likewise. Hence the expected retrieval 

results from the technique are the log files having similar 

signature events, irrespective of the similarity in the 

operational events. That is, the expected result set for F3 

are F1, F2, F4, F5; expected result set for F4 are F2, F3, 

F5, F6; and likewise. 

Experiment Results 

Using our technique, we could correctly retrieve the 

relevant operational profile and relevant signature profile 

with 100% precision and 100% recall using both the K-L 

divergence and cosine distance metrics.  

5.2 Case Study on an Industrial Application 
Our second application is a multithreaded enterprise 

application deployed at many organizations worldwide. 

The application provides some of the common enterprise 

communication features, such as email and calendar 

synchronization. With more than 700 unique execution 

events (compare to 20 unique execution events in DS2 

application), we believe the application is a complex 

real-life enterprise application. 

5.2.1 Studying Retrieval by Operational Profile 

We studied the effectiveness of our technique on 

many different experiments. In the next subsections, we 

present these experiments. Although these experiments 

do not cover all possible real world operational profile 

comparison situations, we believe they represent the 

breadth of it. Table 5 summarizes results of all the 

experiments. We discuss each of the experiments in the 

following subsections. 

5.2.1.1 Single Feature Group 

In this experiment, we use log files of workloads with 

a single feature group of the application. A feature group 

is a set of related operational features of the application. 

For example, a enterprise collaboration suite such as 

Zimbra or Microsoft Exchange Server has feature groups 

like emails, instant messages, calendar, and address 

book. A feature group has features, for instance, email 

feature group has operational features send email, 

receive email and delete email. In this experiment, each 

execution log file is obtained by exercising a different 

feature group of the application using a workload 

generator. We exercised seven individual feature groups 

of the application, providing log files that represent 

seven different operational profiles. Then we rerun each 

of the seven workloads three times each, to obtain log 

files which represent similar operational profiles. Thus 



for each log file, our technique is expected to return the 

three log files for the three reruns. We have a total of 28 

log files, for each which, our technique tries to retrieve 

the related log files. 

5.2.1.2 Multiple Operational Features 

In the previous experiment, the log files were 

obtained by exercising different feature groups of the 

application. Hence, log files corresponding to different 

feature groups are likely to have few common events. 

Only a few events logged by entry point and exit point 

modules common to different feature groups will be seen 

in multiple log files. All other events among those logs 

would be different. Naturally, event logs having only a 

few common events represent vastly different 

distributions. It is possible to believe that this bias can 

result in seeing higher effectiveness of our technique, 

which is unlikely to exist in real world. Hence, we 

conduct this experiment, having incremental addition of 

feature groups to the log files. 

We start this experiment with exercising a single 

feature group of the application using the workload 

generator, and collect the log files. For subsequent log 

files, we keep adding the feature groups one by one to 

the list of exercised feature groups. Thus, we build a 

repository of seven log files which represent operational 

profiles with incremental feature groups exercised in 

those profiles. Now we rerun those workloads three 

times each. Thus we have a pool of 28 log files for each 

which, our technique tries to retrieve the related log files. 

Now we apply our technique to retrieve the relevant log 

files. For each log file, the expected relevant log files are 

its three siblings from the three reruns, followed by the 

neighboring log files in which one less and one more 

feature group was exercised. 

5.2.1.3 All Feature Groups 

In the previous experiment, each log file had a mix of 

feature groups exercised in it. However, because the 

feature groups were exercised incrementally, it is 

obvious that each log file would exhibit successively 

more events. Thus the log files are likely to have 

different set of events. The set of distributions which 

have different set of events are likely to show greater 

distance, compared to the set of distributions with 

common events. It is arguable that this can result in 

seeing higher effectiveness of our technique in such 

situations, which are unlikely to exist in real world. 

Hence, we conduct this experiment with real world 

operational profiles. 

The log files in this experiment have all the events in 

common, but differ only in the frequencies of those 

events. We conduct multiple load sessions on the 

application, and exercise all the feature groups. We make 

the load sessions to differ only in the intensities of 

exercising the feature groups. We conduct three load 

sessions with varying intensities of the seven operational 

features. Then we rerun each of the seven load sessions 

three times each, to obtain log files which represent 

similar operational profiles. For each of the 12 log files, 

the expected relevant log files are its three siblings from 

the three reruns. 

5.2.1.4 Real World Log Files 

In the previous experiment, each log file had a mix of 

operational features exercised in it. However, because 

the operational features were exercised incrementally, it 

is obvious that each log file would exhibit successively 

more events. Thus the log files are likely to have 

different set of events. The set of distributions which 

have different set of events are likely to show greater 

distance, compared to the set of distributions with 

common events. It is arguable that this can result in 

seeing higher effectiveness of our technique in such 

situations, which are unlikely to exist in real world. 

Hence, we conduct this experiment with real world 

operational profiles. 

We apply our technique on execution logs from three 

deployments of the application. However, we do not 

know the expected result set, unlike the previous two 

experiments. So we divide each log file in four 

segments, for which relevant log files are being 

retrieved. Assuming that usage pattern for any field 

deployment will not change to a great extent in short 

duration, we expect that our technique should retrieve 

the three segments of the same log file for each of the 12 

log file segments. 

5.2.1.5 Combining all the Log Files 

In this final experiment for operational profiles, we 

compare together all the log files generated in all the 

previous experiments. As a result, we have some log 

files that exhibit different operational feature, some 

exhibiting incremental addition of operational features, 

and some have same operational features, but different 

intensities. This experiment includes all possible 

scenarios and a large pool of log files to be compared. It 

represents the most intense test of accuracy of our 

technique. In total, we have 80 different log files profiles 

– collection of all the log files listed in sections 5.2.1.1 to 

5.2.1.4. For each log file, the expected relevant log files 

are same as described in those sections. 

5.2.2 Studying Retrieval by Signature Profile 

Experiment Setup 

The experiment setup for studying signature profile 

retrieval needs log files with similar signature events, as 

well as log files with different signature events. The 

startup events are a set of known signature events in the 

log files of the application under study. The startup 

events are logged by the application at the application 

startup. The startup events log the state of the 

environment, such as list of processes running in the 

system, system uptime, and configuration parameter 

values. To use the startup events as signature events of 



the log files, we split each of the log files in four 

segments. Hence the first segment of each log file 

contains the startup events, while the subsequent three 

segments do not have those. For each first segment of 

each log file, the expected relevant log files are the first 

segments of other log files. For each the first segments, 

the remaining segments of the same log file are likely to 

be operationally similar, but we do not expect those in 

the result set as we are trying to retrieve log files based 

on similar signature profile.  

Experiment Results 

We took all the log files from the previous study on 

the operational profile, except the reruns. Thus we have 

20 log files, which are divided in four segments each. 

We applied signature profile based retrieval technique on 

the first segment of each of the log files. Our technique 

correctly retrieved the first segment of other logs with 

100% precision and 100% recall, even though the first 

segment is likely to be operationally closer to the other 

three segments of the same log. 

  

6. Discussion of Results and Limitations 
The experiments discussed in previous subsections 

demonstrate the performance of our technique. We 

achieved perfect results for the DS2 application because 

of the simplicity of the application and balanced 

instrumentation of all the operational features of the 

application. For the industrial application, our technique 

for operational profile performed well with the K-L 

divergence metric, and marginally better with the cosine 

distance metric. We believe the inaccuracies in the 

results for the industrial application stem from the 

complexities of real world applications, as listed below: 

1. Real world applications often log a large number of 

events which do not correspond directly to a particular 

operational feature, such as idle time events, server 

health check events, and startup and shutdown events. 

Moreover, there can be an imbalance of such events, 

which can lead to inaccuracies in the result of our 

technique. For instance, if the application generates 

the health check events more frequently while in idle 

time, this is an example of imbalance. 

2. Another root cause of inaccuracies in the industrial 

application can stem from the imbalance in the number 

of events per feature. As the exact event-to-feature 

mapping is not known, our technique cannot detect 

such issues. One simple way to handle such wide 

imbalances is to create meta-events which group co-

occurring events together. These meta-events can be 

used for measuring the distance between event 

distributions. 

Empirical research studies should be evaluated to 

determine whether they are measuring what they were 

designed to assess. In particular, we should examine if 

our finding that a given log file is more relevant to a 

particular log file compared to others is valid and 

applicable in general; or if it is due to any flaws in our 

experimental design. Four types of tests are used [9]: 

construct validity, internal validity, external validity, and 

reliability. 

Construct Validity Construct validity is concerned 

with the meaningfulness of the measurements – Do the 

measurements quantify what we really intend to 

measure? We claim that locating related execution logs 

attached to customer engagement report will help 

support analysts in resolving problems sooner. We have 

not validated this claim, but based on our experience, 

locating a relevant case is usually of great value and 

provides many starting points if not the needed final 

solution. 

Precision and recall metrics do not capture the 

internal rank among the retrieved operational profiles. 

For example, consider that our technique retrieved OP2, 

OP3 and OP4 (in that order) but the actual rank of 

closeness among these three is OP3, OP2 and OP4 (in 

that order). The precision and recall metrics do not seem 

to reflect such unfairness in retrieving OP3 first instead 

of OP2.  In our experiments, we did not observe such 

unfairness. Furthermore, we assume that all the related 

engagement reports retrieved by our technique are useful 

to the analyst working on a new customer engagement. 

Internal Validity Internal validity deals with the 

concern that there may be other plausible reasons to 

explain our results – Can we show that there is a cause 

and effect relation between differences in operational 

profiles and ranking of those by our technique? We 

assume here that execution logs capture the operational 

profile and signature profile of an application. We 

believe this is a valid assumption; however, the presence 

of wide imbalances in event logging, as discussed above, 

can invalidate our assumption. Moreover, our case study 

uses logs from the same version of an application. We 

did not test our technique on the execution logs of 

different versions. We believe limitations might be 

observed if there are large changes in the type of logged 

events. 

External Validity External validity tackles the issue 

of the generalization of the results of our study – Can we 

generalize our results to other software applications? 

Although we applied our technique on a small test 

application and a complex enterprise application 

developed by a large number of practitioners, we only 

looked at two applications. Therefore our results may not 

generalize to other types of applications. 

Reliability Reliability refers to the degree to which 

someone analyzing the data would reach the similar 

results as us. We believe that the reliability of our 

technique is very high. Practitioners and researchers can 

easily run the similar tests on their applications (or the 



DS2 application) to produce findings specific to these 

applications, and compare those to our findings. 

 

7. Conclusion and Future Work 
Retrieval of relevant engagement reports helps 

support analysts resolve client issues quicker and better. 

Retrieval of relevant engagement reports is based on 

similar operational and signature profiles. We presented 

a technique to analyze the execution logs from the 

customer engagement repository and retrieve the 

relevant execution logs and corresponding customer 

engagement reports. Our technique can equally aid in 

remote issue resolution by identifying relevant 

engagement reports and recommending resolution steps. 

Our technique can be applied immediately on an 

application, since the execution logs of most applications 

are readily available and are usually archived in the 

customer engagement repository. It requires no code 

changes, nor does it require any data collection from 

customers. Hence it can be easily adopted by companies 

and does not depend on a particular software application, 

version, build, or platform. We plan to apply our 

technique on other software applications to generalize 

our findings across different types of software 

applications. 
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