
Understanding the Rationale for Updating a Function’s Comment

Haroon Malik, Istehad Chowdhury, Hsiao-Ming Tsou, Zhen Ming Jiang, Ahmed E. Hassan

Software Analysis and Intelligence Lab (SAIL)

School of Computing, Queen’s University, Kingston, Ontario, Canada.

{malik,istehad,tsou,zmjiang,ahmed}@cs.queensu.ca

Abstract
Up-to-date comments are critical for the successful

evolution of a software application. When modifying a

function, developers may update the comment

associated with the function or may not update it. For

example, comments associated with a complex function

are likely to be updated more often when the function

is modified to prevent the code and the comments from

drifting apart. Nevertheless, the rationale behind

updating a comment has never been studied.

In this paper, we present a large empirical study to

better understand the rationale for updating comments.

We recover the code change history for four large

open source projects (GCC: a compiler, FreeBSD: an

operation system, PostgreSQL: a database

management system, and GCluster: a clustering

framework) with an average code history of 10 years.

Using the Random Forests algorithm, we investigate

the rationale for updating comments along three

dimensions: characteristics of the changed function,

characteristics of the change itself and time and code

ownership characteristics. Our case study shows that

we can predict with an accuracy of 80%; the likelihood

of updating the comment associated with a modified

function. We perform a sensitivity analysis to

determine the most important attributes. Our analysis

shows that the percentage of changed call

dependencies and control statements, the age of the

modified function and the number of co-changed

functions which depend on it are the most important

attributes in determining the likelihood of updating

comments.

1. Introduction

The task of commenting one’s source code is often

neglected, though the merits of writing consistent

comments are well-known [1]. Reading code is a

fundamental task during software engineering and code

is read more often than it is written [2]. Elshoff and

Marcotty states that the comments, as well as the

structure of the source code are good aids for

understanding programs and therefore reduce

maintenance costs [3]. This finding was confirmed by

the studies of Ted Tenny [4]. But, as the example of

Lakhotia shows, sometimes programmers do not care

whether someone else might want to understand their

source-code [5]. Developers spend more than half of

their time trying to understand code. The lack of

comments as well as the existence of outdated

comments is counter-productive.

We view comments in similar capacity as [6] with

code comments being of two types: header or outer

comments and non-header or inner comments. Header

comments are comments written before the definition

of a function; whereas non-header comments are all

other comments residing in the body of a function.

Developers usually use header comments to describe

the purpose of a function, and to document its

parameters and interfaces. Non-header comments are

usually used to document algorithms and low-level

design decisions. In this paper, we sought to investigate

the rationale for updating both of these types of

comments when their associated function is modified.

We conducted an empirical study using the

development history of the four large open source

projects, listed in Table 6. We recovered all code

changes for these four projects using the C-REX

evolutionary extractor [15]. We then investigated

whether we could predict the likelihood of updating a

comment when its associated function is modified

along three dimensions: characteristics of the changed

function, characteristics of the change and the time and

code-ownership characteristics. Along each dimension,

we investigated several attributes and defined measures

to quantify these attributes. For example, for the

characteristics of the changed function dimension, we

used the number of changed dependencies to capture

the level of coupling [11]. Our results show that:

1. We can predict with 80% accuracy the likelihood of

updating the comment for a modified function.

2. Percentage of changed dependencies and control

statements, age of the modified function, and the

number of co-changed functions which depend on it

are the most important attributes in determining the

likelihood of updating comments.

3. Our findings are consistent across four large open

source projects from different domains: GCC

(compilers), FreeBSD (operating systems),

PostgreSQL (databases), and GCluster (cluster).

Organization of the Paper

The organization of the paper is as follow. Section 2

presents related work. Section 3 discusses the three

dimensions and presents the attributes along these

dimensions. This section also highlights the intuition

behind our work. Section 4 presents the Random

Forests algorithm and motivates its use for studying the

rationale for updating comments. Section 5 presents

our case study and details the results of the various

experiments conducted in our study. Finally, Section 7

concludes the paper and identifies avenues for future

work.

2. Related Work

Jiang and Hassan studied the evolution of

comments in PostgreSQL [6]. They investigated the

addition and deletion of header and non-header

comments over time. In contrast to their work, we do

not restrict ourselves to studying additions and

deletions. We also study changes to comments and seek

to uncover the rationale for such changes.

Lawrie et al. [8] employed information retrieval

techniques to measure how comments relate to the

source code and assume that comments impact the code

quality of a software system. Marcus and Poshyvanyk

[7] defined metrics for measuring the conceptual

cohesion of classes by incorporating the presence (or

absence) of comments.

Ying et al. [9] investigated the use of a particular

type of comment, the Eclipse task comments. These are

special comments which start with // TODO and are

commonly used by developers using the Eclipse IDE.

They argued that task comments tend to depend on the

context of the surrounding code and that it is difficult

to infer the scope of a task comment. This often holds

for comments in general and, therefore, has an impact

on our work. Ying et al. mentioned a few reasons and

patterns that lead to an insertion of a comment task (for

example as pointers to change requests) but they did

not study whether some building blocks of a program

(e.g., if-statements) are more likely to be commented.

Fluri et al. investigated the co-evolution of source code

and its associated comments [16]. They presented a

technique to map source code entities to comments in

the code and to extract comment changes over the

history of a software project. Their study focused on

the ratio between the source code and comments over

the history of project and the entities that are most

likely to be commented e.g., classes, methods, and

control statements. They did not investigate the

rationale for comment changes. We believe that a good

understanding of the rationale for updating comments

is important to better understand the factors affecting

the evolution of large software systems. Versioning

systems such as CVS and subversion do not provide

features for fine-grained source code change analysis

nor for tracking comments. In fact, they are not capable

of providing a mechanism for distinguishing comments

from source code without the use of additional analysis

tools. For our work, we use the C-REX tool [15] to

map historical code changes to the appropriate code

entities, e.g., functions, or comment blocks, and to link

comments to the their corresponding entities.

 3. Dimensions used to predict the

likelihood of updating a comment

We investigate the rationale for updating a

comment once its associated function is modified along

three dimensions: 1) characteristics of the changed

function, 2) characteristics of the change itself, and the

3) change time and code-ownership characteristics.

Table 1: Number of attributes per dimension

 Dimensions Attr

1 Characteristics of the modified function 10

2 Characteristics of the change 10

3 Change time and code-ownership characteristics 9

Total attributes across all dimensions 29

In this section, we explain each dimension and the

various attributes, which we chose to consider within

each dimension. Moreover, we explain our motivation

for picking particular attributes. Table 1 lists the

number of attributes considered along each dimension.

3.1 Characteristics of the modified function

We explore this dimension based on our strong

belief and intuition that modifications to complex

function are trickier and more likely to introduce

integration bugs [12]. Therefore, such modifications

must be properly commented to avoid the introduction

of bugs. Table 2 describes the various attributes along

this dimension.

Table 2: Characteristics of the modified function

Attribute Name Explanation and Rationale

Length of the

function name

This attribute reflects to some extent the

documentation maturity of a project.

Longer function names are probably a

good indication of the documentation

habits of the developers working on the

project. Longer names are good indicators

of the team’s focus on maintaining

understandable and readable code.

Number of

dependencies

The number of dependencies is an

indicator of the importance of a function.

We expect functions with a large number

of dependencies to have their comments

updated more frequently.

Number of control

statements

The number of control statements is a

proxy for the Mccabe complexity metric

[12]. We hypothesize that more complex

code will lead to higher frequency of

comment-updates.

Number of inner

comments

The amount of inner comment keywords

may imply numerous things: the

complexity of the function or the tendency

of the development team to comment

function’s in general.

Number of outer

comments

Unlike inner comments, the outer

comments (comments included in

function’s header) are usually there to

describe the role of a function and its

interface, rather than to describe the inner-

workings of the function.

Has inner

comments,

Has outer

comments,

Has comments

These are binary versions of the above

metrics. We use these simpler metrics to

determine if a simpler model is possible or

if the actual count of tokens is important.

Number of

parameters

The number of parameters passed into the

function is likely to indicate the

complexity of using a function. Therefore,

we would expect that modifying such

complex functions is more likely to lead to

updating their comments.

Number of string

literals

The number of string literals (i.e., constant

strings) in the function is an indicator of

functions that are likely interacting with

the user or with the environment. Changes

to such functions are likely to require

updating the comments since the changes

may lead to changes in the interaction of

the software system with its surrounding

environment.

3.2 Characteristics of the change

This dimension seeks to understand the comment

update phenomena from the point of view of the

change itself rather than the current state of the

modified function. This dimension has attributes

related to the actual change such as the number of

changed control statements and the percentage of

changed dependencies. The intuition is that more

extensive and complex changes will increase the

probability that a comment will get updated.

Table 3: Characteristics of the change

Attribute Name Explanation and Rationale

Number of changed

(i.e. added or

removed)

dependencies

If function A calls functions B, then we

say there is a dependency between A and

B. It is natural to think that there would

be an inner comment associated with a

dependency call within the function. If

one is added or removed, a comment

may also be added or removed.

Number of changed

control statements

The logic of considering this attribute is

the same as the number of added or

removed dependencies in the change

list. A change in flow within the

function ought to introduce a change in

the comments associated with the

function.

Number of changed

strings

A string change can be associated with a

locally significant modification, thus

comments may change.

Percentage of changed

dependencies,

Percentage of

changed control

statements,

Percentage of changed

strings

These metrics mirror the above three

metrics but try to capture the

significance of a change. For example, a

single dependency change for a function

with one dependency is significant

relative to the same change for a

function with 20 dependencies.

Did return value

change?

If the return type of a function changes,

we would expect that the header

comments should change.

Percentage of past

comments updates

The percentage of times entity had its

comments updated when it was changed.

We expect that functions, which tend to

have their comments updated when they

are modified, will follow the same

pattern for future changes.

Number of co-changed

functions

This attribute represents the magnitude

of the transaction itself. A large

transaction may be an indicator of a

large scale change which may lead to a

high probability of comment updates for

the functions in the transaction.

Is the change a bug

fix?

Bug fix changes more likely to instigate

comment updates; due to clarification

notes, to explain the bug fixes?

 Every change is associated with a change-list which

records all the functions that changed with the current

function. This dimension also covers attributes about

the transaction associated with the change, such as the

total number of co-changed functions. Table 3 lists the

various attributes in this dimension.

3.3 Time and code-ownership characteristics

This dimension tracks information about the time of the

change, such as the day of the week, how long it has

been since the function has been last modified and who

made the change.

Table 4: Time and code-ownership characteristics

Attribute Name Explanation and Rationale

Year Do comment-update habits change over

time? When a software application is new,

there is a higher tendency to update

comments than when the application

matures.

Weekday This attribute records the day the change was

committed into the source control system.

Do developers commenting habits change

based on the day of the week? Recent

research shows that developers are more

likely to introduce bugs on Friday [14],

could this be due to changes on Fridays

where the comments were not updated?

Day or Night ‘DAY' if between 8:00 AM and 10:00 PM,

'Night' otherwise. This attribute signifies the

time of the change. Are developers less likely

to update the comments for the late night

changes?

Month,

Quarter

This attribute signifies the month or quarter

in the year of the transaction. Are developers

less likely keep comments up-to-date during

summer months or around the holiday times?

Age of the

function in days

Are more mature functions likely to have

their comments updated when they are

modified, or do most comment updates occur

when functions are young

Days since last

change

The number of days since the last time a

function was changed. The current team may

have limited knowledge of a function that

has not changed for a long time; Therefore,

we expect that the developers would spend

more time trying to understand the code

before the change. We would hope that the

developers would then go ahead and update

the comments based on their gained

understanding.

Initial developer The name of the developer who first

committed this function. The developer’s

coding, design, and commenting styles are

likely to play an important role in the how

comments in that functions are updated in

future.

Current developer The name of the developer who committed

the most recent change to this function. We

choose this attribute based on similar

rationale as that of Initial developer.

Same as initial

developer

'YES' if current developer is the same as

initial one, 'NO' otherwise. Differences in

developers' styles may encourage changes in

comments too.

Table 4 lists various attributes along this dimension.

The motivation towards selecting these attributes is to

see if time has any impact on a developer tendency to

update a comment. Are developers more likely to

update a comment on Fridays over other weekdays?

Similar observations are noted by Zimmermann et al.

in relation to the likelihood of introducing bugs on

Fridays [14]. Are developers more likely to update

comments over the weekends than during the

weekdays? These are few of the questions which we

expect to answer based on this dimension. This

dimension also covers attributes which highlight the

relation of a function with developers, such as whether

the change was done by the same author who created

the function. We expect that there would be an

overhead and complexity associated with modifying a

function that was not written by the developer

performing the change. The developer performing the

change may end up documenting their new

understanding or at least clarifying the current

documentation. We also expect that the likelihood of

comment update depends on the developer performing

the change. For example, novice developer may be

more likely to update comments. After all,

Khoshgoftaar et al. shows that the experience of a

developer contributes to their tendency to introduce

bugs [22].

4. Random Forests

The purpose of our study is to understand the

rationale for updating a comment when its associated

function is modified. In our study, we choose to use a

large number of attributes to predict whether a change

to a function will lead to its comment being updated or

not. We model our study as a classification problem

where each code change to a function can fall into one

of the two classes: comment updated (YES) or not

updated (NO).

There exist several machine learning techniques,

such as Support Vector Machines (SVM) and neural

networks, which can solve this classification problem.

However, we chose to use a techniques based on

decision trees since decision trees produce explainable

models. These explainable models are essential in

helping understand the comment update phenomena

and to find out the important attributes in determining

the likelihood of updating a function’s comment.

However, instead of using basic decision tree

algorithms such as C4.5 [18], we used an advanced

decision tree algorithm called Random Forests [17].

The Random Forests algorithm outperforms basic

decision tree and other advanced machine learning

algorithms in prediction accuracy. Moreover, the

Random Forests is more resistant to noise in the data.

This is an important advantage. We expect that the data

used in our study to have noise due to its massive size

and the length of the studied time period (over 40 years

of change history). The Random Forests algorithm

requires a limited number of configuration parameters

and produces robust and stable models [19]. Finally,

often the prediction accuracy of basic decision tree

algorithms suffers when many of the attributes are

correlated. Given the large number of attributes in our

study, we need an algorithm that does not suffer from

correlated attributes. Fortunately, the Random Forests

algorithm deals well with correlated attributes while

maintaining a high accuracy in its prediction. In

contrast to simple decision tree algorithms, the Random

Forests algorithm builds a large number of basic

decision trees (40 trees in our case study). Each node in

each tree is split using a random subset of all the

attributes to ensure that all the trees have low

correlation between them. We use the default random

subset value which is the square root of all the studied

attributes. The trees are built using 2/3 of the available

data using sampling with replacement. The 1/3 of the

remaining data is called the Out Of Bag (OOB) data

and is used to test the prediction accuracy of the

created forest. The use of bootstrapping and random

selection of attributes at each node greatly improves the

accuracy of tree based classifiers [20].

In our case study we use the OOB data to measure

the accuracy of the created forest. Each sample in the

OOB is pushed down all the trees in the forest and the

final class of the sample is decided by aggregating the

votes (i.e., predicted class) of each tree. One major

benefit of using this technique is that we can adjust the

votes accordingly based on the skewness in the data.

Basic decision trees are known to perform badly with

highly skewed data since the tree always changes to

predict the dominant class. To overcome this problem

in a Random Forests, we can assign weights to votes to

offset the data skew. For example, in our analysis of

the PostgreSQL project, the ratio of comment updated

(YES) to comment not updated (NO) is 1:1.6 as seen in

Table 6. Therefore we assign the weights 16:10 for the

YES and NO classes.

Table 5: Confusion matrix

True Class
Classified As

YES NO

YES a b

NO c d

To measure the accuracy of the prediction produced by

the Random Forests algorithm, we calculate the overall,

YES, and NO misclassification rates. We desire the

lowest overall and per-class misclassification rates. The

rates are defined using the confusion matrix, shown in

Table 5. The YES and NO represents the two classes:

Comment updated and Comment not updated. “True

Class” column represent the actual number of comment

updated/not updated. Whereas a, b, c & d under

“Classified As” column represent arbitrary values of

correctly or misclassified instances by predictor against

true class. For example, if there are 100 instances of an

attribute for which comment has been updated (True

class: YES), the classifier may correctly predict 90

instances (a=90) and may predict 10 incorrectly

classified instances (b=10) for that class. We further

explain how we derived the misclassification rate with

the help of Table 5.

• YES misclassification rate: This captures the

performance of the forests for updating a comment.

It is defined as: b/(a+b).

• NO misclassifications rate: This captures the

performance for not updating a comment. It is

defined as: c/(c+d).

• Overall misclassification rate: This captures the

overall performance of the forests for both classes

(YES and NO). It is defined as: (b+c)/(a+b+c+d).

Sensitivity Analysis

Another benefit of using the Random Forests is that we

can perform sensitivity analysis on the attributes to

determine the most important attributes in the created

forests. To perform the sensitivity analysis for a

particular attribute, the value of the attribute is

randomly changed in all the samples in the OOB data.

Samples are then re-classified. Thereafter, we measure

the change in misclassification rate. If an attribute is

not important then we expect that the misclassification

rate will not change much. Otherwise the

misclassification rate would increase relative to the

importance of an attribute. In our case study, we

created ten Random Forests of 40 trees each (400 trees

in total) for each set of attributes; we then measured the

average misclassification rates. The average

misclassification rates for our case study are reported in

Table 9. To determine the most important attributes in

all of the ten forests, we calculated the attribute

importance for each forest then combined the

importance ranking for each forest to reach the overall

importance values shown as weights in our case study.

The importance weight are calculated as follows:

1) For each forest, each attribute is given a point from

1 to 10 relative to its rank in that forest: 10 for most

important, 1 for the least most important and 0 if

higher than ten.

2) For each attribute, we sum its points across all ten

forests and we divide this sum by the maximum

number of points which the attribute can get. The

maximum of points is 100: 10 (for highest rank) X

10 (for ten forests). We multiply the resulting value

by 100 to get a value between 0 and 100. We use

this weight metric to measure the most important

attributes. We only show weights higher than 50.

Table 6: Summary of Studied Systems

Studied System Date Comments Studied

Name Type Start End Updated Not updated Functions Change lists Lang.

PostgreSQL DBMS July 1996 Feb 2008 8,817 14,251 31,000 9,705 C

FreeBSD OS June 1993 Aug 2005 30,188 7,768 27,935 20,108 C

GCluster Cluster Platform June 2004 Feb 2008 4,488 984 15,539 1,890 C

GCC Lang. Compiler Aug 1997 Oct 2005 16,025 7,735 22,460 13,125 C

5. Case Study

We perform an extensive case study to substantiate

that the selected attributes and the heuristics pertaining

to the attributes are applicable in predicting comment

update across varied software systems. Table 6

classifies the projects used in our case study. The

average history of the projects is around 10 years, with

PostgreSQL and FreeBSD having the largest historical

life span of 12 years and Cluster having the smallest

historical span of 4 years. The average number of

functions in a project is around 24,234. PostgreSQL

project has the largest the number functions (31,000

functions), whereas the GCluster project takes the last

position with 15,539 functions. The average number of

files for a project is around 1,112 files. In our case

study, we conducted five experiments. Three

experiments (one for each of the three dimensions) are

detailed in Section 3. The fourth experiment studies all

the attributes for each project. In the fifth experiment,

we combined all the attributes for the three dimensions

for all the projects taken together. For each experiment,

we created decision trees using the Random Forests

algorithm then performed sensitivity analysis to

determine the most important attributes in improving

the accuracy of our predictions.

5.1. Exp. #1: Characteristics of modified

function

Our first experiment examines attributes along the

characteristics of the modified function. Table 2 lists

the detailed attributes in this dimension. The most

important attributes for predicting a comment updated

are shown in Table 7. Function characteristics such as

the total number of comments, number of inner

comments, number of string literals, and number of

control statements are very influential in predicting the

likelihood of updating a comment. For PostgreSQL,

GCluster, and GCC, the total number of comments

(inner and/or overall comments) in the function is the

most important attribute in deciding the likelihood of

updating a comment. We closely examine a few of the

decision trees in the forest to rationalize our results.

After examining the decision trees, we find that the

frequency of comment updates is higher in functions

that have a large number of comments. In other words,

well-commented functions remain well-commented.

This finding analogously correlates to the phenomenon

that buggier functions tend to remain buggier [10]. For

FreeBSD, the top attributes vary from the other

projects. The number of dependencies is an indicator of

the coupling of a function [11]. The higher the number

of dependencies, the more coupled the function is.

Similarly, the number of control statements such as

conditional statements, looping statements, and switch

statements are indicators of the cyclomatic complexity

[12][13].

Table 7: Top attributes for the characteristics of the

modified function

 Attribute Name Weight

P
o

st
g

re
S

Q
L

 1 Total number of comments 98

2 Number of inner comments 88

3 Number of dependencies 81

4 Number of control statements 57

5 Number of string literals 55

F
re

eB
S

D

1 Number of string literals 89

2 Number of dependencies 87

3 Number of parameters 86

4 Number of control statements 70

5 Length of function name 67

G
C

lu
st

er

1 Number of inner comments 98

2 Total number of comments 88

3 Number of string literals 81

4 Has inner comments 57

5 Length of function name 52

G
C

C

1 Total number of comments 93

2 Number of inner comments 79

3 Number of control statements 79

4 Number of string literals 72

5 Number of dependencies 58

The fact that the coupling and complexity of a

function have a major impact on comment update

makes intuitive sense. However, we were at first

surprised to see that the number of strings literals and

the length of the function name show up as the top

attributes for FreeBSD. A closer analysis reveals that

this is due to the nature of FreeBSD functions. In

FreeBSD, functions can be grouped into two groups:

internal and external functions. External functions are

OS API functions that are exported and are used by

other applications that run on top of FreeBSD. These

functions tend to have lengthy names and are well

documented in contrast to other functions. As for the

appearance of the string literals in the top attributes,

this is due to the fact that the code for device drivers in

FreeBSD tends to have a large number of string literals

and tends to be complex. Hence, there is a tendency to

update comments whenever changes are done to the

device drivers’ functions.

For this dimension, the Random Forests algorithm

has an average overall misclassification rate of around

33%, as shown in Table 9. The overall

misclassification rate outperforms random guessing.

Although the overall misclassification rate is rather

consistent among projects, the misclassification rates

for YES and NO classes vary considerably. For

example, in case of PostgreSQL, the misclassification

rate is 18% for the YES class and 43% for the NO

class. We believe that these results are promising given

the limited information (only attributes related to the

modified function) used in this dimension.

5.2. Exp. #2: Characteristic of the change

We re-ran our analysis based on the attributes

defined in Table 3. Our overall misclassification rate

improved slightly (3% for PostgreSQL and GCluster

and 6% for the GCC). Moreover, unlike the case of

previous dimension, our classifier performs almost

equally well in predicting the YES and NO classes.

Table 8 lists the most important attributes for each

project. As expected, changes to dependencies and to

the control structures are two of the most important

attributes. Bug fix and the number of co-changed

functions are also very important attributes. These

findings conform to our hypothesis; the magnitude of a

change transaction and modifications to fix bugs are

more likely to instigate comment updates.

The top attributes in the change information dimension

are more consistent throughout the projects in

comparison to characteristics of the modified function

dimensions. We do not find any surprises in the top

attributes. The commonality between the projects

strengthens the generality of our findings in this

dimension. The characteristic of the change dimension

is the most influential dimension out of the three

studied dimensions. Attributes in this dimension

produce the smallest overall misclassification rate

relative to the other two dimensions.

Table 8: Top attributes for the characteristics of the

change

 Attribute Name Weight

P
o

st
g

re
S

Q
L

 1 Number of changed dependencies 100

2 Percentage of changed dependencies 86

3 Number of co-changed functions 78

4 Is this a bug fix 70

5 Percentage of control statements

changed

56

F
re

eB
S

D

1 Number of changed dependencies 99

2 Percentage of changed dependencies 85

3 Number of co-changed functions 71

4 Number of changed control statements 69

5 Percentage of past comments updated 60

G
C

lu
st

er

1 Number of changed dependencies 100

2 Number of changed control statements 87

3 Percentage of changed control

statements

83

4 Number of co-changed functions 60

5 Percentage of changed dependencies 56

G
C

C

1 Number of changed dependencies 100

2 Percentage of changed dependencies 88

3 Number of changed control statements 80

4 Number of co-changed functions 72

5 Is this a bug fix 57

5.3. Exp. #3: Change time and code-ownership

This experiment is conducted to examine how the

change time and code-ownership information help

explain the comment update phenomena. We re-ran our

experiment using the attributes outlined in Table 4. The

results of the most important attributes are summarized

in Table 10. The table shows that the developer who

has modified the function, the age of the function, the

number of days since the function was changed, and the

weekday and month of the change are very influential

factors in predicting whether the comment of their

associated functions will be updated or not. For all the

projects, these same five attributes repeatedly and

consistently bubble up as the important attributes.

Recent studies reveal that particular developers are

more prone to introducing bugs than others [11].

Influenced by this information, we expected to observe

similar phenomenon in regard to comment change. We

anticipated that certain developers update comments

more frequently than others.

Table 9: Misclassification rates for all dimensions across all projects (lower values are better)

Dimension
PostgreSQL FreeBSD GCluster GCC

O-All Yes No O-All Yes No O-All Yes No O-All Yes No

Function Characteristics 33.61 18.00 42.90 33.37 34.80 25.30 37.97 36.50 28.60 33.37 51.40 24.20

Change Characteristics 30.62 25.83 32.98 27.74 27.20 29.83 34.73 33.43 33.84 27.73 24.75 33.78

Time and code Ownership

Characteristics

36.52 23.76 44.38 32.74 33.18 31.01 41.97 45.25 38.11 38.24 37.80 39.00

All attributes 24.01 17.21 28.22 21.42 21.52 21.01 27.60 27.87 26.32 24.89 22.61 29.59

As per our anticipation, the developer who committed

the change (current author) is one of the most important

attributes. It is surprising that whether the current

author is the same as the initial author is not considered

as an important attribute. We thought that developers

are more likely to update comments when they are

modifying someone else’s code rather than when

modifying their own code. The basis of our assumption

is that one knows their code well-enough and might

lack the motivation to update comments. However,

there is no such finding to support our intuition.

Table 10: Top attributes for the change time and

code-ownership characteristics

 Attribute Name Weight

P
o

st
g

re
S

Q
L

 1 Current author 98

2 Days since last change 82

3 Weekday 78

4 Month 68

5 Age of the function 67

F
re

eB
S

D
 1 Days since last change 86

2 Current author 85

3 Weekday 83

4 Age of the function 82

5 Initial author 56

G
C

lu
st

er

1 Days since last change 90

2 Month 79

3 Age of the function 78

4 Current author 69

5 Weekday 67

G
C

C

1 Current author 97

2 Age of the function 88

3 Weekday 75

4 Month 70

5 Days since last change 55

Our analysis reveals that the weekday and month

are important attributes in predicting comment changes,

as opposed to the quarter or year of the change. The

study by Zimmerman et al. [14], show that on certain

weekdays, namely on Fridays, developers tend to

produce buggier codes. On that note, we thought that

developers may be reluctant to update comment on

certain weekdays due to laziness or time pressure to

wrap-up a week’s work. We stipulate that this can be

one of the many reasons why the weekday is

considered as an important attribute. Days without

change (indicating project phases) and age of the

function in days (indicating maturity of a function) are

considered as the most influential factors in predicting

the likelihood of updating a comment. We expected

these attributes to have some influence but never

expected them to be as influential as (and sometimes

more important than) the author and time of change

related attributes. Unfortunately, the misclassification

rates for time and code-ownership dimension are worse

than that for the characteristics of the modified function

and the characteristic of the change dimensions.

5.4. Exp. #4: All attributes

In our fourth experiment, we combine all the

attributes from all three dimensions to derive the best

prediction model for a project. The misclassification

rates achieved by combining all the attributes are

statistically better than the results produced using other

dimensions separately. This is clearly visible from the

contrast presented in Table 9. This observation

suggests that best results can be achieved by

considering all dimensions rather than one dimension

separately. Table 11, summarizes the top attributes for

each project. We note that most of the top five

attributes are from the function and change

characteristic dimensions. This observation implies that

the attributes in these two dimensions are more

influential than attributes in the time of change and

code-ownership dimension. The change in dependency,

current number of comments in the function, and

changes in the control statements are the most

important attributes across most projects. The only

exception is FreeBSD where the day of the week and

the age of function are regarded as more important.

Nevertheless, these results show a general trend across

all projects that we studied instead of specific trends

per project.

Table 11: Top attributes for each project combined

 Attribute Name Weight

P
o

st
g

re
S

Q
L

 1 Percentage of changed dependencies 90

2 Number of inner comments 77

3 Total number of comments 73

4 Number of changed dependencies 70

5
Percentage of control statements

changed
54

F
re

eB
S

D

1 Percentage of changed dependencies 85

2 Weekday 64

3 Number of inner comments 64

4 Number of changed dependencies 63

5 Age of the function 56

G
C

lu
st

er

1 Number of inner comments 97

2 Number of changed dependencies 90

3 Total number of comments 76

4 Number of changed dependencies 69

5 Number of changed control statements 59

G
C

C

1 Number of changed dependencies 87

2 Number of inner comments 85

3 Percentage of changed dependencies 84

4 Total number of comments 81

5
Number of changed functions in the

change-list
49

5.5. Exp. #5: All projects

In our final experiment, we combine all the

attributes from all projects as shown in Table 12 and

also include the project name as an attribute in the data

set. We then rebuild our classifiers using Random

Forests and perform sensitivity analysis on the

attributes to determine the most important attributes

across all projects instead of on a project basis. This

type of analysis can help us determine whether the

comment update patterns are specific to a project or if

the patterns are more general. Had the comment update

patterns been project-specific, the newly added

attribute for the project name would have bubbled up

as one of the important attributes. This did not occur in

our experiment. Hence, our findings are project

independent. Moreover, the performance of our

classifier improves when combining the data from all

projects. This is another sign of the generality of our

findings across projects. The classifier has an overall

misclassification rate of 20%, a YES misclassification

rate of 17%, and a NO misclassification rate of 28%.

Looking at Table 12, we note that the percentage of

changed dependencies is the most important attribute

with the age of the function as the second most

important, and the number of control statements

changed and the number of changed dependencies as

the top third and fourth most important attributes.

Table 12: Top Attributes for all project data

 Name of attribute Weight

1 Percentage of changed dependencies 92

2 Age of the function 78

3 Number of changed control statements 65

4 Number of changed dependencies 63

5.6 Limitations

Most commonly used source control systems track

source code as text instead of tracking it structurally as

source code. Therefore, to perform our study, we used

an evolutionary extractor [15] to process the historical

data stored in CVS and represent it in a historical

database for our analysis. The tool, C-REX, uses a set

of heuristics to parse source code and to link comments

to the appropriate functions. In previous work [21], we

verified the high accuracy of the used heuristics. These

heuristics are able to handle code with bad syntax using

robust parsing techniques. Nevertheless, it is possible

that these heuristics may fail sometimes since the code

in the source control may have very bad syntax.

However, we believe that these errors are minimal and

would not statistically affect the results of our analysis.

Large projects tend to have a large number of general

maintenance changes such as changes to update the

copyright and to indent the code. The C-REX tool uses

heuristics to identify these types of changes by

examining the change message attached to the change.

Studying the likelihood of updating comments for these

types of changes would be of little value, so we exclude

these types of changes from our study. We have used

different projects spanning across different disciplines,

e.g., database management systems, operating systems,

file management systems, clustering frameworks and

compilers. Still we cannot claim that these projects are

representative of all types of software projects. This is

due to the fact that every type of development project

has its own development processes and habits. As a

result, our findings may not generalize to all types of

software development projects. Furthermore, the open

source nature of the studied projects and the used

programming language, C, may limit the generality of

our findings.

6. Conclusion and Future work

Correct and up-to-date comments aid developers in

understanding the source code; wrong or outdated

comments mislead developers and cause the

introduction of bugs. Thus, it is important that

managers monitor code comments over time. In this

paper, we attempt to better understand the phenomena

of updating comments. We examined the evolution of

four large open source projects along several

dimensions and identified the contributing factors in

the likelihood of a comment being updated when its

associated function is changed. We motivate our

dimensions and explain the various attributes in these

dimensions. We used a Random Forests classifier to

understand the importance of the various attributes

along the various dimensions.

Our case study shows that the characteristic of the

change is the most influential dimension in explaining

the comment update phenomena. Our findings are

consistent across projects with the performance of our

classifier improving when combining data from all the

projects. The percentage of changed call dependencies

and control statements, age of the modified function

and the number of co-changed functions are the most

important attributes in determining the likelihood of

updating comments. An interesting extension of our

work is to closely study the cases where our classifier

predicted that a function comment should be updated

and it was not updated. We would like to determine if

bugs were discovered later in these functions due to

out–of-date comments.

7. Acknowledgements
We thank Dr. David B. Skillicorn and Hanady

Abdulsalam from Queen’s University for their advice

and help on using the Random Forests algorithm.

8. References

[1] M. L. V. D. Vanter. The documentary structure of

source code. Information and Software Technology,

44(13), pages. 767–782, October 2002.

[2] A. Goldberg. Programmer as reader. IEEE Software,

4(5), pages. 62–70, 1987.

[3] J. L. Elshoff and M. Marcotty. Improving computer

program readability to aid modification.

Communications of the ACM, 25(8), pages. 512–521,

1982.

[4] T. Tenny. Program readability: Procedures versus

comments. IEEE Trans. Software Eng., 14(9), pages.

1271–1279, 1988.

[5] A. Lakhotia. Understanding someone else’s code:

Analysis and experience. Journal of Systems and

Software, 23(3), pages. 269–275, 2003.

[6] Z. M. Jiang and A. E. Hassan. Examining the

Evolution of code comments in postgresql. In Proc.

Int’l Workshop Mining Software Repositories, pages

179–180, 2006.

[7] A. Marcus and J. I. Maletic. Recovering

documentation-to-source code traceability links using

latent semantic indexing. In Proc. Int’l Conf. Software

Eng., pages. 125–135, 2003.

[8] D. J. Lawrie, H. Feild, and D. Binkley. Leveraged

quality assessment using information retrieval

techniques. In Proc. Int’l Conf. Program

Comprehension, June 2006.

[9] A. T. T. Ying, J. L. Wright, and S. Abram. Source code

that talks: an exploration of eclipse task comments and

their implication to repository mining. In Proc. Int’l

Workshop Mining Software Repositories, pages. 1–5,

2005.

[10] J. Ratzinger, M. Pinzger and H. Gall. EQ-Mine:

Predicting short-term defects for software evolution,

Proceedings of the Fundamental Approaches to

Software Engineering, pages. 12–26.

[11] N. Nachiappan, and T. Ball, Using Software

Dependencies and Churn Metrics to Predict Field

Failures: An Empirical Case Study, First International

Symposium on Empirical Software Engineering and

Measurement, pages. 364-373, 2007.

[12] T. J. McCabe & Watson, H. Arthur. Software

Complexity, Crosstalk, Journal of Defense Software

Engineering, 2005.

[13] J. M. Bucknal. Algorithm for Masses, Technical report

on Cyclomatic Complexity,

http://www.boyet.com/Articles/CyclomaticComplexity

.html, Last visited: 15 March 2008.

[14] J. Sliwerski, T. Zimmermann and A. Zeller. Don't

Program on Fridays! How to Locate Fix-Inducing

Changes, Proceedings of the 7th Workshop Software

Reengineering, Bad Honnef, Germany, May 2005.

[15] A. E. Hassan. Mining Software Repositories to Assist

Developers and Support Managers, PhD. Thesis,

University of Waterloo, 2004.

[16] B. Fluri, M. Wursch and H. Gall. Do Code and

Comments Co-Evolve? On the Relation between

Source Code and Comment Changes. WCRE 2007,

Pages. 70-79, 2007.

[17] L. Breiman. Random forests, Machine Learning, 45

(2001) (1), pages. 5–32, 2001.

[18] J. Ross Quinlan. C4.5: programs for machine learning,

Morgan Kaufmann Publishers Inc., San Francisco,

CA, 1993.

[19] R. Diaz-Uriarte, S. Alvarez de Andres. Variable

selection from random forests: application to gene

expression data.TR009, 2005.

[20] L. Breiman, Bagging Predictors, Machine Learning,

26, pages. 123-140, 1996.

[21] A. E. Hassan, Zhen Ming Jiang, and Richard C. Holt.

Source versus Object Code Extraction for Recovering

Software Architecture, Proceedings of WCRE 2005:

Working Conference on Reverse Engineering,

Pittsburgh (Carnegie Mellon), USA, November,

pages. 8-11, 2005.

[22] T. M. Khoshgoftaar, E. B. Allen,W. D. Jones, and J. P.

Hudepohl. Data Mining for Predictors of Software

Quality. International Journal of Software Engineering

and Knowledge Engineering, 9(5), 1999.

