
Automatic Identification of Load Testing Problems

Zhen Ming Jiang, Ahmed E. Hassan
Software Analysis and Intelligence Lab (SAIL)

Queen’s University
Kingston, ON, Canada

{zmjiang, ahmed}@cs.queensu.ca

Gilbert Hamann and Parminder Flora
Performance Engineering

Research In Motion (RIM)
Waterloo, ON, Canada

Abstract
Many software applications must provide services to

hundreds or thousands of users concurrently. These appli-
cations must be load tested to ensure that they can function
correctly under high load. Problems in load testing are due
to problems in the load environment, the load generators,
and the application under test. It is important to identify
and address these problems to ensure that load testing re-
sults are correct and these problems are resolved. It is diffi-
cult to detect problems in a load test due to the large amount
of data which must be examined. Current industrial prac-
tice mainly involves time-consuming manual checks which,
for example, grep the logs of the application for error mes-
sages.

In this paper, we present an approach which mines the
execution logs of an application to uncover the dominant
behavior (i.e., execution sequences) for the application and
flags anomalies (i.e., deviations) from the dominant behav-
ior. Using a case study of two open source and two large en-
terprise software applications, we show that our approach
can automatically identify problems in a load test. Our ap-
proach flags < 0.01% of the log lines for closer analysis
by domain experts. The flagged lines indicate load testing
problems with a relatively small number of false alarms.
Our approach scales well for large applications and is cur-
rently used daily in practice.

1. Introduction
Many systems ranging from e-commerce websites to

telecommunications must support concurrent access by

hundreds or thousands of users. To assure the quality of

these systems, load testing is a required testing procedure in

addition to conventional functional testing procedures, such

as unit and integration testing.

Load testing, in general, refers to the practice of access-

ing the system behavior under load [15]. Load refers to the

rate of the incoming requests to the system. A load test usu-

ally lasts for several hours or even a few days. Load testing

requires one or more load generators which mimic clients

sending thousands or millions of concurrent requests to the

application under test. During the course of a load test, the

application is monitored and performance data along with

execution logs are stored. Performance data record resource

usage information such as CPU utilization, memory, disk

I/O and network traffic. Execution logs record the run time

behavior of the application under test.

Load testing is an area of research that has not been ex-

plored much. Most work focuses on the automatic genera-

tion of load test suites [11, 12, 13, 14, 16, 20, 29]. However,

to the best of our knowledge, there is no previous work,

which proposes the systematic analysis of the results of a

load test to uncover potential problems.

Load testing is a difficult task requiring a great un-

derstanding of the application under test as observed by

Visser [9]. Problems in the application under test (e.g.,

bugs), the load generator or the load environment are usu-

ally the sources of load testing problems. However, looking

for problems in a load testing is a time-consuming and dif-

ficult task, due to the following challenges:

No Documented System Behavior: Correct and up-to-

date documentation of the behavior of an application

rarely exists [26].

Time Constraints: Load tests last for hours or days, and

the time allocated for analyzing their results is limited.

Load testing is usually the last step in an already de-

layed release schedule which managers must speed up.

Monitoring Overhead: Approaches which monitor or

profile an application affect the validity of perfor-

mance measurements and are not practical for load

testing.

Large Volume of Data: A load test, running for a few

hours, generates performance data and logs that are

usually several hundred megabytes. This data must be

analyzed to uncover any problems in the load test.

Due to the above challenges, most practitioners check

the results of a load test in an ad-hoc manner. The following

checks are commonly used in practice:

Crash check Load testers check whether the application

has crashed, restarted or hung during the load test.

Performance check Load testers examine performance

metrics to see if they exhibit large fluctuations. For ex-

ample, an up-trend for the memory usage throughout a

load test is a good indicator of a memory leak.

Basic error check Load testers perform a more in-depth

analysis by grepping through the log files for specific

keywords like “failure”, or “error”. Load testers then

analyze the context of the matched log lines to deter-

mine whether they indicate problems or not.
Depending on the length of a load test and the volume of

generated data, it takes load testers several hours to perform

these checks. We believe this current practice is not effi-

cient since it takes hours of manual analysis, nor is it suf-

ficient since it may miss possible problems. On one hand,

not all log lines containing terms like “error” or “failure” are

worth investigating. A log such as “Failure to locate item in

the cache” is likely not a bug. On the other hand, not all

errors are indicated in the log file using the terms “error”

or “failure”. For example, even though the log line “In-

ternal queue is full” does not contain the words “error” or

“failure”, it might also be worthwhile investigating it, since

newly arriving items are possibly being dropped.

In this paper, we introduce an approach for automatically

uncovering the dominant behavior of an application by min-

ing logs generated during a load test. We use the recovered

dominant behavior to flag any deviation, i.e., anomalies,

from the dominant behavior. The main intuition behind our

work is that a load test repeatedly executes a set of scenar-

ios over a period of time. Therefore, the applications should

follow the same behavior (e.g. generate the same logs) each

time the scenario is executed. Therefore, the dominant be-

havior is probably the normal (i.e., correct) behavior and

the minority (i.e. deviated) behaviors are probably trouble-

some and worth investigating. The main contributions of

our work is as follows:
1. This work is the first work to propose a systematic ap-

proach to detect problems in a load test;

2. Unlike other existing log analysis work which require a

user specified model (e.g., [10]), our approach is self-

learning, requiring little domain knowledge about an

application and little maintenance to update the models

over releases. The model for the dominant behavior is

created automatically;

3. Case studies show that our approach flags a very small

percentage of log lines that are worth investigating.

The approach produces very few false alarms (preci-

sion > 50%) with many of the flagged lines indicating

load testing problems;

4. Our proposed approach is easy to adopt and scales well

to large scale enterprise applications. Our approach is

currently used daily in practice for analyzing the re-

sults of load tests of large enterprise applications.

Organization of the Paper

The paper is organized as follows: Section 2 explains

the types of problems that can occur during a load test. Sec-

tion 3 describes our anomaly detection approach. Section 4

presents a case study of our anomaly detection approach.

We have applied our approach to uncover problems in load

tests for two open source and two large enterprise applica-

tions. Section 5 discusses our current approach and present

some of its limitations. Section 6 describes related work.

Section 7 concludes this paper and lists some future work.

2. Load Testing Problems

Load testing involves the setup of a complex load envi-

ronment. The application under test should be setup and

configured correctly. Similarly, the load generators must be

configured correctly to ensure the validity of the load test.

The results of a load test must be analyzed closely to dis-

cover any problems in the application under test (i.e., load

related problems), in the load environment, or in the load

generation. We detail the various types of problems that

occur during load testing.

Bugs in the Application Under Test
The main purpose of a load test is to uncover load sensitive
errors. Load sensitive errors are problems which only ap-

pear under load or extended execution. For example, mem-

ory leaks are not easy to spot under light-load with one or

two clients, or during a short-run. However, memory leaks

usually exhibit a clear trend during extended runs. Another

example of load sensitive errors are deadlock or synchro-

nization errors which show up due to the timing of concur-

rent requests.

Problems with the Load Environment
Problems with the load testing environment can lead to in-

valid test results. These problems should be identified and

addressed to ensure that the load test is valid. Examples of

load environment problems are:

Mis-configuration The application under test or its run-

time environment, e.g., databases or web servers, may

be mis-configured. For example, the number of con-

current connections allowed for a database may be in-

correct. A small number of allowed connections may

prevent the login of several users and would lead to a

lower load being applied on the application under test.

Hardware Failures The hardware running the application

and the load test may fail. For example, the hard disks

may fill up due to the tester forgetting to clean up the

data from an older run. Once the disk is full, the ap-

plication under test may turn-off specific features. This

would lead to an incomplete load test since some of the

2

functionalities of the application have not been fully

load tested.

Software Interactions A load test may exhibit problems

due to intervention from other applications. For exam-

ple, during a long running load test, an anti-virus soft-

ware may start up and and intervene with the running

load test. Or the operating system may apply updates

and reboot itself.

Problems with the Load Generation
Load generators are used to generate hundreds or thou-

sands of concurrent requests trying to access the applica-

tion. Problems in the load generators can invalidate the re-

sults of a load test. Examples of possible load generation

problems.

Incorrect Use of Load Generation Tools Some of the

generic load testing tools [8] require load testers to

first record the scenarios, edit the recordings and

replay them. This is an error-prone process. Edited

recordings may not trigger the same execution paths

as expected. For example, in a web application, the

recorded URLs have a session ID which must be

consistent for each request by the same user otherwise

the application would simply return an error page

instead of performing the expected operations.

Buggy Load Generators The load generation tools are

software applications which may themselves have load
sensitive problems or bugs. For example, rather than

sending requests to the application under test in a

uniform rate, many load generation tools allow load

testers to specify different distributions. However, the

requests may not follow that distribution during a short

run.

It is important to identify and remedy these problems.

However, identifying these problems is a challenging and

time-consuming task due to the large amount of generated

data and the long running time of load tests. The motivation

of our work is to help practitioners identify these problems.

3. Our Anomaly Detection Approach

The intuition behind our approach is that load testing in-

volves the execution of the same operations a large num-

ber of times. Therefore, we would expect that the applica-

tion under test would generate similar sequences of events a

large number of times. These highly repeated sequences of

events are the dominant behavior of the application. Vari-

ations from this behavior are anomalies which should be

closely investigated since they are likely to reveal load test-

ing problems.

We cannot instrument the application to derive the dom-

inant behavior of the application, as instrumentation may

affect the performance of the application and the software

behavior won’t be comparable with the deployed applica-

tion. Fortunately, most large enterprise applications have

some form of logging enabled for the following reasons:

1. to support remote issue resolution when problems oc-

curs and

2. to cope with recent legal acts such as the “Sarbanes-

Oxley Act of 2002” [7] which stipulate that the execu-

tion of telecommunication and financial applications

must be logged.

Such logs record software activities (e.g. “User authen-

tication successful”) and errors (e.g. “Fail to retrieve cus-

tomer profile”). We can mine the dominant behavior of the

application from these commonly available logs. In this sec-

tion we present an approach to detect anomalies in these

logs. These anomalies are good indicators of problems in a

load test.

As shown in Figure 1, our anomaly detection approach

takes a log file as input and goes through four steps: Log

Decomposition, Log Abstraction, Dominant Behavior Iden-

tification, and Anomaly Detection. Our approach produces

an HTML anomaly report. We explain each step in detail in

the following subsections.

3.1. Log Decomposition

Most modern enterprise applications are multi-threaded

applications which process thousands of transactions con-

currently. The processing of all these transactions is logged

to a log file. Related log lines do not show up continuously

in the log file, instead they may be far apart. The log de-

composition step processes the log file and groups related

log lines together. Log lines could be related because they

are processed by the same thread or because they are related

to the same transaction. Most of the enterprise applications

have a standard format for logging the transaction informa-

tion (e.g. header part of a log line), as this information is im-

portant for remote issue resolution. For example, in a web

application, each log line contains a session or customer ID.

Or in a multi-threaded application, each log line contains a

thread ID. Or in a database application, each log line might

contain the transaction ID. Sometimes, a log line might con-

tain multiple types of IDs. For example, in an e-commerce

application, a log line can contain both the session and cus-

tomer IDs. Depending on the granularity of the analysis,

one or multiple of these IDs are used to group related lines

together.

Table 1 shows a log file with 7 log lines. If the log file

is decomposed using the accountId field, the log decompo-

sition step would produce 3 groups (Tom, Jerry and John).

This step requires domain knowledge by the load tester to

decide which field to use to decompose the logs.

3

Execution
Logs

Log
Abstraction

Dominant
Behavior

Identification

Log
Decomposition

Anomaly
Detection

Anomaly
Report

Figure 1. Our anomaly detection approach

Log lines Group
1. accountId(Tom) User purchase, item=100 Tom

2. accountId(Jerry) User purchase, item=100 Jerry

3. accountId(Tom) Update shopping cart, item=100 Tom

4. accountId(John) User purchase, item=103 John

5. accountId(Tom) User checkout Tom

6. accountId(Jerry) Update shopping cart, item=100 Jerry

7. accountId(John) User purchase, item=105 John

Table 1. Example log lines

Event ID Event Template
E1 User purchase, item=$v

E2 Update shopping cart, item=$v

E3 User checkout

Table 2. Example execution events

3.2. Log Abstraction

Each log line is a mixture of dynamic and static infor-

mation. Log lines containing the same static information

belong to the same execution event. We want a technique

that would recognize that two log lines are due to the same

event. We call this process the log abstraction problem. We

have developed a technique which can uniquely map each

log line to an execution event [22]. The technique parame-

terizes log lines using a similar process as token-based code

cloning techniques. The log lines in Table 1 would be ab-

stracted to only 3 execution events as shown in Table 2. The

“$v” sign indicates a runtime generated parameter value.

Based on the log decomposition and abstraction steps,

the sample log file in Table 1 would result in the grouping

of events shown in Table 3.

Group Event ID Log line #
Tom E1 1

E2 3
E3 5

Jerry E1 2
E2 6

John E1 4
E1 7

Table 3. The sample log file after the log de-
composition and the log abstraction steps

(E, ∗) Event Pair Occurrences Sample Line #
(E1 , *) (E1 , E2) 2 1, 3

(E1 , E1) 1 4, 7
(E2 , *) (E2 , E3) 1 3, 6

Table 4. Log file after the dominant behavior
identification step

3.3. Dominant Behavior Identification

In this step, we identify the dominant behavior in the

logs. We achieve this by analyzing the execute-after rela-

tions for each event E. The execute-after relation for an

event E, denote by (E, *), refers to the occurrences of all

the event pairs with the leading event E. Two events E1

and E2 form an event pair, if

1. E1 and E2 belong to the same group; and

2. E2 is the next event that directly follows E1 .

In the event pair (E1 , E2), E1 is referred to as the lead-

ing event. The execute-after pair for event E1 is formed by

aggregating all the event pairs which have E1 as the leading

event. Table 4 shows all the execute-after pairs in Table 3.

There are two execute-after pairs: one for E1 and one for

E2 . For each execute-after pair, the table shows the event

pairs, the number of occurrences for each event pair, and

a sample log lines corresponding to the first occurrence of

each event pair. There are two types of events which are

executed after the User purchase event (E1). E1 could be

followed with another E1 . This is generated by John’s ses-

sion from log lines 4 and 7. Or E1 could be followed with

Update shopping cart (E2). There are two occurrences of

(E1 ,E2) which are attributed to Tom’s and Jerry’s sessions.

The first and third log lines correspond to the first occur-

rence of the event pair (E1 ,E2). Event pairs are grouped by

the execute-after relations. For example, (User purchase,

*) includes all the event pairs which start with the User
purchase event. Thus, the event pairs (User purchase, Up-

date shopping cart) and (User purchase, User purchase) are

grouped under the execute-after relations for the User pur-
chase event, (User purchase, *).

The dominant behavior for (E, *) refers to the largest

event pair(s) which starts with E. The dominant behavior

pairs for each execute-after relation are shown in bold in

Table 4. The dominant behavior for (E1 , *) is (E1 , E2).

The dominant behavior for (E2 , *) is (E2 , E3). Sample line

4

(E, ∗) Event Pair Frequency

(User purchase, *) (User purchase, Update cart) 1, 000
(User purchase, User purchase) 1

(User signin, *) (User signin, Browse catalog) 100
(User signin, Update account) 20
(User signin, Browse history) 10

(Browse catalog, *) (Browse catalog, User purchase) 500
(Browse catalog, Update account) 500
(Browse catalog, Search item) 100

Table 5. Summary of execute-after pairs

numbers show the first occurrences of the event-pair in the

log file. The sample log line numbers are displayed later in

the anomaly report.

3.4. Anomaly Detection

The previous step identifies the dominant behavior in the

logs. In this step, we mark any deviations, i.e., anoma-

lies, from the domination behavior for closer investigation.

As load testers have limited time, we need a way to rank

anomalies to help load testers prioritize their investigation.

We use a statistical metric called z-stats. Recent work by

Kremenek and Engler [23] shows that the z-stats metric per-

forms well in ranking deviation from dominant behaviors

when performing static analysis of source code. The z-stats

metric measures the amount of deviation of an anomaly

from the dominant behavior. The higher the z-stats is, the

stronger the probability that the majority behavior is the ex-

pected behavior. Therefore the higher the z-stats value, the

higher the chance that a deviation, i.e. low frequency pairs,

are anomalies that are worth investigating. The formula

to calculate z-stats is as follows: z(n, m) = (m
n −p0)√

p0×(1−p0)
n

,

where n is total number of occurrences of event E, m is the

occurrences of the dominant event pairs which starts with

E, and p0 is the probability of the errors. p0 is normally

assigned a value of 0.9 [19] for error ranking.

We illustrate the use of z-stats using the example shown

in Table 5 with dominant behavior marked in bold. The

dominant behavior for (User purchase, *) is (User pur-

chase, Update cart). Thus the z-stats for (User purchase,

*) is calculated as follows (m = 1000, n = 1001):

z(1001, 1000) = (1000
1001−0.9)√
0.9×(1−0.9)

1001

= 10.44, and the z-stats for

(User signin, *) is z(m = 100, n = 130) = −4.97. The

dominant behavior for (Browse catalog, *) is (Browse cata-

log, Purchase item) or (Browse catalog, Update account).

Thus the z-stats for (Browse catalog, *) is z(m = 500,

n = 1100) = −49.25. (User purchase, *) has a higher z-

stats score than (User signin, *) and (Browse catalog, *).

This indicates that low frequency event pairs in the group

of (User purchase, *) are likely anomalies that should be

investigated closely. Normally, each purchase is followed

Z-Stat Kinds Min Max Total Event

E1 10.44 2 1 1,000 1,001 accountId(Tom) User purchase, item=100

E3 -4.97 3 10 100 130 accountId(Tim) User signin, user=Tim

E4 -49.25 3 100 500 1,100 accountId(John) Browse catalog, catalog=book

Figure 2. An example anomaly report

Z-Stat Kinds Min Max Total Event

E1 10.44 2 1 1,000 1,001

accountId(Tom) User purchase, item=100

Freq Sample Details (Sort by Freq)

1,000 (99%) log.txt, line 20
log.txt, line 23

E1 --> accountId(Tom) User purchase, item=100
E2 --> accountId(Tom) Update shopping cart, item=100

1 (<1%) log.txt, line 104
log.txt, line 108

E1 --> accountId(John) User purchase, item=103
E1 --> accountId(John) User purchase, item=105

E3 -4.97 3 10 100 130 accountId(Tim) User signin, user=Tim

E4 -49.25 3 100 500 1,100 accountId(John) Browse catalog, catalog=book

Figure 3. An expanded anomaly report

by an update. The missing Update cart event suggests that

the system might miss information about items selected by

a customer.

3.5. Anomaly Report

To help a load tester examine the anomalies, we gener-

ate an anomaly report. The report is generated in dynamic-

HTML so testers can easily attach it to emails that are sent

out while investigating a particular anomaly.

Figure 2 shows the generated report for our running ex-

ample. Our anomaly report is a table with each row corre-

sponding to one execute-after relation. Rows are sorted by

decreasing z-stats score. Execute-after relations with high

z-stats value are more likely to contain anomalies that are

worth investigating. The first row in Figure 2 corresponds

to the execute-after pair for the User purchase event (E1).

There are in total two types of event pairs with User pur-
chase as the leading event. One event pair occurs 1, 000
times and the other event pair occurs just once. In total,

all the event pairs, with User purchase as the leading event,

appear 1, 001 times during the course of this load test. A

sample line for this event (E1) is also shown.

Each sample line is a clickable hyperlink. Once a user

clicks the hyperlink, the report shows detailed information

about the execute-after pairs for that event. Figure 3 shows

the screenshot of the anomaly report after clicking the sam-

ple line for Event E1 . Event pairs for (User purchase, *)

are sorted with decreasing frequency. The topmost event

pair (User purchase, Update cart(E2)) is the dominant be-

havior. (User purchase, Update cart) occurs 99% (1, 000) of

5

the time. The first occurrence of this event pair is in log file

log.txt lines 20 and 23. The other event pair (User purchase,

User purchase) is a deviated behavior. It occurs only once

(< 1%). It is recorded in log file log.txt lines at 104 and

108.

4. Case Studies

We have conducted three case studies on four differ-

ent applications. The application are: the Dell DVD Store

(DS2), the JPetStore application (JPetStore), and two large

enterprise software applications. Table 6 gives an overview

of these four case studies. Based on our experience, z-stats

lower than 10 are likely noise. Thus, we only output event

pairs with z-stats score larger than 10 in these four experi-

ments. The table summarizes the types of the applications,

the duration of the load test, size of logs, and our anomaly

detection results. For example, Dell DVD Store is an open

source web applications implemented using JSP. The load

test was 5 hours long and generated a log file with 147, 005
log lines. Our anomaly detection approach takes less than

5 minutes to process the log file. We have discovered 23
abstract event types. There are 4 anomalies detected and 18
log lines are flagged, that is less than 0.01% of the whole log

file. Among these four anomalies, two of them are actual

problems in the load test. Our precision is 50%. Among

these two problems: one is a bug in the application under

test, the other is a bug in the load generator. We did not de-

tect any problems with the load environment. The percent-

age of flagged lines is the total number of log lines shown

in the anomaly report. As shown in Figure 4, there are total

9 event pairs (3+2+2+2). Thus our approach has flagged

9 × 2 = 18 lines. The processing time for our approach

is measured using a laptop with 2G memory, 7, 200 RPM

hard-drive and a Dual Core 2.0 GHz processor.

The rest of this section covers the details of our case stud-

ies. For each application, we present the setup of the load

test then we discuss the results of applying our approach

to identify problems. The goal of the studies is to mea-

sure the number of false positive (i.e. precision) reported

by our approach. A false positive is a flagged anomaly that

did not point to a load testing problem. We cannot measure

the recall of our approach since we do not know the actual

number of problems.

4.1. DELL DVD Store

The DVD Store (DS2) application is an online web ap-

plication [1]. DS2 provides basic e-commerce functionality,

including: user registration, user login, product search, and

item purchase. DS2 is an open source application and is

used to benchmark Dell hardware, and for database perfor-

mance comparisons [6]. DS2 comes in different distribu-

tion package to support various web platforms (e.g. Apache

Parameter Value
Duration 5 hours

Number of driver threads 50

Startup request rate 5

Think time 50 sec

Database size Small

Percentage of new customers 20%

Average number of searches per order 3*

Average number of items returned in each search 5*

Average number of items per order 5*

Table 7. Workload configuration for DS2

Tomcat, or ASP .NET) and database vendors (MySQL, Mi-

crosoft SQL Server, and Oracle).

Experiment Setup
DS2 contains a database, a load generator and a web appli-

cation. For a load test, the database is populated with entries

using provided scripts. The web application consists of four

JSP pages which interact with the database and display dy-

namic content. The DS2 load generator supports a range of

configuration parameters to specify the workload. Table 7

shows the parameters used in our experiment. Note that

“Think Time” refers to the time the user takes between dif-

ferent requests. We use a small database, which by default

contains 20, 000 users. Parameter values marked with a “*”

indicate that we use the default value. In this experiment,

we use MySQL as the backend database and the Apache

Tomcat as our web server engine. We increase the number

of allowed concurrent connections in MySQL to enable a

large number of concurrent access. For this configuration,

The web application layer is implemented in JSP and the

load generator is implemented in C#.

Each action from the user (login, registration, browse,

purchase) results in a separate database connection and

transaction. Since DS2 has no logs, we manually instrument

its four JSP pages so that logs are output for each database

transaction. Each log line also contains the session ID and

customer ID.

Analysis of the Results of the Load Test
The load test generated a log file with 147, 005 log lines for

23 execution events. Our approach takes about 2 minutes to

process the logs.

Figure 4 shows the screenshot of the anomaly report for

the DS2 application. The report shows 4 anomalies. We

cross examine the logs with the source code to determine

whether the flagged anomalies are actual load testing prob-

lems. The precision of this report is 50%. Two out of four

anomalies are actual problems in the load tests. We briefly

explain these two problems.

Figure 4 shows the details of the first anomaly. The first

execute-after pair is about a customer trying to add item(s)

into their shopping cart (E13). About 99% (87, 528) of the

time, the customer’s shopping cart is empty. Therefore, a

6

Applications DS2 JPetStore App 1 App 2
Application Domain Web Web Telecom Telecom

License Open Source Open Source Enterprise Enterprise

Source Code JSP, C# J2EE C++, Java C++, Java

Load Test Durations 5 hr 5 hr 8 hr 8 hr

Number of Log lines 147, 005 118, 640 2, 100, 762 3, 811, 771
% Flagged 18

147005
(< 0.01)% 8

118640
< 0.01% < 0.01% < 0.01%

Number of Events 23 22 > 400 > 400
Application Size 2.3M 4.9M > 300M > 400M

Precision 2
4
(or 50%) 2

2
(or 100%) 56% 100%

Processing Time < 5 min < 5 min < 15 min < 15 min

Break Down of Problems

(Application/Environment/Load) 1/0/1 2/0/0 Y/Y/N Y/N/N

Table 6. Overview of our case studies

shopping cart is created in the database along with the pur-

chased item information (E14). Less than 1% (1, 436) of

the time, the customer adds more item(s) into their exist-

ing shopping cart (E13). For the other 358 (< 1%) cases,

the customer directly exits this process without updating the

order information (E15).

The first event pair is the dominant behavior. The sec-

ond event pair refers to the cases that customers purchases

multiple items in one session. However, the last event

pair (E13 , E15) looks suspicious. A closer analysis of

the DS2 source code reveals that this is a bug in the web

application code. DS2 pretty prints any number if it is

larger than 999. For example, 1000 would be outputted as

1, 000. However, the pretty printed numbers are concate-

nated into the SQL statement which are used for updating

(or inserting) the customer’s information. The additional

comma results in incorrect SQL code since a comma in the

SQL statements means different columns. For example, a

SQL statement like: “INSERT into DS2.ORDERS (OR-

DERDATE, CUSTOMERID, NETAMOUNT, TAX, TO-

TALAMOUNT) (‘2004-01-27’, 24, 888, 313.24, 1,200)”

will cause an SQL error, since SQL treats a value of 1, 200
for TOTALAMOUNT as two values: 1 and 200.

The second and third anomalies are not problems. They

are both due to the nature of the applied load. For exam-

ple, the second anomaly is because we only have a few new

customers in our experiment (20% new customers in Ta-

ble 7). The expected behavior after each customer login

is to show their previous purchases. There are a few oc-

currences where DS2 does not show any previous purchase

history. These occurrences are due to newly registered cus-

tomers who do not have any purchase history.

The fourth anomaly is due to a problem with the load

generator. The load generator randomly generates a unique

ID for a customer. However, the driver does not check

whether this random number is unique across all concur-

rent executing sessions. The shown anomaly is due to one

occurrence, in a 5 hour experiment, where two customers

were given the same customer ID.

4.2. PetStore

We used our approach to verify the results of a load

test of another open source web application software called

JPetStore [2]. Unlike Sun’s original version of Pet Store [5]

which is more focused on demonstrating the capability of

the J2EE platform, JPetStore is a re-implementation with a

more efficient design [3] and is targeted for benchmarking

the J2EE platform against other web platforms such as .Net.

JPetStore is a larger and more complex application rel-

ative to DS2. Unlike DS2 which embeds all the applica-

tion logic into the JSP code, JPetStore uses the “Model-

View-Controller” framework [4] and XML files for ob-

ject/relational mappings.

Experiment Setup
We deployed JPetStore application on Apache Tomcat and

use MySQL as the database backend. As JPetStore does not

come with a load generator, we use Webload [8], an open

source web load testing tool, to load test the application.

Using webload we recorded four different customer scenar-

ios for replay during load testing. In Scenario 1, a customer

only browses the catalog without purchasing. In Scenario 2,

a new customer first registers for an account, then purchase

one item. In Scenario 3, a new customer first purchases an

item, then register for an account then checkout. In Scenario

4, an existing customer purchases multiple items.

In this load test, we ran two WebLoad instances from

two different machines sending requests to the JPetStore

web application. For each WebLoad instances, we added

in 5, 000 users. Table 8 shows the workload configuration

parameters for JPetStore load test. Note that WebLoad can

specify the distribution of the generated request rate. In this

experiment, we specify a random distribution for the user’s

requests with minimum rate 5 requests/sec and maximum

rate 150 requests/sec.

Analysis of the Results of the Load Test
The load test generated a log file with 118,640 log lines. It

takes our approach around 2 minutes to process the logs.

7

Z-Stat Kinds Min Max Total Event

E13 79.61 3 358 87,528 89,322

SessionID=19420, Entering purchase for simple quantity queries

Freq Sample Details (Sort by Freq)

87,528 (98%) ds2logs.txt 688
ds2logs.txt 689

E13 --> SessionID=19420, Entering purchase for simple quantity queries
E14 --> SessionID=19420, Initial purchase, update cart

1,436 (<1%) ds2logs.txt 2,484
ds2logs.txt 2,488

E13 --> SessionID=16242, Entering purchase for simple quantity queries
E13 --> SessionID=16242, Entering purchase for simple quantity queries

358 (<1%) ds2logs.txt 10,020
ds2logs.txt 10,021

E13 --> SessionID=13496, Entering purchase for simple quantity queries
E15 --> SessionID=13496, Finish purchase before commit

E6 39.96 2 1 14,393 14,394 SessionID=11771, Login finish for existing user

E19 34.73 2 317 16,273 16,590 SessionID=14128, End of purchase process

E22 20.65 2 1 3,857 3,858 SessionID=12067, Purchase complete

Figure 4. DS2 Anomaly Report

Parameter Value
Duration 300 minutes (5 hours)

Request rate 5 - 150 (random distribution)

Think time 50 sec

Scenario 1/2/3/4 25% / 25% / 25% / 25%

Table 8. Workload configuration for JPetStore

Two anomalies are reported and they are both application

problems.

The first problem is a bug in the registration of new users.

We have two load generators running concurrently. Each

load generator has an input file with randomly generated

customer IDs. These customer IDs are used to generate web

requests for scenarios (2 and 3). There are a some user IDs

which are common to both WebLoad instances. If a user

tries to register an ID which already exists in the database,

PetStore does not gracefully report a failure. Rather, Pet-

Store will output a stack of JSP and SQL errors.

The second problem reveals that JPetStore does not pro-

cess page requests when it is under a heavy load. There is

one instance out of 22, 330 instances where the header JSP

page is not displayed. The error logs for the WebLoad tool

indicate that the PetStore application timed out and could

not process the request for the header JSP page on time.

4.3. Large Enterprise Applications

We applied our approach on two large enterprise appli-

cations, which can handle thousands of user requests con-

currently. Two applications are both tested for 8 hours. It

takes our approach about 15 minutes to process the log files.

Table 6 shows the precision of our approach (56% - 100%).

We have found bugs in development versions of the appli-

cations (App 1 and App 2). One of the bugs in the appli-

cations shows the SQL statement was corrupted due to a

memory corruption. Further investigation leads to a mem-

ory corruption problems in the systems. In addition, our

approach detected problems with the load environment due

to the complexity of the load environment for the enterprise

applications. The false positives in App 1 are mainly due to

some rare events at the start of the application. When using

our approach in practice, load testers commented that:

1. Our approach considerably speeds up the analysis

work for a load test from several hours down to a few

minutes.

2. Our approach helps uncover load testing problems by

flagging lines that do not simply contain keywords like

“error” or “failure”.

3. Our approach helps load testers communicate more ef-

fectively with developers when a problem is discov-

ered. The generated HTML report can be emailed to

developers for feedback instead of emailing a large log

file. Moreover the report gives detailed examples of

the dominant and the deviated behaviors. These sim-

ple examples are essential in easing the communica-

tion between the testers and the development team.

5. Discussions and Limitations

Our approach assumes that load testing is performed af-

ter the functionality of the application is well tested. Thus,

the dominant behavior is the expected behavior and the mi-

nority deviated behavior is the anomalies. However, this

might not be a valid assumption. For example, if the disk of

an application fills up one hour into a ten hour load test, then

8

the majority of the logs will be the error behavior. That said,

our approach would still flag this problem and the expert an-

alyzing the logs would recognize that dominant behavior is

the problematic case.

Our approach processes the logs for the whole load test

at once. This whole processing might cause our approach

to miss problems. For instance, if the disk for the database

fills up halfway during a load test, the application under test

will report errors for all the incoming requests which arrives

afterwards. Normal and erroneous behavior may have equal

frequencies. Our statistical analysis would not flag such a

problem. However, if we segment the log files into various

chunks and process each individual chunk separately, we

can detect these types of anomalies by comparing frequen-

cies across chunks.

Finally, our anomaly report contains false positives.

Anomalies can be flagged due to the workload setup. For

example, our report for the DS2 case study contains two

false positives which are due to the workload. Also in a

threaded application when a thread is done processing a par-

ticular request and starts processing a new request, the pair

of events: event at end of a request and event at start of a

request may be incorrectly flagged as an anomaly. We plan

on exploring techniques to reduce with these false positives.

For now, load testers are able to specify a false positive pair

in a separate exclusion file. These pairs are used to clean up

the results of future log file analysis.

6. Related Work

Much of the work in literature focuses on identifying

bugs in software applications. Our work is the first, to our

knowledge, that tackles the issue of identifying problems in

load tests. These problems may be due to problems in the

application, load generation or load environment.

The work in the literature closest to our approach is all

the work related to inferring dominant properties in a soft-

ware application and flagging deviations from these prop-

erties as possible bugs. Such work can be divided into

three types of approaches: 1) Static approaches which

infer program properties from the source code and report

code segments which violate the inferred properties; 2) Dy-
namic approaches infer program properties from program

execution traces; 3) Hybrid approaches combine both ap-

proaches. Table 9 summarizes the related work. For each

work, the table shows the main idea of the approach, the

used techniques, and the challenge of directly adopting this

approach to load testing.

Dawson et al. [19] gather statistics about the frequency

of occurrence for coding patterns such as: pointer defer-

ence and lock/unlock patterns. They then use z-stats to de-

tect and rank the errors. Li et. al. [24] use frequent item-

set mining techniques to mine the call graph for anomalies.

However, this approach produces many violations and the

authors only evaluate a few violations thus the overall pre-

cision is unknown.

Hangal et al. [21] use dynamically inferred invariants

to detect programming errors. Csallner et. al. [18] fur-

ther improve the precision of bug detection techniques by

executing the program using automatically generated test

cases that are derived from the inferred invariants. Liu et.

al. [25] use hypothesis testing on code branches to detect

programming errors. The above three techniques cannot be

applied to load testing since the detailed instrumentations

would have an impractical performance overhead.

Weimer et al. [27] detect bugs by mining the error han-

dling behavior using statistical ranking techniques. Their

approach only works for Java applications which have try-

catch blocks and requires good knowledge of the source

code which is not applicable for load testers..

Yang et al. [28] instrument the source code and mine the

sequences of call graphs (pairs) to infer various programme

properties. They look at function calls which are directly

adjacent to each other as well as gapped function pairs.

Due to the large size of inferred explicit properties, they use

heuristics to select interesting patterns (e.g. lock/unlock).

Their approach requires a great deal of manual work and

the instrumentations has a high performance overhead.

Cotroneo et al. [17] produce a finite state machine based

on profiled data. Then a failed workload is compared

against the finite state machine to infer the failure causes.

Profiling during a load test is infeasible due to inability to

collect performance data. In addition, inferring a determin-

istic finite machine is not possible in a complex workload

due to the large number of events that are generated using

random load generators.

7. Conclusions and Future Work

In this paper, we present an approach to automatically

identify load testing problems. Our approach mines the logs

of an application to infer the dominant behavior of the ap-

plication. The inferred dominant behavior is used to flag

anomalies. These anomalies are good indicator of load test-

ing problems. Our case study on four applications shows

that our approach performs with high precision and scales

well to large systems. In the future work, we plan to esti-

mate the recall value by injection load testing problems and

determining whether our approach would identify them.

Acknowledgement

We are grateful to Research In Motion (RIM) for pro-

viding access to the enterprise applications used in our case

study. The findings and opinions expressed in this paper

9

Category Key Idea Technique Challenges
[19] Static Inferring source code deviations Statistics (z-stats) Requires templates

[24] Static Inferring call sequences inconsistency Frequent Item-Set mining Too many reported violations, precision unknown

[25] Dynamic Inferring control flow abnormality Hypothesis Testing Scalability

[21] Dynamic Inferring invariant violations Invariants Confidence Scalability

[18] Hybrid Inferring invariant violations Testing Scalability

[27] Dynamic Inferring error handling policy Statistics Coverage

[28] Dynamic Inferring programme properties Heuristics Requires heuristics for interesting properties

[17] Dynamic Comparing pass and failure runs Finite State Machine Scalability

Table 9. Summary of Related Work

are those of the authors and do not necessarily represent or

reflect those of RIM and/or its subsidiaries and affiliates.

Moreover, our results do not in any way reflect the quality

of RIM’s software products.

References

[1] Dell DVD Store. http://linux.dell.com/
dvdstore/.

[2] iBATIS JPetStore. http://sourceforge.net/
projects/ibatisjpetstore/.

[3] Implementing the Microsoft .NET Pet Shop us-

ing Java. http://www.clintonbegin.com/
JPetStore-1-2-0.pdf.

[4] Jakarta Struts. http://struts.apache.org/.
[5] Java Pet Store. http://java.sun.com/developer/

releases/petstore/.
[6] MySQL Wins Prestigious International Database Contest.

http://www.mysql.com/news-and-events/
press-release/release_2006_35.html.

[7] Summary of Sarbanes-Oxley Act of 2002. http://www.
soxlaw.com/.

[8] WebLoad. http://www.webload.org/.
[9] Willem Visser’s Research. http://www.visserhome.

com/willem/.
[10] J. Andrews. Testing using log file analysis: Tools, methods,

and issues. In ASE ’98: Proceedings of the 13th IEEE in-
ternational conference on Automated software engineering,

1998.
[11] A. Avritzer and B. Larson. Load testing software using de-

terministic state testing. In ISSTA ’93: Proceedings of the
1993 ACM SIGSOFT international symposium on Software
testing and analysis, 1993.

[12] A. Avritzer and E. J. Weyuker. Generating test suites for

software load testing. In ISSTA ’94: Proceedings of the 1994
ACM SIGSOFT international symposium on Software testing
and analysis, 1994.

[13] A. Avritzer and E. J. Weyuker. The automatic generation of

load test suites and the assessment of the resulting software.

IEEE Trans. Softw. Eng., 21(9), 1995.
[14] M. S. Bayan and J. W. Cangussu. Automatic stress and load

testing for embedded systems. In COMPSAC ’06: Proceed-
ings of the 30th Annual International Computer Software
and Applications Conference, 2006.

[15] B. Beizer. Software System Testing and Quality Assurance.

Van Nostrand Reinhold, March 1984.
[16] L. C. Briand, Y. Labiche, and M. Shousha. Using genetic

algorithms for early schedulability analysis and stress testing

in real-time systems. Genetic Programming and Evolvable
Machines, 7(2), 2006.

[17] D. Cotroneo, R. Pietrantuono, L. Mariani, and F. Pastore.

Investigation of failure causes in workload-driven reliability

testing. In SOQUA ’07: Fourth international workshop on
Software quality assurance, 2007.

[18] C. Csallner and Y. Smaragdakis. Dsd-crasher: a hybrid anal-

ysis tool for bug finding. In ISSTA ’06: Proceedings of the
2006 international symposium on Software testing and anal-
ysis, 2006.

[19] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf.

Bugs as deviant behavior: a general approach to inferring er-

rors in systems code. SIGOPS Oper. Syst. Rev., 35(5), 2001.
[20] V. Garousi, L. C. Briand, and Y. Labiche. Traffic-aware

stress testing of distributed systems based on uml models. In

ICSE ’06: Proceedings of the 28th international conference
on Software engineering, 2006.

[21] S. Hangal and M. S. Lam. Tracking down software bugs us-

ing automatic anomaly detection. In ICSE ’02: Proceedings
of the 24th International Conference on Software Engineer-
ing, pages 291–301, 2002.

[22] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora. An

Automated Approach for Abstracting Execution Logs to Ex-

ecution Events, 2008. To appear at September/October 2008

issue of the Journal on Software Maintenance and Evolution:

Research and Practice (JSME).
[23] T. Kremenek and D. R. Engler. Z-ranking: Using statistical

analysis to counter the impact of static analysis approxima-

tions. In SAS, 2003.
[24] Z. Li and Y. Zhou. Pr-miner: automatically extracting im-

plicit programming rules and detecting violations in large

software code. In ESEC/FSE-13, 2005.
[25] C. Liu, X. Yan, and J. Han. Mining control flow abnormality

for logic error isolation. In SDM, 2006.
[26] D. L. Parnas. Software aging. In ICSE ’94: Proceedings of

the 16th international conference on Software engineering,

Los Alamitos, CA, USA, 1994.
[27] W. Weimer and G. Necula. Mining temporal specifications

for error detection. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems,

2005.
[28] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das. Per-

racotta: mining temporal api rules from imperfect traces. In

ICSE ’06: Proceedings of the 28th international conference
on Software engineering, 2006.

[29] J. Zhang and S. C. Cheung. Automated test case generation

for the stress testing of multimedia systems. Softw. Pract.
Exper., 32(15), 2002.

10

