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Qualitative Spatiotemporal Analysis Using anOriented Energy RepresentationRichard P. Wildes and James R. BergenSarno� CorporationPrinceton, NJ 08543USAAbstract. This paper presents an approach to representing and ana-lyzing spatiotemporal information in support of making qualitative, yetsemantically meaningful distinctions at the earliest stages of processing.A small set of primitive classes of spatiotemporal structure are proposedthat correspond to categories of stationary, coherently moving, incoher-ently moving, 
ickering, scintillating and \too unstructured to supportfurther inference". It is shown how these classes can be represented anddistinguished in a uniform fashion in terms of oriented energy signa-tures. Further, empirical results are presented that illustrate the use ofthe approach in application to natural imagery. The importance of thedescribed work is twofold: (i) From a theoretical point of view a se-mantically meaningful decomposition of spatiotemporal information isdeveloped. (ii) From a practical point of view, the developed approachhas the potential to impact real world image understanding and analy-sis applications. As examples: The approach could be used to supportearly focus of attention and cueing mechanisms that guide subsequentactivities by an intelligent agent; the approach could provide the repre-sentational substrate for indexing video and other spatiotemporal data.1 Introduction1.1 MotivationWhen confronted with spatiotemporal data, an intelligent system that mustmake sense of the ensuing stream can be overwhelmed by its sheer quantity.Video and other temporal sequences of images are notorious for the vast amountof raw data that they comprise. An initial organization which a�ords distinc-tions that can guide subsequent processing would be a key enabler for dealinge�ciently with data of this nature.The current paper explores the possibility of performing qualitative analysesof spatiotemporal patterns that capture salient and meaningful categories ofstructure and which are easily recovered from raw data. These categories capturedistinctions along the following lines: What is moving and what is stationary?Are the moving objects moving in a coherent fashion? Which portions of the dataare best described as scintillating and which portions are simply too unstructured



to support subsequent analysis? More generally, given a spatiotemporal region ofinterest, one may seek to decompose it into a combination of such components.Signi�cantly, it is shown that all of these distinctions can be based on a uni�edrepresentation of spatiotemporal information in terms of local (spatiotemporal)correlation structure.The ability to parse a stream of spatiotemporal data into primitive, yet se-mantically meaningful, categories at an early stage of analysis can bene�t sub-sequent processing in a number of ways. A parsing of this type could supportcueing and focus of attention for subsequent analysis. Limited computational re-sources could thereby be focused on portions of the input data that will supportthe desired analysis. For example, areas that are too unstructured to supportdetailed analysis could be quickly discarded. Similarly, appropriate models toimpose during subsequent analysis (such as for model-based motion estimation)could be selected and initialized. Further, the underlying representation couldprovide the basis of descriptors to support the indexing of video or other spa-tiotemporal data. The relative distribution of a spatiotemporal region's totalenergy across the de�ned primitives might serve as a characteristic signaturefor initial database construction as well as subsequent look-up. Also, in certaincircumstances the proposed analysis could serve directly to guide intelligent ac-tion relative to the impinging environment. Certain primitive reactive behaviors(say, pursuit or 
ight) might be triggered by the presence of certain patterns ofspatiotemporal structure (say, patterns indicative of large moving regions). Asa step toward such applications, this paper presents an approach to qualitativespatiotemporal analysis and illustrates its representational power relative to avariety of natural image sequences.1.2 Related researchPrevious e�orts that have attempted to abstract qualitative descriptors of mo-tion information are of relevance to the research described in the current paper.Much of this work is motivated by observations suggesting the inherent di�cultyof dealing with the visual motion �eld in a quantitative fashion [27] as well asthe general e�cacy of using motion in a qualitative fashion to solve useful tasks(e.g., boundary and collision detection) [26]. It should be noted, however, thatthe focus of most of this work is the qualitative interpretation of visual motion oroptical 
ow while the current paper is about the analysis of spatiotemporal struc-ture. The level of processing discussed here precedes that at which actual motioncomputation is likely to occur. Indeed, one possible use of low-level spatiotempo-ral structure information might be to determine where optical 
ow computationmakes sense to perform.Recent advances in the use of parameterized models characterizing motioninformation in terms of its projection onto a set of basis 
ows are also of interest.Some of this work makes use of principle components analysis to build the basis
ows from training data with estimation for new data based on searching thespace of admissable parameters [5]. Other work has de�ned steerable basis 
owsfor simple events (e.g., motion of occluding edge or bar) with subsequent ability



to both detect and estimate weights for a novel data set [9]. As a whole, thisbody of research is similar to the previously reviewed qualitative motion analysisliterature in being aimed at higher-level interpretation.Most closely related to the current work is prior research that has approachedmotion information as a matter for temporal texture analysis [17]. This researchis similar in its attempt to map spatiotemporal data to primitive, yet mean-ingful patterns. However, it di�ers in signi�cant ways: Its analysis is based onstatistics (e.g., means and variances) de�ned over normal 
ow recovered fromimage sequence intensity data; whereas, the current work operates directly onthe intensity data. Further, the patterns that it abstracts to (e.g., 
owing wa-ter, 
uttering leaves) are more speci�c and narrowly de�ned than those of thecurrent work.A large body of research has been concerned with e�ecting the recovery ofimage motion (e.g., optical 
ow) on the basis of �lters that are tuned for lo-cal spatiotemporal orientation [1, 8, 11{13, 28]. Filter implementations that havebeen employed to recover estimates of spatiotemporal orientation include angu-larly tuned Gabor, lognormal and derivative of Gaussian �lters. Also of relevanceis the notion of opponency between �lters that are tuned for di�erent directionsof motion [1, 21, 23]. An essential motivation for taking such an operation intoaccount is the close correspondence between the di�erence in the response of�lters tuned to opposite directions of motion (e.g., leftward vs. rightward) andoptical 
ow along the same dimension (e.g., horizontal). While the current workbuilds directly on methods for recovering local estimates of spatiotemporal ori-entation, it then takes a di�erent direction in moving directly to qualitativecharacterization of structure rather than the computation of optical 
ow.Previous work also has been concerned with various ways of characterizinglocal estimates of spatiotemporal orientation. One prominent set of results alongthese lines has to do with an eigenvalue analysis of the local orientation tensor[11, 14]. Here the essential point is to characterize the dimensionality of thelocal orientation as being isotropic, line- or plane-like in order to characterizethe local spatial structure with respect to motion analysis (e.g., distributed vs.oriented spatial structure with uniform motion). Other work of interest alongthese lines includes interpretation of opponent motion operators as indicativeof motion salience [30] and the exploitation of multiscale analysis of temporalchange information for detection and tracking purposes [2]. Overall, while theselines of investigation are similar to the subject of the current paper, none ofthis work has proposed and demonstrated the particular and complete set ofspatiotemporal abstractions that are the main subject of the current paper.In the light of previous research, the main contribution of the current paperis that it shows how to abstract from spatiotemporal data a number of quali-tative structural descriptions corresponding to semantically meaningful distinc-tions (e.g., what is stationary, what is moving, is the exhibited motion coherentor not, etc.). Further, a formulation is set forth that captures all of the distin-guished properties of spatiotemporal structure in a uni�ed fashion.



2 Technical approachIn this section, the proposed approach to spatiotemporal analysis is presented,accompanied by natural image examples. For the purposes of exposition, thepresentation begins by restricting consideration to one spatial dimension plustime. Subsequently, the analysis is generalized to encompass an additional spatialdimension and issues involving spatiotemporal boundaries.2.1 Analysis in one spatial dimension plus timeUnstructured Static Flicker Coherent Incoherent ScintillationMotion Motion
x

t

tf

fxjR� Lj 0 0 0 ++ 0 0R+ L 0 ++ ++ ++ ++++ ++Sx 0 ++ 0 + + +Fx 0 0 ++ + + +Fig. 1. Primitive Spatiotemporal Patterns. The top row of images depict prototypicalpatterns that comprise the proposed qualitative categorization of spatiotemporal struc-ture. For display purposes the images are shown for a single spatial dimension, x, plustime, t. The second row of plots shows the corresponding frequency domain structure,with axes fx and ft. As suggested by their individual titles, the categories have seman-tically meaningful interpretations. The lower part of the �gure shows the predicteddistribution of energy for each pattern as it is brought under the proposed orientedenergy representation. The representation consists of four energy images components,jR� Lj, jR+ Lj, Sx and Fx that are derived from an input image via application of abank of oriented �lters. For the purpose of qualitative analysis the amount of energythat is contributed by the underlying �lter responses, R, L, Sx and Fx, is taken ashaving one of three values: (approximately) zero, moderate and large, symbolized as0, + and ++, respectively.Primitive spatiotemporal patterns The local orientation (or lack thereof)of a pattern is one of its most salient characteristics. From a purely geometricpoint of view, orientation captures the local �rst-order correlation structure ofa pattern. In the realm of image analysis, local spatiotemporal orientation oftencan be interpreted in a fashion that has additional rami�cations. For example,image velocity is manifest as orientation in space-time [14]. We now explore thesigni�cance of this structure in one spatial dimension, the horizontal image axis,



x, and time, t. Fig. 1 shows x-t-slices of several prototypical spatiotemporalpatterns that are of particular interest.Perhaps the simplest situation that might hold is that a region is essentiallydevoid of structure, i.e., image intensity is approximately constant or slowly vary-ing in both the spatial and temporal directions. In the spatiotemporal frequencydomain, such a pattern would have the majority of its energy concentrated at theorigin. When such regions occur where local contrast is small they can indicatean underlying smoothness in the material that is being imaged. For subsequentprocessing operations it is important to 
ag such areas as lacking enough in-formation to support stable estimates of certain image properties. For example,image registration can be led astray by blindly attempting to align structurelessregions. This category will be referred to as \unstructured".Locally oriented structures are quite common in spatiotemporal data. Here,there are several situations that are useful to distinguish. From a semantic pointof view, it is of particular interest to categorize the patterns according to thedirection of their dominant orientation. One case of interest is that which arisesfor the case of (textured) stationary objects. These cases show elongated struc-ture in the spatiotemporal domain that is parallel to the temporal axis, i.e.,features exhibit no shift in position with the passage of time. In the frequencydomain, their energy will be concentrated along the spatial frequency axis. Thiscase will be referred to as \static". A second case of interest is that of homo-geneous spatial structure, but with change in intensity over time (for example,overall change in brightness due to temporal variation in illumination). Here,the spatiotemporal pattern will be oriented parallel to the spatial axis. Corre-spondingly, in the frequency domain the energy will be concentrated along thetemporal frequency axis. This case will be referred to as \
icker". A third case ofinterest is that of objects that are in motion. As noted above, such objects tracea trajectory that is slanted in the spatiotemporal domain in proportion to theirvelocity. Their energy in the frequency domain also exhibits a slant correspond-ing to their having both spatial and temporal variation. Such simple motion thatis (at least locally) manifest by a single dominant orientation will be referred toas \coherent motion". Finally, it is useful to distinguish a special case of orientedstructure, that of multiple local orientations intermixed or superimposed withina spatial region. In this regard, there is motivation to concentrate on the caseof two structures both indicative of motion. Such a con�guration has perceptualsigni�cance corresponding to oscillatory motion, shear and occlusion boundaries,and other complex motion phenomena that might be generally thought of as dy-namic local contrast variation with motion. Interestingly, it appears that humanvision represents this category as a special case as suggested by the perceptionof counterphase 
icker [6]. In the frequency domain the energy distribution willbe the sum of the distributions that are implied by the component motions.This case will be referred to as \incoherent motion". In comparison, there doesnot seem to be anything signi�cant about something that is both static and
ickering, beyond its decomposition into those primitives.



The �nal broad class of spatiotemporal pattern to be considered is that ofisotropic structure. In this case, no discernable orientations dominate the localregion; nevertheless, there is signi�cant spatiotemporal contrast. The frequencydomain manifestation of the pattern also lacks a characteristic orientation, andis likewise isotropic. Situations that can give rise to this type of structure arecharacteristically stochastic or chaotic in nature. Natural examples include tur-bulence and the glint of specularities on water. Owing to the perceptual mani-festation of these phenomena, this case will be referred to as \scintillation".The essence of the proposed approach is to analyze any given sample ofspatiotemporal data as being decomposed along the dimensions of the adducedcategories: unstructured, static, 
icker, coherent motion, incoherent motion andscintillation. While it is possible to make �ner distinctions (e.g., exactly whatthe numerical value of the space-time orientation is), at the level of qualitativesemantics these are fundamental distinctions to be made: Is something structuredor not? If it is structured, does it exhibit a characteristic orientation or is it moreisotropic and thereby scintillating in nature? Are oriented patterns indicative ofsomething that is stationary, 
ickering or moving? Is the motion coherent orincoherent? It should be noted that each of the descriptions identi�ed aboveis attached to the visual signal within a speci�ed spatiotemporal region. Thechoice of this region generally a�ects the description assigned. For example, themotion of leaves in the wind may be coherent if analyzed over a very smallarea and time but incoherent over a larger area or time. An alternative wayto think about the proposed decomposition is to consider it from the point ofview of signal processing: In particular, what sort of decomposition (e.g., in thefrequency domain) does it imply. This topic is dealt with in the next section interms of a representation that captures the proposed distinctions.Oriented energy representation Given that the concern is to analyze spa-tiotemporal data according to its local orientation structure, a representationthat is based on oriented energy is appropriate. Such a representation entailsa �lter set that divides the spatiotemporal signal into a set of oriented energybands. In general, the size and shape of the �lter spectra will determine theway that the spatiotemporal frequency domain is covered. In the present case, afamily of relatively broadly tuned �lters is appropriate due the interest in qual-itative analysis. The idea is to choose a spatial frequency band of interest withattendant low pass �ltering in the temporal domain. This captures orientationorthogonal to the spatial axis. On the basis of this choice, a temporal frequencyband can be speci�ed based on the range of dynamic phenomena that are ofinterest for the given spatial band. This captures structure that is oriented indirections indicative of motion, e.g., a spatiotemporal diagonal. Finally, thesecharacteristics can be complemented by considering just the temporal frequencyband while spatial frequency is covered with a low-pass response. This capturesstructure that is oriented orthogonal to the temporal axis. Thus, it is possible torepresent several principle directions in the spatiotemporal domain while system-atically covering the frequency domain. The simpli�cation realized by analyzing



Fig. 2. Oriented Energy Filters for Spatiotemporal Analysis. The top row shows syn-thesized pro�les for second derivative of Gaussian �lters oriented to capture static,
icker, rightward and leftward motion structure (left to right). The last plot is theHilbert transform of the leftward motion �lter. (These plots are shown greatly enlargedfor clarity). The bottom row indicates the frequency response of the correspondingquadrature pair �lters via application of an energy calculation to the zone plate at thefar right. The proposed approach to representing spatiotemporal structure builds onsuch �ltering operations.spatiotemporal structure in a two dimensional representation (i.e. one spatialand one temporal dimension) requires somehow addressing the remaining spa-tial dimension since the input data consists of a three dimensional volume. Thisis done by lowpass �ltering the data in the orthogonal spatial direction using the5-tap binomial �lter [ 1 4 6 4 1 ]=16. This �ltering allows for analysis of the otherspatiotemporal plane (i.e. that containing the orthogonal spatial dimension) inan exactly analogous manner.In the remainder of this section a choice of �lters is presented for a givenfrequency response, i.e., scale of spatial structure.The desired �ltering can be implemented in terms of second derivative ofGaussian �lters, G2� at orientation � (and their Hilbert transforms, H2� ) [14].The motivation for this choice is twofold. First, while selective for orientation,the tuning of these �lters is moderately broad and therefore well suited to thesort of qualitative analysis that is the focus of the current research. Second,they admit a steerable and separable implementation that leads to compact ande�cient computation. The �lters are taken in quadrature (i.e., for any given �,G2� and H2� in tandem) to eliminate phase variation by producing a measureof local energy, E�(x; t) within a frequency band, according toE�(x; t) = (G2� (x; t) � I(x; t))2 + (H2� (x; t) � I(x; t))2: (1)In particular, to capture the principle orientations that were suggested above,�ltering is applied (i) oriented orthogonally to the spatial axis, (ii) orthogonallyto the temporal axis and (iii, iv) along the two spatiotemporal diagonals, seeFig. 2. Notice that the frequency response plots show how the �lters sweep outan annulus in that domain; this observation can provide the basis for allowinga multiscale extension to systematically alter the inner and outer rings of theannulus to e�ectively cover the frequency domain. Finally, note that at a given



frequency the value of any one oriented energy measure is a function of bothorientation and contrast and therefore rather ambiguous. To avoid this confoundand get a purer measure of orientation the response of each �lter should benormalized by the sum of the consort, i.e.,Ê�i(x; t) = E�i�iE�i(x;t) + � (2)where � is a small bias to prevent instabilities when overall energy is small.(Empirically we set this bias to about 1 % of the maximum (expected) energy.)The necessary operations have been implemented in terms of a steerable �lterarchitecture [10, 15]. The essential idea here is to convolve an image of interestwith a set of n basis �lters, with n = 3 for the second derivative of Gaussiansof concern. Subsequently the basis �ltered images are combined according tointerpolation formulas to yield images �ltered at any desired orientation, �. Pro-cessing with the corresponding Hilbert transforms is accomplished in an analgousfashion, with n = 4. To remove high frequency components that are introducedby the squaring operation in forming the energy measurement (1), the previouslyintroduced 5-tap binomial low-pass �lter is applied to the result, E�. Details ofthe �lter implementation (e.g., speci�cation of the basis �lters and the interpo-lation formulas) are provided in [10, 15].The �nal oriented energy representation that is proposed is based directly onthe basic �ltering operations that have been described. Indeed, given the class ofprimitive spatiotemporal patterns that are to be distinguished, one might imag-ine simply making use of the relative distribution of (normalized) energies acrossthe four proposed orientation tuned bands as the desired representation. In thisregard, it is proposed to make use of two of these bands directly. In particular,the result of �ltering an input image with the �lter oriented orthogonally to thespatial axis will be one component of the representation, let it be called the \Sx-image" (for static). Second, let the result of �ltering an input image with the�lter oriented orthogonally to the temporal axis be the second component of therepresentation and call it the \Fx-image" (for 
icker). Due to their characteristichighlighting of particular orientations, these (�ltered) images are well suited tocapturing the essential nature of the patterns for which they are named.The information provided individually by the remaining two bands is am-biguous with respect to the desired distinctions between, e.g., coherent and in-coherent motion. This state of a�airs can be remedied by representing thesebands as summed and di�erenced (i.e., opponent) combinations. Thus, let R�Land R+L stand for opponent and summed images (resp.) formed by taking thepointwise arithmetic di�erence and sum of the images that result from �lteringan input image with the energy �lters oriented along the two diagonals. It canbe shown that the opponent image (when appropriately weighted for contrast)is proportional to image velocity [1] and has a strong signal in areas of coherentmotion. It is for this reason that the notation R and L is chosen to underline therelationship to rightward and leftward motion. For present purposes the absolutevalue of the opponent signal, jR � Lj, will be taken as the third component of



the proposed representation since this allows for coherency always to be positive.Finally, the fourth component of the representation is the summed (motion) en-ergy R+L. This image is of importance as it captures energy distributions thatcontain multiple orientations that are individually indicative of motion and istherefore of importance in dealing with incoherent motion phenomena.At this point it is interesting to revisit the primitive spatiotemporal pat-terns of interest and see how they project onto the four component orientedenergy representation comprised of Sx, Fx, jR � Lj and R + L, see Fig. 1. Inthe unstructured case, it is expected that all of the derived images will containvanishingly small amounts of energy. Notice that for this to be true and stable,the presence of the bias factor, �, in the normalization process is important inavoiding division by a very small factor. For the static case, not surprisinglythe Sx-image contains the greatest amount of energy. Although, there also is amoderate energy from the R+L-image as the underlying R and L responses willbe present due to the operative orientation tuning. In contrast, these responseswill very nearly cancel to leave the jR � Lj-image essentially zero. Similarly,the orthogonal Fx-image should have essentially no intensity. The 
icker caseis similar to the static case, with the Sx and Fx-images changing roles. For thecase of coherent motion, it is expected that the jR � Lj-image will have a largeamount of energy present. Indeed, this is the only pattern where the image isexpected to contain any signi�cant energy. The R+L-image also should show anappreciable response, with the other images showing more moderate responses.For the case of incoherent motion, the R + L- image should dominate as boththe underlying R and L responses should be appreciable. Again, due to �nitebandwidth tuning the S and F images also should show moderate responses.Once again the jR � Lj-image should be very nearly zero. Finally, for the caseof scintillation the S and F images should show modest, yet still appreciableresponses. The R + L-image response should be somewhat larger, perhaps bya factor of two as each of the modest R and L responses sum together. Essen-tially no response is expected from the jR � Lj-image. Signi�cantly, when onecompares all of the signatures, each is expected to be distinct from the others,at least for the idealized prototypical patterns. The question now becomes howwell the representation captures the phenomena of interest in the face of naturalimagery.Natural image examples A set of natural image sequences have been gatheredthat provide one real world example of each of the proposed classes of spatiotem-poral structure, see Fig. 3. For the unstructured case the image sequence showsa featureless sky. For the static case the image sequence shows a motionless tree.(Note that for each of these �rst two cases, a single image was not simply dupli-cated multiple times to make the sequence, an actual video sequence of imageswas captured.) The third case, 
icker, is given as a smooth surface of human skinas lightning 
ashes over time. Coherent motion is captured by a �eld of 
owersthat appear to move diagonally upward and to the right due to camera motion.Incoherent motion is captured by a sequence of images of overlapping legs in



very complex motion (predominantly, but not entirely, horizontal motion). Thelast case, scintillation, is shown via a sequence of rain striking a puddle. All ofthe image sequences had horizontal, x, and vertical, y, length both equal to 64while the temporal length (i.e., number of frames) was 40. All of the spatiotem-poral image volumes were processed in an identical fashion by bringing themunder the proposed oriented energy representation, as described in the previoussection. This resulted in each original image begin decomposed along the fourdimensions, jR � Lj, R+ L, Sx and Fx.The results of the analysis are shown in Fig. 3. For each of the natural imageexamples a representative spatial slice shows the recovered energy along each ofthe dimensions, jR�Lj, R+L, Sx and Fx. In each cell, the average (normalized)energy is shown for the entire spatiotemporal volume. (Note that due to thepresence of the bias, �, the sum of R + L, Sx and Fx does not necessarily sumexactly to unity.) In reviewing the results it is useful to compare the recovereddistribution of energies with the predictions that are shown in Fig. 1. Begin-ning with the unstructured case, it is seen that all of the recovered energies arevanishingly small, exactly as predicted. The static case also follows the patternpredicted in Fig. 1. For this case it is interesting to note that the deviation fromzero in the Fx component is due to some 
uttering (i.e., scintillation) in theleaves of the tree. The 
icker case also performs much as expected, with a bitmore energy in the Fx component relative to the R+L component than antici-pated. For the case of coherent motion the pattern of energy once again followsthe prediction closely. Here it is important to note that the depicted motion isnot strictly along the horizontal axis, rather it is diagonal. This accounts for thevalue of R+L being somewhat larger than jR�Lj as the underlying L channelhas a nonzero response. For the incoherent case, it is seen that while the generaltrend in the distribution of energies is consistent with predictions, the magni-tude of R+L is not as large as expected. Examination of the data suggests thatthis is due to the Fx component taking on a larger relative value than expecteddue to the imposition of some 
icker in the data as some bright objects comeinto and go out of view (e.g., bright props and boots that the people wear). Fi-nally, the case of scintillation follows the predictions shown in Fig. 1 quite well.Taken on the whole, these initial empirical results support the ability of theproposed approach to make the kinds of distinctions that have been put forth.Clearly the utility of the representation depends on its ability to distinguish andidentify populations of samples corresponding to the various semantic categoriesdescribed. Demonstration of this ability will require a quantitative analysis ofenergy signatures across an appropriate collection of samples and is beyond thescope of this paper.2.2 Adding an additional spatial dimensionThe approach that has been developed so far can be extended to include the ver-tical dimension, y, by augmenting the representation with a set of componentsthat capture oriented structure in y-t image planes. The same set of oriented�lters that were used previously are now applied to y-t planes, as before with



the addition of a low-pass characteristic in the orthogonal spatial dimension,now x. This will allow for (normalized) oriented energy to be computed in thefour directions: (i) oriented orthogonally to the spatial axis, y, (ii) oriented or-thogonally to the temporal axis, t and (iii,iv) along the two y-t diagonals. Theseenergy computations are performed for an input image using the y-t counterpartsof formulas (1) and (2). The resulting �ltered images are then used to completethe representation in a way entirely analogous to that used for the horizontalcase except with U and D (for up and down) replacing R and L.To illustrate these extensions, Fig. 4 shows the results of bringing the same setof natural image examples that were used with the x-t analysis under the jU�Dj,U +D, Sy, Fy extensions to the representation. Here it is useful to refer to boththe a priori predictions of Fig. 1 as well as the previously presented x-t empiricalresults. By and large the results once again support the ability of the approachto distinguish the six qualitative classes that have been put forth. Note, however,that for the incoherent motion case the depicted movement is predominant inthe x direction and the value of U +D is correspondingly relatively low.2.3 Boundary analysisAs an example of how the proposed representation can be used for early segmen-tation of the input stream, we consider the detection of spatiotemporal bound-aries. Di�erential operators matched to the juxtaposition of di�erent kinds ofspatiotemporal structure can be assembled from the primitive �lter responses,R�L, R+L, Sx, Fx and their vertical (i.e., y-t) counterparts. To illustrate thisconcept, consider the detection of (coherent) motion boundaries. Here, the intentis not to present a detailed discussion of motion boundary detection, which hasbeen extensively treated elsewhere (see, for example [3, 7, 9, 19]), but to use it asan example of the analysis of spatiotemporal di�erential structure in general.Coherent motion is most directly related to the opponent �ltered imagesR�L and U�D. Correspondingly, the detection of coherent motion boundariesis based on the information in these images. As shown in Fig. 5, combining adi�erence of Gaussians G(x; y; �1)�G(x; y; �2) (3)operator (where G(x; y; �) is a Gaussian distribution with standard deviation�) with motion opponent signals yields a double opponency: The pointwise op-ponency R � L is combined with a spatial opponency provided by the di�er-ence of Gaussians and similarly for U � D. As in di�erence of Gaussian basededge-detection [14], the zero-crossings in the convolution of (3) with R� L andU � D are indicative of boundaries in these inputs. Final boundary detectionis based on the presence of a zero-crossing in either of the individual results(G(x; y; �1)�G(x; y; �2)) � (R � L) or (G(x; y; �1)�G(x; y; �2)) � (U �D).An example is shown in Fig. 5. Here, the di�erence of Gaussians (3) wasrealized in terms of binomial approximations to low-pass �lters with cut-o� fre-quencies at �=8 and �=16. A sequence of aerial imagery showing a tree canopywith movement relative to undergrowth due to camera motion serves as input.



Due to the homogeneous texture of the vegetation, the boundary of the tree isnot visible in any one image from the sequence. Opponent motion images R�Land U �D were derived from this input and di�erence of Gaussian processingwas applied to each of the motion opponent images. Finally, the zero-crossingsin the results are marked. For purposes of display, the slope magnitude is cal-culated for the zero-crossings and summed between the two (double opponent)images to given an indication of the strength of the boundary signal. The resultaccurately captures one's visual impression upon viewing the corresponding im-age sequence where the apparent boundary can be traced along the left side asan irregular contour, then along a diagonal and �nally across the top where ithas a pronounced divot.3 Discussion3.1 ImplicationsThe work that has been described in this paper builds on a considerable bodyof literature on spatiotemporal �ltering. The main implication of the currente�ort is that the output of such �ltering can be interpreted directly in termsof rather abstract information, i.e., the 6 proposed categories of spatiotemporalstructure: structureless, static, 
icker, coherent motion, incoherent motion andscintillation. Based on the analysis presented, not all of these classes are equallydiscriminable under the proposed representation. The signatures for the classesstructureless, static, 
icker and coherent motion are quite distinct, but those forincoherent motion and scintillation (while distinct from the other four) di�erfrom each other only in the amount of energy expected in the summed energiesR + L and U + D. This state of a�airs suggests that these last two categoriesmight be best distinguished from each other in relative comparisons, while allother distinctions might be accomplished in a more independent and absolutefashion. This di�erence has implications for how the signatures can be used: Thestronger form of distinctness supports categorical decisions about signal contentacross imaging situations; because it depends on a metric comparison, the weakerform probably does not.Operations have been described at a single spatiotemporal scale; however,the proposed representation is a natural candidate for multiscale extensions [16,31]. Indeed, such extensions might support �ner distinctions between categoriesof spatiotemporal structure as characteristic signatures could be manifest acrossscale. Two kinds of extension can be distinguished. The �rst is concerned withvarying the region of (spatiotemporal) integration that is applied to the orientedenergy measures. The second type of multiscale extension concerns the frequencytuning of the underlying oriented �lters. A systematic extension in this regardwould operate at a number of spatial frequency bands and, for each of thesebands, perform the analysis for a number of temporal frequency bands. It wouldthereby be possible to tile the frequency domain and correspondingly character-ize the local orientation structure of an input spatiotemporal volume. These twoextensions serve distinct purposes that are perhaps best understood with respect



to a simple example. Consider a typically complex outdoor scene containing atree blowing in a gusty wind and illuminated by a sunny sky with a few driftingclouds in it. As the tree branches sway back and forth, the corresponding imagemotion will be locally and temporarily coherent. However, over longer periodsof time or over larger areas it will be incoherent or oscillatory. Thus, the char-acterization of the spatiotemporal structure will shift from one category to theother as the region of analysis is extended. Now consider the e�ect of a cloudshadow passing across the tree. At a �ne spatial scale (i.e. for a high spatial fre-quency underlying �lter) it will look like an illumination variation thus having acomponent in the \
icker" category. At the scale of the shadow itself (i.e. at lowspatial frequency) it will look like coherent motion as the cloud passes over. Thepattern of spatiotemporal signatures taken as a function of scale thus capturesboth the structural complexities of the dynamic scene and the quasitransparencyof complex illumination. These two types of scaling behavior are complimentaryand taken in tandem serve to enrich the descriptive vocabulary of the approach.In contrast to the main message of this paper regarding the abstraction ofspatiotemporal information to the level of qualitative descriptors, the details ofthe particular �ltering architecture that have been employed are less important.A variety of alternatives could be employed, including oriented Gabor (e.g., [13])and lognormal (e.g., [11]) �lters. Similarly, one might be concerned with issuesof causality and use oriented spatiotemporal �lters that respect time's arrow [1,8, 28]. Also, one might consider a more uniform sampling of orientation in x-y-t-space, rather than relying on x-t and y-t planes. Nevertheless, it is interestingthat the fairly simple �lters that were employed in the current e�ort have workedreasonably well for a variety of natural image examples.The type of qualitative analysis described here seems particularly suited toprocessing in biological vision systems because of the apparently hierarchicalnature of biological computation and the importance of such factors as attention.It is interesting therefore to note aspects of biological processing that relate tothe current approach. With respect to �neness of sampling in the spatiotemporaldomain, it appears that humans employ only about 2 to 3 temporal bands, whilemaking use of 6 or more spatial bands [4, 25, 29]. Also, there is evidence thatbiological systems combine motion tuned channels in an opponent fashion [24],as is done in the current work. Regarding the degree to which �lter responses arespatially integrated (i.e., as part of computing aggregate properties of a region)biological systems seem to be rather conservative: Physiological recordings ofvisual cortex complex cells indicate integration regions on the order of 2 to5 cycles of the peak frequency [20], suggesting a preference for preservationof spatial detail over large area summation. It also is interesting to note thathuman contrast sensitivity is on the order of 1 % [18], an amount that hasproven useful analogously in the current work as a choice for the bias in theprocess of energy normalization (2). With regard to border analysis, part of apurported mechanism for the detection of relative movement in the 
y makesuse of spatially antagonistic motion comparisons [22], in a fashion suggestive ofthe approach taken in the current paper.



Based on the ideas of this paper, a number of applications can be envisionedfalling into two broad areas of potential impact. The �rst type of applicationconcerns front end processing for real-time vision tasks. In this capacity, it couldprovide an initial organization, thereby focusing subsequent processing on por-tions of the data most relevant to critical concerns (e.g., distinguishing static,dynamic and low information regions of the scene). The second type of appli-cation concerns issues in the organization and access of video sequences. Here,the proposed representation could be used to de�ne feature vectors that capturevolumetric properties of spatiotemporal information (e.g., space-time texture)as an aid to the design and indexing of video databases. More generally, theproposed approach would be appropriate to a variety of tasks that could bene�tfrom the early organization of spatiotemporal image data.3.2 SummaryThis paper has presented an approach to representing and analyzing spatiotem-poral data in support of making qualitative yet semantically meaningful distinc-tions. In this regard, it has been suggested how to ask and answer a numberin simple, yet signi�cant questions, such as: Which spatiotemporal regions arestationary? Which regions are moving in a coherent (or incoherent) fashion?How much of the variance in the spatiotemporal data is due to overall changesin intensity. Where is the spatiotemporal structure isotropic and indicative ofscintillation? Where is the data stream simply lacking in su�cient structure tosupport further inference? Also indicated has been an approach to issues re-garding the analysis of spatiotemporal boundaries. Further, all of these mattershave been embodied in a uni�ed oriented energy representation. A variety ofempirical results using natural image data suggest that the approach may havethe representational power to support the desired distinctions. On the basis ofthese results, it is conjectured that the developed representation and analysiscan subserve a variety of vision-based tasks and applications. More generally,the approach provides an integrated framework for dealing with spatiotempo-ral data in terms of its abstract information content at the earliest stages ofprocessing.References1. Adelson, E., Bergen, J.: Spatiotemporal energy models for the perception of motion.JOSA A 2 (1985) 284{2992. Anderson, C., Burt, P., van der Wal, G.: Change detection and tracking using pyra-mid transform techniques. Proc. SPIE Conf. on Intell. Rob. and Comp. Vis. (1985)300{3053. Beauchemin, S., Barron, J.: The computation of optical 
ow. ACM Comp. Surv. 27(1995) 433-4674. Bergen, J., Wilson, H.: Prediction of 
icker sensitivities from temporal three pulsedata. Vis. Res. (1985) 284{299



5. Black, M., Yacoob, Y., Jepson, A., Fleet, D.: Learning parameterized models ofimage motion. Proc. IEEE CVPR (1997) 561{5676. Bruce, V., Green, B., Georgeson, M.: Visual Perception. East Sussex: Earlbaum(1996)7. Chou, G.: A model of �gure-ground segregation from kinetic occlusion. Proc. ICCV(1995) 1050{10578. Fleet, D., Jepson, A.: A Cascaded Approach to the Construction of Velocity SelectiveMechanisms. RBCV Tech. Rep., TR-85-6, Dept. of Comp. Sci., University of Toronto(1985)9. Fleet, D., Black, M., Jepson, A.: Motion feature extraction using steerable 
ow�elds. Proc. IEEE CVPR (1998) 274{28110. Freeman, A., Adelson, E.: The design and use of steerable �lters. IEEE PAMI 13(1991) 891{90611. Granlund, G., Knutsson, H.: Signal Processing for Computer Vision. Boston:Kluwer (1995)12. Grzywacz, N., Yuille, A.: A model for the estimation of local velocity by cells inthe visual cortex. Proc. Roy. Soc. Lond. B 239 (1990) 129{16113. Heeger, D.: A model for the extraction of image 
ow. JOSA A 4, (1997) 1455{147114. J�ahne, B.: Digital Image Processing. Berlin: Springer-Verlag (1993)15. Knutsson, H., Wilson, R., Granlund, G.: Anisotropic non-stationary image estima-tion and its applications { part I: Restoration of noisy images. IEEE TC 31 (1983)388{39716. Koenderink, J.: Scale-time. Bio. Cyb. 58 (1988) 159{16217. Nelson, R., Polana, R.: Qualitative recognition of motion using temporal texture.CVGIP-IU 56 (1992) 78{8918. van Ness, R., Bouman, M.: Spatial modulation transfer in the human eye. JOSA57 (1967) 401{40619. Niyogi, S.: Detecting kinetic occlusion. Proc. ICCV (1995) 1044{104920. Movshon, J., Thompson, I., Tolhurst, D.: Receptive �eld organization of complexcells in the cat's striate cortex. J. Physiol. Lond. 283 (1978) 79{9921. Reichardt, W.: Autocorrelation, a principle for the evaluation of sensory informa-tion by the central nervous system. In W. Rosenblith (Ed.) Sensory Communication,NY: Wiley (1961)22. Reichardt, W., Poggio, T.: Figure-ground discrimination by relative movement inthe visual system of the 
y. Bio. Cyb. 35 (1979) 81-10023. van Santen, J., Sperling, G.: Temporal covariance model of human motion percep-tion. JOSA A 1 (1984) 451{47324. Stromeyer, C., Kronauer, R., Madsen, J., Klein, S.: Opponent mechanisms in hu-man vision. JOSA A 1 (1984) 876{88425. Thompson, P.: The coding of the velocity of movement in the human visual system.Vis. Res. 24 (1984) 41{4526. Thompson, W., Kearney, J.: Inexact vision. Proc. Workshop on Motion Rep. andAnal. (1986) 15{2227. Verri, A., Poggio, T.: Against quantitative optical 
ow. IEEE PAMI 9 (1987) 171{18028. Watson, A., Ahumada, A.: Model of human motion sensing. JOSA A 2 (1985)322{34129. Watson, A., Robson, J.: Discrimination at threshold: Labelled detectors in humanvision. Vis. Res. 21 (1981) 1115{112230. Wildes, R.: A measure of motion salience. Proc. IEEE ICIP (1988) 183{18731. Witkin, A.: Scale-space �ltering. Proc. IJCAI (1983) 1019{1021



Unstructured Static Flicker Coherent Incoherent ScintillationMotion Motion
x

y

x

tjR� Lj 0.00 0.00 0.00 0.37 0.05 0.02R+ L 0.01 0.40 0.36 0.53 0.58 0.50Sx 0.00 0.55 0.00 0.21 0.17 0.25Fx 0.00 0.04 0.63 0.26 0.25 0.23Fig. 3. Results of Testing the Proposed Representation on Natural Imagery. For eachof the proposed primitive classes, a sequence of images that displays the associatedphenomena was selected. Top row, left to right: featureless sky, a motionless tree,lightning 
ashing on (motionless) skin, a �eld of 
owers in diagonal motion due tocamera movement, legs of multiple cheerleaders in overlapping motion and rain strikinga puddle. Each sequence has x, y, t dimensions of 64, 64, 40, respectively. The secondrow shows corresponding x-t-slices. The next four rows show the recovered energies ineach of four components of the representation. Each cell shows a representative spatial,i.e., x, y, slice of the processed data as well as the average value for the energy acrossthe entire spatiotemporal volume. Overall, the results are in accord with the predictionsof Fig. 1.



Unstructured Static Flicker Coherent Incoherent ScintillationMotion Motion
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tjU �Dj 0.00 0.00 0.00 0.34 0.02 0.02U +D 0.01 0.38 0.36 0.52 0.45 0.50Sy 0.00 0.59 0.00 0.19 0.24 0.28Fy 0.00 0.03 0.64 0.29 0.29 0.21Fig. 4. Results of Testing the Proposed Representation on Natural Imagery. The inputimagery and general format of the display are the same as in Fig. 3. Four additionalcomponents of the representation are now shown to incorporate information in the yspatial dimension. The overall pattern of results are consistent with predictions.
-R + L

+R - LFig. 5. Motion Boundary Detection. Left to right: A schematic of a double opponentmotion operator for motion boundary detection. An aerial image of a tree canopymoving against undergrowth with relative motion due to camera movement. The handmarked outline of the motion boundary. The magnitude of the boundary signal. Theresult accurately localizes the edge of the tree against the background.


