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Abstract—Group key management (GKM) refers to the actions
taken to update and distribute the group key upon members
joining and leaving a multicast/broadcast group. The GKM
scheme defined in the IEEE 802.11 WLAN standards is not
efficient because the re-keying latency grows linearly with the
number of clients connected to an access point. In this paper, we
apply the logical key hierarchy (LKH) and one-way function
tree (OFT) algorithms to GKM in WLANs to improve its
performance. Our numerical analyses show that the LKH and
OFT algorithms reduce the re-keying latency of GKM in WLANs
to logarithmic time.

Index Terms—Group key management; logical key hierarchy;
one-way function tree.

I. INTRODUCTION

Multicast is a form of communication that delivers infor-
mation from a source to a set of destinations simultaneously
in an efficient manner; the messages are delivered over each
link of the network only once and only duplicated at branch
points, where the links to the destinations split. Important
applications of multicast include distribution of financial data,
billing records, software, newspapers, pay-per-view movies;
audio/video conference; distance learning; and distributed on-
line games. In this paper, we address one of the most essential
issues of multicast in WLANs − security. In particular, we
focus on the issue of group key management for multicast in
WLANs.

In order to ensure that only authorized users can access the
multicast data, the data are encrypted using a cryptographic
key known as the group key. The group key is known only to
authenticated and authorized members of a multicast group.
Every time a membership change occurs, the group key
must be changed to ensure backward and forward secrecy.
Backwards secrecy guarantees that a new user joining the
multicast group does not have access to any old keys. This
ensures that a member cannot decrypt messages sent before
it joins the group. Forward secrecy requires that a member
leaving the group does not have access to any future keys.
This ensures that a member cannot decrypt future messages
after it leaves the group. Group key management refers to
the actions taken to update and distribute the group key upon
members joining and leaving a multicast group.

In IEEE 802.11 WLANs, an access point (AP) shares a
pairwise key with each mobile device it is connected to. In
addition, the AP shares a group key with all the trusted mobile
devices associated with the AP so that it can send multicast
and broadcast data to this trusted group.

When a client joins or leaves the WLAN, the AP has to
update the group key to ensure backward and forward secrecy.
The AP generates a new group key, encrypts it using the
pairwise key the AP shares with each trusted member, and
sends the encrypted information to the members one by one. It
can be seen that the communication cost of a group key update
is O(n) where n is the number of associated members. As
the group size becomes large, the re-keying latency becomes
unacceptably inefficient, and thus not scalable.

The objective of our work is to improve the latency of
group key updates in WLANs. In particular, we apply the
logical key hierarchy (LKH) [1] and one-way function tree
(OFT) [6] algorithms to GKM in WLANs. We first show
how to incorporate the LKH and OFT algorithms into the
key management protocol defined in IEEE 802.11. We then
compare the group key update latencies of LKH, OFT and
IEEE 802.11 GKM via numerical analyses. Our analyses show
that the LKH and OFT algorithms reduce the re-keying latency
to logarithmic time.

Note that our work in this paper is GKM at the medium
access control (MAC) layer as considered in IEEE 802.11i
standards. The AP of a basic service set (BSS) and the mobile
devices connected to the AP in that BSS are considered a
group. This is not to be confused with GKM at the application
layer in which all the members of a group run/use the same
application and may be located over different geographical
areas.

The remainder of this paper is organized as follows. In
Section II, we provide background information and related
work on group key management. Section III provides an
overview of LKH and OFT algorithms. LKH and OFT are
adapted to 802.11 in Section IV. We analyze the performance
of each group key management in Section V. Section V-C6
discusses the finding results. Section VI summarizes the paper
and outlines our future work.

II. RELATED WORK

In this section, we summarize existing work on GKM
in both wired and wireless networks. GKM can be broadly
categorized into three approaches: centralized, decentralized
and contributory key updating protocols.

The centralized approach [1], [5], [6], [7], [8] relies on a
central controller − a trusted third party − that generates and
distributes the group key. Representative algorithms using this
approach are the logical key hierarchy (LKH) [1] and one-
way function tree (OFT) [6] schemes. LKH and OFT use a



hierarchical key structure called logical key tree to make group
key distributions and updates scalable. This is in contrast to
the current GKM of IEEE 802.11 MAC, which uses a flat
structure and is thus not scalable when the number of group
members grows.

In the decentralized approach [9], [10], a multicast group
is organized into smaller subgroups with multiple subgroup
controllers. Each subgroup has its own subgroup key and is
managed by a local controller. The local controller is in charge
of key computation and distribution within its subgroup.
Different subgroups may use different GKM protocols. A
membership change impacts only the subgroup of the member:
only the subgroup key needs to be updated, independently of
the keys of the other subgroups. The decentralized architecture
ensures scalability for GKM in very large scale networks
where the members of a group may be distributed over
different and vast geographical areas.

In contrast to the centralized and decentralized approaches,
contributory GKM [11], [12], [13] requires each group mem-
ber to contribute an equal share to the common group key
(which is then computed as a function of all members’
contributions). Most contributory protocols do not require pair-
wise secure communication channels between group members.
This is a desirable feature for wireless ad-hoc and sensor
networks where communication channels are vulnerable to
eavesdropping and attacks, and previously established shared
keys may not be readily available. In a contributory key
management scheme, there is no explicit central controller, and
keys are generated collaboratively by one or multiple group
members. Many GKM algorithms proposed for wireless ad-
hoc and sensor networks fall into this category.

Among the three approaches, the centralized approach is
the most efficient and cost-effective for GKM at the MAC
layer in a BSS of a WLAN for the following reasons. First,
there already exists a central controller that can generate and
distribute the group key to the members, which is the access
point (AP) of a basic service set (BSS). Second, the members
of the group − the mobile devices connected to the AP −
are physically located close to the central controller. Third,
there already exists a secure communication channel between
the AP and each mobile device, which is provided by a shared
key between the AP and the device called a pairwise transient
key (PTK) in IEEE 802.11 standards.

In the next sections, we present an overview of the LKH
and OFT algorithms and discuss how to adapt them to GKM
in WLANs.

III. OVERVIEW OF LKH AND OFT ALGORITHMS

Both LKH and OFT algorithms use a hierarchical key
structure called logical key tree to ensure scalable key updates.
LKH is a top-down method in the sense that it “pushes” new
group keys from the root down to the leaves of the key tree.
In contrast, OFT is a bottom-up method because new group
keys are derived from the leaves going up to the root of the
key tree.

A. Logical Key Tree

The key tree is a logical data structure used in hierarchical
GKM schemes. (This is not to be confused with the physical
multicast routing tree of the same group, or the recovery tree
used in reliable multicast for retransmissions of lost/damaged
data packets.) The logical key tree provides scalable compu-
tation, maintenance and updates of the group key.

Consider a group with six members C1, ..., C6. A logical
key tree for this group is shown in Fig. 1. (To simplify the
discussions, we assume binary trees in this paper, although
trees of higher degrees can be used with LKH and OFT.) Let
Ki denote the content of a node i in the key tree. Each leaf
node i is associated with a group member, and contains the
member’s individual key denoted by κi.

Ki = κi

In the logical key tree shown in Fig. 1, the leaf nodes 6, 7,
..., 11 contain the individual keys κ6, κ7, . . . , κ11 of the six
group members C1, C2, . . . , C6.

Non-leaf node are not associated with any members, but
are virtual nodes. The content stored in each non-leaf node is
a key called intermediate key. The content of the root, node
1, is the group key K1, which is used by the source of the
group to encrypt data packets before sending them to the group
members, and by the group members to decrypt the packets.
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Fig. 1. A logical key tree

The group key needs to be updated when a node joins or
leaves the group to ensure forward and backward secrecy. It
also needs to be refreshed periodically even when there are
no membership changes to prevent an attacker from gathering
sufficient time or resources to break the key. Following are the
procedures for updating the group key when a member joins
or leaves the group using the LKH and OFT algorithms. To
simplify the discussions, we assume that logical key trees are
binary trees, and the leaf nodes are added to the tree from left
to right and top to bottom. The notation {X}Y denotes the
encryption of content X using key Y .

B. LKH Operations

The LKH method [1] is a tree-based GKM scheme using
symmetric-key cryptography. In LKH method, the root node
of the key tree stores the group key, which is shared by all
members in the group. Each group member is associated with
a leaf node, which contains an individual key of each member.
An individual key is shared only between the member owning
the key and the group server, and is used for pairwise con-
fidential communication between them. The non-leaf nodes,
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Fig. 2. Client C8 joins/leaves the group

except the root node, are intermediate keys that are used to
encrypt other intermediate or group keys during a re-keying
process and not data. Each member of the group stores the
keys along the path from the root to the leaf node assigned
to that member (i.e., ⌈log2 n⌉ keys, where n is the number of
group members).

1) Join Operation: After granting a join request from a
client C, the group server creates a new node for client C.
The server finds an existing node (called the joining point) in
the key tree and attaches the new node to the joining point as
a new leaf node. Consider an example illustrated by Fig. 2 in
which client C8 joins (leaves) the group. The joining point is
node 15.

To prevent the joining client from accessing past messages,
all keys along the path from the joining point to the root node
need to be changed. After generating new keys for these nodes,
the server needs to securely distribute them to the new member
as well as the current members.

For the new member C, the server encrypts all the non-
leaf node keys on the path from the root to C using C’s
individual key and sends the encrypted message to C. In the
above example, the server sends the following message to C8:
s → {C8} : {K ′1,K ′3,K ′7}κ15

C will decrypt the message and obtain those keys.
For the current members, each new key K ′i is encrypted

using the current key Ki occupying the same node i. In the
above example, the server will send the following messages:
s → {C1, C2, . . . , C7} : {K ′1}K1

s → {C5, C6, C7} : {K ′3}K3

s → {C7} : {K ′7}K7

Note that the server may combine multiple messages into
a physical packet before sending to the members in order to
save network bandwidth. In Section IV-A, we will discuss how
this is done when the LKH algorithm is applied to GKM in
WLANs.

2) Leave Operation: After granting a leave request from
client C, the group server updates the key tree by deleting
the leaf node that contains client C’s individual key from
the key tree. The parent of the leaf node to be deleted is

called the leaving point. To prevent the leaving client from
accessing future group data, all keys along the path from the
leaving point to the root node need to be changed. After
generating new keys for these nodes, the server needs to
securely distribute them to the remaining members. Similarly
to the join operation, each new key K ′i is encrypted using the
current key Ki occupying the same node i. Given the example
shown in Fig. 2, when client C8 leaves the group, the server
will send the following re-keying messages to the remaining
members.

s → {C1, C2, C3, C4} : {K ′1}K2

s → {C5, C6, C7} : {K ′1}K′
3

s → {C5, C6} : {K ′3}K6

s → {C7} : {K ′3}κ7

C. OFT Operations

In OFT [6], the keys are computed up the tree, from the
leaves to the root. The group server maintains a balanced
binary key tree for the group. Each node i associates three
types of keys used in OFT: node secret Ki, node key g(Ki)
and blinded node key f(Ki). Blinded node key f(Ki) is
defined as a one-way function of the node secret Ki. A pseudo-
random function f is used to compute blind key. (Pseudo-
random functions are used to generate random numbers.) It is
blinded in the sense that a computationally limited adversary
can know f(Ki), yet cannot find Ki. Another pseudo-random
functions g is used to compute node key g(Ki) for each node
and to encrypt other keys.

The OFT key tree is a particular type of binary tree in which
each intermediate node has exactly two children. Each leaf
of the tree is associated with a group member, and the node
secret of the root is the group key. For any intermediate node
i in the key tree, the node key Ki of node i is defined by
Ki = f(KL) ⊕ f(KR)., where L and R denote the left and
right children of node i, respectively,

Each group member maintains the node secret of the leaf
with which it is associated, and a list of blinded node secrets
for all of the siblings of the nodes along the path from itself
to the root. This information enables the member to compute
the node secrets along its path to the root, including the root
key. This information also enables the member to compute the
node keys along this path. If one of the node secret changes
and the member is told the new value, then it can recompute
the node secret on its path to the root and find the new group
key.

1) Join Operation: When a new member joins a group,
an existing leaf node i is split, the member associated with i
is associated with left(i), and the new member is associated
with right(i). Both members are given new node secret, which
will affect all node secrets along their path to the root. The new
blinded node secrets that have changed are broadcast to the
appropriate subgroup members. More specifically, if i is any
nonroot node along the affected path and, if j is the sibling of
i, then the group server broadcasts the blinded new node secret
f(Ki) of i encrypted with the node key g(Kj) of j. Doing
so enables all descendants of j to learn the new node secret



f(Ki). In addition, the new member is given a set of blinded
node secrets in a unicast transmission using the external secure
channel. The key server and all members individually compute
the new group key.

For example, as shown in Figure 2, for client C8 to join the
group, group server needs to send the following four rekey
messages.
s → {C1, C2, C3, C4} : {f(K ′3)}gK2

s → {C7} : f(κ′14, f(κ15))gκ14

s → {C5, C6} : {f(K ′7)}gK6

s → {C8} : f(κ′14, f(K6), f(K2))gκ15

Upon receiving the above re-keying messages, each member
can compute the group key as follows.

Client C1, C2, C3 and C4 can compute the group key as
K ′1 = f(K2) ⊕ f(K ′3). Note that clients C1, C2, C3 and C4

can compute f(K2) as they all know the node key K2.
Client C5 and C6 can compute the group key in the follow-

ing two steps as K ′3 = f(K6)⊕f(K ′7), K
′
1 = f(K2)⊕f(K ′3).

Since clients C5 and C6 know the node secret K6, they can
compute the group key K ′1 after receiving the updated blinded
node secret f(K ′7).

Client C7 and C8 can compute the new group key as K ′7 =
f(κ14)⊕f(κ15), K ′3 = f(K6)⊕f(K ′7),K

′
1 = f(K2)⊕f(K ′3).

2) Leave Operation: If a member associated with a leaf
node i leave the group, j is the sibling of i. Let p be the
parent of i. If j is a leaf node, then the member assigned to j
is reassigned to p and given a new node secret K ′p. All node
keys along the path from the changed leaf node key to the
root are affected. The group server broadcasts all new blinded
node secrets that have changed to its group members.

For instance, client C8 in Figure 2 leaves the group, and
the the group server sends the following rekeying messages to
the whole group to update the keys:
s → {C1, C2, C3, C4} : {f(K ′3)}gK2

s → {C5, C6} : {f(κ′7)}gK6

s → {C7} : κ′7g(κ7)

By receving the above rekeying messages, each member can
compute the group key as follows.

Client C1, C2, C3 and C4 can compute the group key as
K ′1 = f(K2) ⊕ f(K ′3). Note client C1, C2, C3 and C4 can
compute f(K2) as they all know the node key K2.

Client C5 and C6 can compute the group key in the follow-
ing two steps as K ′3 = f(K6)⊕f(κ′7), K

′
1 = f(K2)⊕f(K ′3).

Since client C5 and C6 know the node secret K6, they can
compute the group key K ′1 after receiving the new blinded
node secret f(κ′7).

Client C7 can compute the new group key as K ′3 = f(K6)⊕
f(κ′7), K

′
1 = f(K2)⊕ f(K ′3).

IV. IMPLEMENTING LKH AND OFT IN 802.11 WLANS

We apply the LKH and OFT algorithms described above to
GKM at the MAC layer in WLANs. The group server is now
the access point (AP) and the group members are the clients
associated with the BSS under the control of the AP. The
AP maintains and update the logical key tree. As mentioned
earlier, the AP may combine several re-keying messages for

2 bytes 2 bytes 2 bytes, 16 bytes . . . 2 bytes, 16 bytes
↑ ↑ ↑ ↑

Original Original Node ID of Encrypted
Node ID Node ID Encryption Key Value

Key

Fig. 3. Message format
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3, {K′
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14, {K′
7}K14

C7’s node
ID is changed ←− Updated Keys −→
from 7 to 14.

(a) Broadcast message for client C1 to C7 after client C8 joins the group.

7 14 15, {K′
1,K

′
3,K

′
7}K15

C7’s node
ID is changed ←− Updated Keys −→
from 7 to 14.

(b) Unicast message for client C8 after client C8 joins the group.

14 7 2, {K′
1}K2 3, {K′

1}K3 6, {K′
3}K6 7, {K′

3}K7
C7’s node
ID is changed ←− Updated Keys −→
from 7 to 14.

(c) Broadcast message after client C8 leaves the group.

Fig. 4. LKH message example after client C8 joins/leaves the group

different members into one packet to save network bandwidth.
In this section, we present the message structure used by the
LKH and OFT algorithms for GKM at the MAC layer in
WLANs. The design goal of the message format is to minimize
the communication cost between the AP and the members
during the re-keying process.

A. LKH Message Structure

Each updated key is sent out with its corresponding node
ID in the key tree. The key size is 16 bytes (128 bits) as
we choose AES as the encryption algorithm. The first four
bytes of the message indicates the node in the key tree whose
position has been changed due to a client joining/leaving the
group. The first two of these four bytes indicate the original
node ID (original position in the key tree), and the other two
bytes indicate the new node ID (new position in the key tree)
of an existing member. The remaining bytes are divided into
groups of 18 bytes each. Each 18-byte group contains a 2-byte
node ID and 16-byte encrypted key value. The 2-byte node ID
identifies the node storing the key k that is used to encrypt
one or more new keys. The 16-byte encrypted key value is
obtained from encrypting one or more newly generated keys
using key k.

Consider the example in Figure 2. When client C8 joins
the group, the individual key of client C7 will be moved from
node 7 to node 14. In the key updating message, the first two
bytes will record the original position “7”, and the next two
bytes will store the new position, “14”. In the next 18 bytes,
the first two bytes store the node ID of the encryption key
followed by the 16-byte encrypted key value. For example,
in Figure 4, “1, {K ′1}K1” denotes that the newly generated
key K ′1 is encrypted with key K1. The encryption key K1

is located at node 1 in the key tree. Similarly, “14, {K ′7}κ1”
denotes that the newly generated key K ′7 is encrypted with key
κ14. The encryption key κ14 is located at node 14 in the key



7 14 2, {f(K′
3)}g(K2) 6, {f(K′

7)}g(K6) 14, {κ′
14, f(κ15)}g(K14)

C7’s node
ID is changed ←− Updated Keys −→
from 7 to 14.

(a) Broadcast message for client C1 to C7 after client C8 joins the group.

7 14 15, {f(κ′
14), f(K6), f(K2)}g(κ15)

C7’s node
ID is changed ←− Updated Keys −→
from 7 to 14.

(b) Unicast message for client C8 after client C8 joins the group.

14 7 2, {f(K′
3)}g(K2) 6, {f(κ′

7)}g(K6) 7, {κ′
7}g(κ7)

C7’s node
ID is changed ←− Updated Keys −→
from 7 to 14.

(c) Broadcast message after client C8 leaves the group.

Fig. 5. OFT message example after client C8 joins/leaves the group

tree. Figure 4 shows the contents of LKH re-keying messages
when client C8 joins/leaves the group.

B. OFT Message Structure

To apply the OFT algorithm to GKM in WLANs, we use
the same message structure as shown in Figure 3 and described
in Section IV-A.

In the example in Figure 2, when client C8 joins the group,
the individual key of client C7 will be moved from node 7
to node 14. In the re-keying message, the first two bytes will
record the original position “7”, and the next two bytes will
store the new position, “14”. In the next 18 bytes, the first
two bytes store the node ID of the encryption key followed
by the 16-byte encrypted key value. For example, in Figure 5,
2, {f(K ′3)}g(K2) indicates that the newly generated blinded
node secret f(K ′3) is encrypted with node key g(K2), where
g(K2) is the result by applying hashing function g to the
node secret K2 of node 2. Similarly, 14, {κ′14, f(κ15)}g(κ14)

indicates that the newly generated node secret κ′14 is encrypted
with node key g(κ14), where g(κ14) results from applying
hashing function g to node secret κ14 stored in node 14.
Figure 5 shows the contents of OFT re-keying messages when
client C8 joins/leaves the group.

V. PERFORMANCE EVALUATION

In this section, we analyze and compare the re-keying
latencies of LKH and OFT with that of the IEEE 802.11 GKM
scheme (which will be denoted by 802.11 in the remainder of
this section).

A. Computational Complexity

Let n be the number of members in the multicast group, and
assume a proper binary key tree. Among the three algorithms
to be compared, 802.11, LKH and OFT, only OFT uses hash
functions. The number of hashing operations performed by
OFT is provided in Table I. Table II summarizes the compu-
tational complexity of the 802.11, LKH and OFT algorithms,
which shows that 802.11 takes O(n) time while LKH and
OFT both take O(logn) time.

TABLE I
NUMBER OF HASH OPERATIONS IN OFT

Description f(K) g(K)
Client 1 1

Join Access Point 2log2n log2n+ 1
Total Hashing 2log2n+ 1 log2n+ 2
Client 1 1

Leave Access Point log2n log2n+ 1
Total Hashing log2n+ 1 log2n+ 2

B. Communication Complexity

The communication complexity is measured in terms of the
number of keys to be broadcast and unicast during a re-keying
operation. Table III summarizes the communication complex-
ity of the join and leave operations incurred by the 802.11,
LKH and OFT algorithms. Following is a brief description of
the communication complexity given in Table III.

In the 802.11 algorithm, every time the AP updates group
key, it has to send (unicast) the new key to the members one
by one, hence O(n) time for both join and leave operations.

In the LKH algorithm,
− when a client joins the group, the AP broadcasts a message
containing log2 n updated keys to the group. The AP also
unicasts a message containing log2 n updated keys to the new
member.
− when a member leaves the group, the AP broadcasts a
message containing 2 log2 n updated keys to the group.

In the OFT algorithm,
− when a client joins the group, the AP broadcasts a message
containing log2 n new blinded node secrets to the group. A
new key assigned to the sibling node of the new member is
also part of the broadcast message, which contains a total of
log2 n+ 1 keys. In addition, the AP unicasts a message con-
taining log2 n new blinded node secrets to the new member.
− when a member leaves the group, the AP broadcasts a
message containing log2 n new blinded node secrets to the
group. A new key assigned to the modified leaf node is

TABLE II
COMPUTATIONAL COMPLEXITY

Operation 802.11 LKH OFT
Encryption n log2n+ 1 log2n+ 1

Join Decryption 1 log2n log2n
Hashing 3log2n+ 2
Encryption n 2log2n log2n+ 1

Leave Decryption 1 log2n 1
Hashing 2log2n+ 2

TABLE III
COMMUNICATION COMPLEXITY

Operation/ Unicast Broadcast
Algorithm (number of keys) (number of keys)

802.11 n
Join LKH log2n log2n

OFT log2n log2n+ 1
802.11 n

Leave LKH 2log2n
OFT log2n+ 1



also part of the broadcast message, which contains a total of
log2 n+ 1 keys.

C. Numerical Analysis

In this section, we derive the group key update latency
functions for the 802.11, LKH and OFT algorithms. The re-
keying latency is defined as the interval starting when the AP
receives a join/leave request from a member and initiates the
re-keying process and ending when all members receive the
new group key.

1) System Model: Given the message format in Fig. 3, the
size of an MSDU is determined by the number of keys carried
by the MSDU, as follows: MSDU(K) = 4 + 18K

The 802.11, 802.11a and 802.11b standards specify a
maximum MSDU (MAC Service Data Unit) size of 2304
bytes [14], [15], [16]. Thus one message can store at most
127 updated keys.

The MAC 802.11 protocol with Distributed Coordination
Function (DCF) is chosen as the medium access control pro-
tocol. Multicast and broadcast transmissions use CSMA/CA
(Carrier Sense Multiple Access with Collision Avoidance).
Unicast transmissions also use RTS/CTS/DATA/ACK ex-
changes in addition to CSMA/CA. We consider two spread
spectrum technologies: direct sequence spread spectrum
(DSSS) and orthogonal frequency division multiplexing
(OFDM).

We also make the following assumptions:
• No bit error.
• No losses due to collision.
• No packet loss due to buffer overflow at the receiver node.
• Sufficient packets to be send by sending node.
• No fragmentation at the MAC layer.
• No management frame considered (e.g. beacon, associa-

tion frames).
The contention window size (cw) does not increase expo-

nentially since we assume that there are no collisions. Thus,
cw is always equal to the minimum contention window size
(cwmin) whose value depends on the spread spectrum technol-
ogy. The backoff (BO) time is selected randomly following a
uniform distribution from (0, cwmin) given the expected value
cwmin = 2.

The re-keying latency upon a join or leave operation consists
of two costs: communication cost and computation cost. We
discuss the calculations of these two costs next.

2) Communication Cost: Fig. 6(a) shows the sequence of
messages exchanged to complete a unicast transmission at the
MAC layer. According to the diagram, the latency Tu(K)
incurred by a successful unicast transmission is as follows:
Tu(K) = TBO + TDIFS + TRTS + TCTS + 3TSIFS +
TData(K) + TACK

Note that the unicast transmission latency Tu is a function of
the message size, and thus the number of keys K stored in
the message.

Following is the latency Tb(K) incurred by a successful
broadcast transmission, according to the diagram illustrating

Fig. 6. Unicast and broadcast message exchanges at the MAC layer

the timeline of a broadcast transmission at the MAC layer in
Fig. 6(b).
Tb(K) = TBO + TDIFS + TData(K)

3) Computation Cost: Let E, D and H denote the latency
of an encryption, decryption and hashing operation, respec-
tively. By referring to Table II, we obtain the computation
costs of the join and leave operations in the three algorithms
as shown in Table IV (denoted by “Encryption”, “Decryption”,
and “Hashing” rows).

TABLE IV
REKEYING LATENCY

Operation 802.11 LKH OFT
Unicast Tu(n) Tu(log2n) Tu(log2n)
Broadcast Tb(log2n) Tb(log2n+ 1)

Join Encryption n× E (log2n+ 1)× E (log2n+ 1)× E
Decryption 1×D log2n×D log2n×D
Hashing (3log2n+ 2)×H
Unicast Tu(n)
Broadcast Tb(2log2n) Tb(log2n+ 1)

Leave Encryption n× E 2log2n× E (log2n+ 1)× E
Decryption 1×D log2n×D 1×D
Hashing (2log2n+ 2)×H

4) Total Re-keying Latency: Table IV also shows the com-
munications costs incurred by the three algorithms (denoted
by “Unicast” and “Broadcast” rows). The arguments of the
Tu and Tb functions are the numbers of keys stored in the
messages as listed in Table III.

The re-keying latency − combination of computation and
communication costs − incurred by a join operation in each
of the three algorithms is as follows:
J802.11 = Tu(n) + n× E + 1×D
JLKH = Tu(log2n)+Tb(log2n)+(log2n+1)×E+log2n×D
JOFT = Tu(log2n) + Tb(log2n + 1) + (log2n + 1) × E +
log2n×D + (3log2n+ 2)×H

The re-keying latencies incurred by a leave operation are as
follows:
L802.11 = Tu(n) + n× E + 1×D
LLKH = Tb(2log2n) + 2log2n× E + log2n×D
LOFT = Tb(log2n+1)+(log2n+1)×E+1×D+(2log2n+
2)×H

Broadcast messages in IEEE 802.11 MAC do not use RTS,
CTS or ACK. To increase the reliability of broadcast messages,



we can broadcast a message multiple times. In our implemen-
tation of the LKH and OFT algorithms, we assume that a
message will be broadcast three times for enhanced reliability.
Following are the re-keying latencies of the LKH and OFT
algorithm in this implementation. (The 802.11 algorithm does
not need broadcast messages.)
JLKH−3 = Tu(log2n) + 3× Tb(log2n) + (log2n+ 1)×E +
log2n×D
LLKH−3 = 3× Tb(2log2n) + 2log2n× E + log2n×D
JOFT−3 = Tu(log2n) + 3 × Tb(log2n + 1) + (log2n + 1) ×
E + log2n×D + (3log2n+ 2)×H
LOFT−3 = 3× Tb(log2n+ 1) + (log2n+ 1)×E + 1×D +
(2log2n+ 2)×H

5) Performance Graphs: To visualize the performance
comparison of the three algorithms, we plotted graphs of the
above re-keying latency functions J802.11, JLKH , JLKH−3,
JOFT , JOFT3 , L802.11, LLKH , LLKH−3, LOFT , and LOFT3 .

The numerical data for plotting the graphs are given in
Table V. We assume AES encryption algorithm [22] with
128-bit keys. The wireless transmission delay components
such as DIFS, SIFS, RTS, CTS and ACK are given by the
standards [14]− [16].

TABLE V
LATENCY COMPONENTS

Parameter Description/value
Spread spectrum OFDM-54 DSSS-1
technology [14]– [16] [14]– [16]
TSIFS 9 µs [21] 10 µs [21]
TDIFS 34 µs 50 µs
TBO 67.5 µs 310 µs
TRTS 24 µs 352 µs
TCTS 24 µs 304 µs
TACK 24 µs 304 µs
TData(K) 20 + 4× ⌈ 163+72K

108
⌉ 496 + 144K

K Number of keys
E Encryption, 2.1ms [17], [18]
D Decryption, 2.2ms [17], [18]
H Hashing, 0.009ms [19]

The transmission time TData(K) of an MSDU depends on
its size (or the number of keys it stores) and the data rate at
the physical layer (which is determined by the spread spectrum
technology), and is calculated as follows [15].

For OFDM-54,

TData(K) = TPREAMBLE + TSignal + TSYM

× ⌈16 + 6 + 8× (34 +MSDU(K))

NDBPS
⌉ (1)

where the service field of the physical layer header is 16
bits long; the PSDU tail of the physical layer header is 6
bits long; the maximum MAC header length is 34 bytes, and
MSDU(K) is given by Eq. (1). The values of TPREAMBLE ,
TSignal, TSYM and NDBPS are provided in Table VI.

After substituting the above values into Eq. (2), we obtain:

TData(K) = 20 + 4× ⌈163 + 72K

108
⌉ (2)

as shown in Table V.

TABLE VI
TIMING RELATED PARAMETERS

Parameter Description OFDM-54 DSSS-1
TPREAMBLE PLCP preamble duration 16 µs 144 µs
TSIGNAL Duration of the SIGNAL 4 µs 48 µs

BPSK-OFDM symbol
TSY M Symbol interval 4 µs
NDBPS Data bits per OFDM 216 µs

symbol
RData Data Rate 54Mbit/s 1Mbit/s

For DSSS-1,

TData(K) = TPREAMBLE + TSignal

+
8× (34 +MSDU(K))

RData
(3)

After substituting the appropriate values given in Table VI
into the above equation, we obtain:

TData(K) = 496 + 144K (4)

After substituting the appropriate values into the latency
functions, we plotted the graphs as functions of n, the number
of clients in the multicast/broadcast group controlled by an
AP. Fig. 7(a) and (b) illustrate the latency functions of the
join operation using DSSS-1 and OFDM-54, respectively, on
a log scale. To demonstrate the linear function of 802.11 and
logarithmic behaviors of LKH and OFT functions, we magnify
the above graphs for n values from 0 to 50. The magnified
graphs are shown in Fig. 7(c) and (d).

Similarly, the latency functions of the leave operation us-
ing DSSS-1 and OFDM-54 are visualized by the graphs in
Fig. 8(a) and (b), respectively. The corresponding magnified
graphs are given in Fig. 8(c) and (d).
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6) Discussion: From the above graphs, we draw the fol-
lowing observations.
− The join re-keying latencies of LKH and OFT are compa-
rable, and much lower than that of the 802.11 algorithm when
n > 5.
− The leave re-keying latency of OFT is slightly better than
that of LKH. The reason is that the OFT algorithm incurs 50%
less bits to be broadcast for the key update caused by a leave
operation [6]. Both algorithms, given their logarithmic running
time, perform better than the linear function of 802.11 when
n > 7.
− Although a message is broadcast three times in the
JLKH−3, JOFT−3, LLKH−3 and LOFT−3 functions for en-
hanced reliability, the increase of the re-keying latency of
this implementation is very minor. This suggests that this
implementation is efficient and cost-effective.

Finally, it is worth noting that although the OFT algorithm
performs slightly better than the LKH algorithm for leave
operations, it is vulnerable to collusion attack [20].

VI. CONCLUSION

In this paper, we show how the LKH and OFT algorithms
can be applied to GKM at the MAC layer in WLANs in order
to improve its performance. Our numerical analyses confirm
that the LKH and OFT algorithms reduce the re-keying latency
of GKM in WLANs from linear time to logarithmic time. Our
future work is to evaluate and compare the performance of
the 802.11, LKH and OFT algorithms under realistic network
settings using simulations and testbeds.
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