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This paper proposes a framework for the integration of time into “high-
level” vision. Many characteristics of this framework have much in common
with the handling of temporal concepts in low-level vision as well, but
these will not be discussed. This framework addresses the integration of
representations for temporal concepts with temporal reasoning schemes,
temporal grouping, the discrimination and labeling of temporal concepts,
and temporal sampling rates. Such issues are not addressed in most other
“high-level-vision” methodologies.

Visual perception takes place within a spatio-temporal context, and thus
the integration of time into every aspect of processing is crucial. One
may draw an analogy here to the use of the term pragmatics in research
on natural-language understanding. Syntax describes the rules for how
individual tokens are grouped into larger tokens; semantics ascribes meaning
to tokens; pragmatics relates that meaning to the remainder of the discourse
or to the context in which the utterance was found. Most past computer-
vision research has dealt with static images—a most unnatural kind of
input, since biological visual systems are almost never presented with a
single time slice of the visual world out of its spatial and temporal context.
The temporal cooperative process that will be described is integrated with
a hypothesize-and-test reasoning framework. The structure over which the
cooperative process operates changes with time because of the status of
interpretation, and iterations are defined by the passing of time for either
static images (image contents do not change with time) or time-varying
images, where in both cases the images are presented over a period of time.
Since for computer vision we must deal with a discretized world, and since
time is to be considered, temporal sampling must be an issue.

Is there anything special about time and the processing of time-varying
information that does not allow us to treat it simply as a fourth dimension?
Although significant effort has been expended on the analysis of time-
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varying images, this question has never been addressed completely. It is
simply for the sake of covenience in processing that most computer-vision
research has concentrated on single images, and that most motion research
has concentrated on small numbers of images in a time sequence. In
most past work on motion analysis and understanding it has been tacitly
assumed that the techniques that have been used for analysis of static
images apply directly for the time-varying case, and that time is strictly
subsequent to spatial analysis. This is not necessarily the case; generally,
time must be incorporated into each aspect of processing. The additional
constraints provided by the temporal context of a scene are crucial for
disambiguation and recognition.

There are three main constraints that time brings to bear on work in
motion understanding. First, we cannot stop time. System response is
required without unreasonable delay, since the environment continues
to change. Yet computation requires a finite period of time. Thus, the
processing rate must be sufficiently high to maintain an interpretation of
the scene. Second, there is limited storage available. Whereas spatial data
are presented in parallel, temporal data are presented serially. This implies
that a finite temporal window must be used, and that events over a longer
period of time must be sufficiently abstracted that they can be efficiently
represented internally. Third, the system must be stable in a noisy environ-
ment and must degrade gracefully with increasing noise. Noise can take
many forms: quantization. noise, data irrelevant to the problem being
tackled, and misleading data (including data at the wrong spatial and/or
temporal scale). Therefore, some amount of smoothing must be present so
that these confounding effects are minimized. This implies that rise and fall
times must be chosen accordingly. Similarly, decision-making processes
must exhibit procrastination and inertia. They cannot make decisions hast-
ily, and they must temporally integrate results in order to take temporal
context into account. A single noise point cannot undo the effect of many
samples that exhibit some trend, yet enough samples must have been
viewed in order to discover the trend. All this impacts the processing rate
for the image sequence.

The problem of time and the interpretation of events in time is not
new to psychologists. David Hartley (1749) set forth several propositions
pertaining to groups of successive concepts and groups of compound
synchronous concepts. He noted that an instance of such a group will raise
in the mind expectations for the remaining concepts of the group, whether
the concepts occur in a sequence or simultaneously. This is an example of
top-down activation of grouping hypotheses. James Mill (1829) elaborated
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these thoughts and concluded that sensations have a naturally synchronous
or successive order. To him, successive order implied order in time whereas
synchronous order implied order in space. In addition, successive order
implied notions of antecedent and consequent sensations. Grouping received
large amounts of attention from the Gestalt psychologists, according to
whom grouping principles can be summarized by the terms proximity,
similarity, continuity, symmetry, and familiarity (Wertheimer 1923). Although
most studies of such grouping principles were performed mainly by con-
sidering the partitioning of a stimulus array in space, each of these has
a temporal analogue. For example, the smaller the temporal separation,
the greater the tendency to be grouped into a sequence; similarity of
temporal primitive; temporal symmetry could refer to oscillatory motions,
etc. Unfortunately, for both temporal and spatial versions, these require
much elaboration and quantification before they can be immediately applied.

Synchronous order in time was discussed by Gibson (1957) and Hay
(1966), who considered the distinctions between physical and optical
motions. They, particularly Hay, defined a variety of optical motions
as combinations of simultaneous physical motions, thus decomposing
complex motions into aggregates of simpler ones. Such decompositions are
important notions in my work.

The following experiments point to a strong relationship between
expectation and the specialization/generalization of concepts. The experi-
ments of Cooper and Shepard (1973) show the strong positive effect of
a priori expectations on time for interpretation; those of Bugelski and
Alampay (1962) and Palmer (1975) show the effects of generalization of
expectation classes. Cooper and Shepard reported that in the identification
of letters presented at varying orientations the time taken to identify the
letter varied with the amount of rotation (to a maximum value at 180°);
this implied that mental rotation and matching were being performed by
the visual system, and that if identity and orientation were given before
the stimulus the response time was flat across all orientations as long
as sufficient time was allowed before the stimulus was presented for
expectation formation.

Bugelski and Alampay showed that if a subject is conditioned to expect
a given category (or generalization) of stimulus, then the identification time
of the stimulus is reduced. They presented stimuli all belonging to the same
class of concept (animals); when nonanimal stimuli were presented, the
response time increased. This was further examined by Palmer, who also
noted the impairment of identification if the context is misleading. (The
mechanisms that produce such behavior are not understood.)
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Dretske (1981) emphasized temporal integration:

To understand how certain sets of information are registered, it is important to
understand the way a sensory representation may be the result of a temporal
summation of signals. To think of the processing of sensory information in static
terms, in terms of the kind of information embodied in the stimulus at a particular
time, is to completely miss the extent to which our sensory representations depend
on an integrative process over time.

The importance of time in sensory perception is given additional credence
by the fact that sensory neurons have the ability to sum their input signals
not only spatially but also temporally (Kandel and Schwartz 1981). Within
the domain of computer vision, the study of motion interpretation has not
adequately addressed the issue of temporal integration of results; indeed,
much of the work concentrates on the processing of motion information by
considering a set of static images. The methodologies developed do not,
for the most part, have the ability to combine events into higher-order
concepts such as sequential or synchronous events.

The remainder of this paper deals with the representation and organiza-
tion of temporal concepts, and describes how this organization drives a
hypothesize-and-test reasoning process as well as the cooperative process
that forms the structure within which the hypothesis response is computed.
This research is distinguished from other research on cooperative pro-
cesses in a number of ways. Schemes such as those of Glazer (1982) and
Terzopoulos (1982) use cooperative methods in arriving at a solution to a
numerical approximation problem. They use hierarchies of data, but the
type of information is uniform; only resolution differs by level of hierarchy.
Their problems are posed as numerical ones, and in those cases relaxation
methods assist in obtaining a solution. Our case differs in four respects:

» Our information is not uniform but rather different concepts are repre-
sented at different levels of the hierarchies.

« There are multiple interacting networks, each organized according to
different semantics.

« The data are time-varying (and, more important, the structive over
which relaxation is performed is time-varying).

+ We are interested in an interpretation task, not an approximation one.

Research such as that of Hummel and Zucker (1980) deals with theoretical
foundations underlying relaxation methods. My work should not be
considered in such a light. The cooperative process to be described has the
qualitative properties I believe are desirable for temporal interpretation,
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and its performance will be described empirically and in a qualitative
fashion through the use of several examples. It should be regarded as an
extension of relaxation methods into a domain where they have previously
not been used.

There are similarities between the present work and that of Hinton
and Sejnowski (1983). They too employ a hypothesize-and-test framework
where hypotheses are in one of two states (true and false) and apply a
cooperative process to find optimal combinations of hypotheses. Differ-
ences exist in that a representation for hypotheses was not presented, nor
were specific search mechanisms, and their mathematical analysis (which
they based on system energy) is not directly applicable. The work pre-
sented in this paper can also be seen as an elaboration and an extension of
the vertical and horizontal relaxation processes of Zucker (1978a).

One further major difference exists with past cooperative-computation
research. We are dealing with a time-varying data-interpretation task. Past
work has shown that, in general, relaxation schemes require large, and
potentially very large, numbers of iterations in order to converge to
stable solutions. We cannot afford this luxury. In a time-varying context,
decisions must be made relatively independent of the number of iterations,
so that new data can be considered. Therefore, what is required is a
cooperative process that can be characterized in the following way: The
only decisions that will be made are those that can be made within a small,
fixed number of iterations. We must discover the conditions under which
this is possible, for all events of interest, given small amounts of noise in
the data. These conditions will be developed in the course of the paper, and
will lead to a relationship between image sampling rate and iterations.

In order to describe our scheme—that is, a temporal, high-level vision
framework—we must first decide on what we mean by “high level.” The
approaches of Marr (1982) and Julesz {(1980) certainly do not fall within
the meaning of high level. On the other hand, work described by Hanson
and Riseman (1978), Levine (1978), Ballard et al. (1978), Brooks {1981),
O'Rourke and Badler (1980), and Tenenbaum and Barrow (1977) certainly
does. What distinguishes these approaches? It is not (as is commonly
thought) the use of domain-specific knowledge. The work conducted and
motivated by Marr utilized physical constraints of the world, while the
VISIONS system of Hanson and Riseman employs knowledge of the
appearance of houses; both are forms of knowledge. 1 believe that the
distinction is a deeper one. We can gain insight by looking at some
recent distinctions drawn by psychologists between “pre-attentive” and
“attentive” vision.
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Briefly, the pre-attentive system is a parallel one that can cope with
single disjunctive features only, such as the distinction between differently
oriented black bars on a white background. (See Treisman and Gelade
1980; Treisman 1982; Treisman and Schmidt 1982.) The attentive system,
on the other hand, can handle much greater complexity of visual input.
Treisman and co-workers claim that it is a serial system incorporating a
focus of attention, and that it thus can deal with the conjunction of features
such as color and shape. Moreover, it must play a role in the discrimination
of feature conjuncts within a field of conjunctions of similar features. For
example, the attentive system must be used to find a green vertical bar
in a field of many randomly oriented bars, each a different color. Several
discussions on the differences between attentive and pre-attentive vision
may be found in the literature; see Julesz and Schumer 1981. Curiously,
only static images had been considered in those works. On the other hand,
the so-called short-range and long-range motion processes of Braddick
(1974) and Anstis (1978) describe perceptual processes that can cope with
motions involving small displacements and not requiring form recognition
or correspondence (Braddick) and with motions requiring form recognition
and larger displacements, necessitating correspondence (Anstis). It would
be startling indeed if the static and temporal distinctions drawn in the
above works were simply instances of the same process.

The most obvious manifestation (but not the only one) of serial visual
processing is visual search. Given a complex image, our gaze typically
moves around the image, tracing contours and interesting features until
the image has been interpreted to our satisfaction. What could trigger
such a search? If one believes that the purpose of vision is to construct
some internal representation of the physical world, then one may also
hypothesize that, on the basis of pre-attentive vision, a “skeleton” structure
is created, which may then, if required, be filled in by the attentive process.
This filling in or completion could be driven by the need for completeness
of description and disambiguation. For single disjunctive visual features,
this skeleton may be complete—it may be compared to Marr's (1982)
primal sketch or to Julesz’s (1980) textons. Labeling of features of such a
skeleton of isolated, disjunctive features proceeds in a “pre-attentive-like”
manner, that is, bottom-up and in parallel. Whereas visual search in the
static case involves changes of fixation in some manner, search in the
dynamic case may involve both search for features that complete the
skeleton of objects and temporal search or the generation of expectations
in time for completion of the motion skeleton. The motion skeleton may
be the result of short-range processes, or what Braddick and Anstis call
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Real Motion, whereas Apparent Motion requires the filling in of form-
related and correspondence-related information.

Search schemes are common components of systems that claim reasoning
capabilities. In addition, all such systems exhibit foci of attention that
are derived from the “best guesses” for the solution of the problem at
hand. However, search in vision can take many forms. In order to conjoin
features (such as “red” and “the letter B") into a single percept, search for
corresponding features in different portions of processing hierarchies may
be required. This, of course, assumes static images. It may be that the
feature being searched for has no corresponding instance and thus a visual
search—eye motion—must be initiated. (There clearly are other reasons
for eye movement as well.) This would be accompanied by establishing
expectations as to what the attentive system was looking for, thus biasing
the computation. Finally, in the time-varying case, it may be that the
corresponding feature is an event that has not yet occurred. In this case,
expectations are set up in time, again biasing the computation. These biases
may be regarded in one of two ways: as “priming” signals (that is, signals
that may facilitate the computation of particular units or concepts) or as
manifestations of internal focus of processing attention.

Search for missing discriminatory features will be considered as the main
distinction between “high-level” and “low-level” vision. Search for globally
consistent results, such as manifested by relaxation schemes, is not included
within this distinction, since global consistency must play a role in both
levels of vision.

In summary, the major capabilities that an attentive vision system—
particularly one addressing time-varying phenomena—must possess are
the following:

prototype concept representation, manifested as stereotyped computing
units

temporal grouping
temporal expectations
generalization of concepts in relation to expectations

rich search dimensions that enable and distinguish search in image space
from search in hypothesis space

spatial and temporal integration of results
generation and maintenance of a focus of attention

an interface to the tokens that may be abstracted from images by early
processes.
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This paper discusses a framework for the realization of such capabilities.
Although it is claimed that attentive vision systems must possess at least
the capabilities just summarized, the realization presented here is only one
of many possible realizations with the same capabilities. There are no
claims on necessity. On the other hand, this framework is indeed sufficient
and does satisfy the requirements laid out. All the machinery described in
this paper has been implemented as part of the ALVEN expert vision
system (Tsotsos 1981a, 1983; Tsotsos et al. 1984), which assesses the
performance of the human left ventricle from x-ray image sequences.
The experimental work described in this paper was done with that
implementation.

Overview

The basic properties of an attentive vision framework involving temporal
phenomena were described in the preceding section, and they are mani-
fested in a clear manner in our attentive vision framework. Knowledge
organization plays a significant role. The key elements of the framework
are the following:

. Four dimensions of knowledge organization, namely IS-A (generalization/
specialization), PART-OF (aggregation/decomposition), SIMILARITY, and
Temporal Precedence.

« Frames as the prototype knowledge or computing unit, organized along
the four dimensions just mentioned. These may be considered as de-
clarative structures, specialized procedures, or some combination of these
two. It is not important how they are implemented for the purposes of
this framework. The important point is that specialized units are present
that interpret specific visual entities, which may be as simple as “change
detection” or as sophisticated as “left ventricular systole” and which
may involve spatial relations, such as “above” or “inside,” and temporal
quantities such as velocities or rates of area change. These computing units
must have several important properties: they realize when they cannot
successfully interpret some visual feature, they can create a data structure
(an exception record) describing why they cannot, they can create instance
representations of themselves when appropriate, and they can communicate
with other units.

+ The “leaves” of the PART-OF hierarchy of frames represent the prim-
itive types of features that may be abstracted in a pre-attentive fashion
from the images, thus forming the interface between early and attentive
processing.
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+ Hypothesize and test as the basic interpretation paradigm, with hypo-
theses being activated from the knowledge frames as a result of four
interacting search dimensions, namely hypothesis-driven, data-driven,
failure-driven, and temporal search. Since hypotheses are derived from
prototype knowledge frames, and those frames are organized, hypotheses
are also organized in the same fashion.

« A projection mechanism to transduce hypothesis-specific expectations to
image-specific ones, and a scheme to recover from inadequate expectations
through upward traversal of the IS-A hierarchy, thereby relaxing constraints.

- A cooperative process that integrates results over time and space in
order to enforce global hypothesis consistency and determine the best
hypotheses, and thus the system focus of attention. The focus exhibits
levels of abstraction because of the hypothesis organization. This process
should also be able to deal with noisy and incomplete data.

It will be shown that knowledge organization is the driving force behind
the interpretation strategy, and that, in addition to the knowledge-
structuring properties used in many other knowledge-based systems, the
dimensions of knowledge organization have many other important uses,
ranging from restricting the temporal sampling rate to supplying the
feedback necessary for stability for the cooperative process. These aspects
and others will be discussed in detail.

Representation and Organization

A popular form of knowledge representation for “packets” of knowledge
is the frame (Minsky 1975). Frames may be thought of as primitive
computing units, declarative definitional structures, or some combination
of the two. Their exact form is not important; it suffices that each is
specialized for the computation of some specific visual entity. A version of
frames called classes is presented in the PSN (Procedural Semantic Networks)
formalism of Levesque and Mylopoulos (1979). The remainder of the
discussion focuses on knowledge class organization, since organization is
of greater importance than the form of the actual knowledge packages.

Class Organization: Generalization, Aggregation, Instantiation
When one is confronted with a large, complex task, “divide and conguer”’

is an obvious factic. Task partitioning is crucial; however, arbitrary task
subdivision will yield structures that are unwieldy, unnecessarily complex,
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or inappropriately simple. Furthermore, such structures have poorly defined
semantics, lead to inefficient processing, and lack clarity and perspicuity.
Within the existing representational repertoire, there exist two common
tools for domain subdivision and organization: the IS-A relationship
(or generalization/specialization axis) and the PART-OF relationship (or
part/whole axis). Brachman (1979, 1982) and Levesque and Mylopoulos
(1979) discuss the properties, semantics, and use of these relationships. The
IS-A (generalization/specialization) relationship was included in order to
control the level of specificity of concepts represented. IS-A provides for
economy of representation by representing constraints only once and
enforcing strict inheritance of constraints and structural components. It is a
natural concept-organization scheme, and it provides a partial ordering of
knowledge concepts that is convenient for top-down search strategies. In
conjunction with SIMILARITY (another representational construct), IS-A
siblings may be implicitly partitioned into discriminatory sets. The PART-
OF (aggregation) relationship allows control of the level of resolution
represented in knowledge packages and thus control of the knowledge
granularity of the knowledge base. It provides for the implementation
of a divide-and-conquer representational strategy, and it forms a partial
ordering of knowledge concepts that is useful for both top-down and
bottom-up search strategies. Concept structure can be represented using
slots in a class definition. The slots form an implicit PART-OF relationship
with the concept. Representational prototypes (classes) are distinguished
from and related to tokens by the INSTANCE-OF relationship. Instances
must reflect the structure of the class they are related to; however, partial
instances are permitted in association with a set of exception instances, or
the exception record, for that class. In addition, a third type of incomplete
instance is permitted: the potential instance or hypothesis. It is basically a
structure that conforms to the “skeleton” of the generic class, but that may
have only a subset of slots filled, and has not achieved a certainty high
enough to cause it to be an instance or a partial instance. Details on the
precise semantics of IS-A, PART-OF, and INSTANCE-OF may be found in
Levesque and Mylopoulos 1979.

Such knowledge organization dimensions have been used in many other
knowledge-based vision systems. (See, e.g., Hanson and Riseman 1978;
Levine 1978; Sabbah 1981; Brooks 1981; Mackworth and Havens 1983.)
Yet, their integration into the interpretation scheme was not completely
developed within those works. The knowledge organization was used to
structure knowledge and to provide access mechanisms for it. This work
will show that knowledge organization can really do much more.
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Time

A representation of general temporal concepts is beyond the scope of this
work. In fact, many of the details of such representations, such as the
calculus presented by Allen (1981), are not relevant. We are concerned
with the impact of time-varying concepts on knowledge organization.
From this point of view, time-varying aspects impose a partial ordering on
elements of a concept; that is, a concept’s parts are ordered in time. This
ordering involves relationships such as next, previous, simultaneous, and
overlap. Temporal precedence relationships interact with the PART-OF
relationship.

Arbitrary groups or sets of events can be represented. If temporal
concepts are grouped within some class, then whenever they represent a
sequence of events, the particular concept representing the group exhibits
a “coarser” temporal resolution than its components. To carry this further:
A PART-OF hierarchy of temporal concepts displays levels of temporal
resolution.

Description via Comparison: Similarity

Similarity measures that can be used to assist in the selection of other
relevant hypotheses on the failure of hypothesis matching are useful to
control the growth of hypothesis space. These measures usually relate
classes that together make up a discriminatory set (i.e., only one of them
can be instantiated at any one time). As such, they relate classes that are at
the same level of specificity on the IS-A hierarchy and have the same IS-A
parent class. Multiple IS-A parents are permitted as long as each class of the
discriminatory set has the same set of IS-A parents. Similarity links are
components of the frame scheme of Minsky (1975), and a realization of
SIMILARITY links as an exception-handling mechanism based on a rep-
resentation of the common and differing portions between two classes is
presented in Tsotsos et al. 1980. Thus, they are an element of embedded
declarative control, and they add a different view of frame representation,
thereby enhancing the redundancy of the representation. The three major
components of a SIMILARITY link are the list of target classes, the
“similarities” expression (the important common portions between the
source and target classes—remember that during interpretation the target
classes are not active when the SIMILARITY link is being evaluated; thus,
in time-dependent reasoning situations the components of the target class
that are the same as those in the source class before activation of the
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SIMILARITY link can be verified using the similarities expression), and
the “differences” expression (the time course of exceptions that would be
raised through inter-slot constraints of the source class or in parts of the
source class).

Transduction between Domains: Projection

Projection is a transformational link relating representations of the same
concept but in differing representational domains. In other words, projection
is used to represent hypothesis-to-signal transductions. It is important
because this enables the implementation of “priming” signals from “high-
level” hypothesis expectations down to image-specific computing units. It
is, for example, the relationship between a prototypical object and its actual
appearance in an image. The ALVEN system employs such projections in
creating predictions for low-level image operators.

The need for expectations and their use in high-level vision is not a new
idea. Its importance was emphasized by Mackworth (1978) and Kanade
(1980). However, no clear models exist. We believe that rich and well-
defined knowledge organizations are a prerequisite for such expectation
capabilities.

The generation of expectations is driven by current best hypotheses.
Clearly, if the set of best hypotheses does not include the correct one at
some point then the expectations produced will not be verified by the data.
A mechanism that utilizes the hypothesis level of specificity in recovering
gracefully from such incorrect expectations is required, and it is here
that the above-mentioned link between specialization of concepts and
expectations is used. Recovery from incorrect predictions involves upward
movement along the IS-A hierarchy of hypotheses. This has the effect of
relaxing the constraints that generated the original incorrect prediction and
allowing for the creation of a more general prediction as the next plan.

Down (1983) presented examples of prediction specifications for simple
shapes (such as points, lines, arcs, and circles) and aggregations of these
shapes into more complex forms, as well as the methodology for their use.
Predictions are classes in their own right and are thus treated as are all
other classes. They are a version of limited planning capability.

Attentive Vision and Search
As described earlier, attentive vision can be characterized by several basic

characteristics. One of these characteristics, perhaps the most important,
is the presence of rich dimensions of search that allow for an interface
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between data tokens and the interpretation process, distinguish between
search in the image and search in hypothesis space, and enable model-
driven, goal-driven, and data-driven interpretation. This section addresses
the search schemes in our framework and the basic processing cycle within
which they operate. _

Hypothesize-and-test is the basic recognition paradigm. However, acti-
vation of hypotheses proceeds along each of four dimensions concurrently,
and hypotheses are considered in parallel rather than sequentially. These
dimensions are the same class-organization axes that have been described
above. Hypothesis activation is a cyclic process, beginning with data-
driven activation and then alternating with goal-driven, model-driven,
temporally directed, and failure-directed activations. For a given set of
input data, in a single time slice, activation is terminated when none of the
four activation mechanisms can identify an unactivated viable hypothesis.
Termination is guaranteed by the finite size of the knowledge and the
explicit prevention of reactivation of already active hypotheses. Furthermore,
the activation of one hypothesis has implications for other hypotheses.
Because of the multidimensional nature of hypothesis activation, the
“focus” of the system also exhibits levels of attention. In its examination,
the focus can be stated according to the desired level of specificity or
resolution (the two are related), discrimination set, or temporal slice.

Each newly activated hypothesis is recorded in a structure that is similar
to the class whose instance it has hypothesized. This structure includes the
class slots awaiting fillers, the relationships that the hypothesis has with
other hypotheses (its “conceptual adjacency”), and an initial certainty value
determined by the activating hypothesis.

The “test” part of hypothesize-and-test is accomplished by the evaluation
of constraints specified in the knowledge classes. The matching result of a
hypothesis for the purpose of hypothesis ranking is summarized as either
success or failure. Matching is defined as successful if each hypothesis
component that is expected to be present at the time of matching has a
corresponding active hypothesis that matches successfully and each slot
and inter-slot constraint within the hypothesis evaluates to true. Matching
is defined as unsuccessful if any slot or inter-slot constraint evaluates to
false, or if any expected hypothesis component fails matching or does not
exist and cannot be found through any mechanism.

Goal-Directed and Model-Directed Search

Top-down traversal of an IS-A hierarchy (that is, moving downward when
concepts are verified) implies a constrained form of hypothesize-and-test
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The directions of search for goal-directed and model-directed search processes.

for more specialized concepts. Similarly, top-down traversal of the PART-
OF hierarchy implies a constrained form of hypothesize-and-test for
components of classes that reflect greater resolution of detail. This search
dimension along either representational axis is success-driven (figure 1).

A successful match (distinguished from “instantiation”) of an IS-A parent
concept implies that perhaps one of its IS-A children applies; a successful
match of an IS-A child implies that its parents should also be true. Multiple
IS-A children can be activated by a parent, but a more efficient scheme
would be to activate one of the children if all children form a mutually
exclusive set, or one child from each of several such sets, and then
allow lateral search to take over. This selection may be guided by
meta-knowledge associated with the IS-A parent hypothesis class. The
lateral search mechanism will then determine how many IS-A children
in a discriminatory set are viable possibilities. Note that hypotheses are
activated for each class in a particular 1S-A branch as the hierarchy is
being traversed, and thus tokens will be created for each on instantiation.
The activation of a hypothesis implies activation of all its PART-OF
components as hypotheses as well. Cycles are avoided since at most one
hypothesis for a particular class can exist for each time interval and set of
structural components.

In the case of top-down PART-OF hierarchy traversal, activation of a
hypothesis forces activation of hypotheses corresponding to each of its
components, ie., slots. The implication is that all slots must be filled
in order for the parent hypothesis to be instantiated. Slots may have a
temporal ordering, a feature handled by the temporal search mechanism
interacting with this one. The search is therefore for all components of a
class, increasing the resolution of the class definition.
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The direction of search for the data-directed search process.

Data-Directed Search

The PART-OF hierarchy can also be traversed bottom-up in aggregation
mode (figure 2). Bottom-up traversal implies a form of hypothesize-and-
test where hypotheses activate other hypotheses that may have them as
components, i.e., data-directed or event-driven search. This form of search
has important implications for the definition of the knowledge base. The
leaves of the PART-OF hierarchy are required to represent the types of
tokens that can be abstracted from images, thus interfacing attentive with
early vision processing components. This definition of the interface is
independent of the number or form of “intrinsic” images computed during
early vision.

This form of search also is success-driven. A successful match of a hy-
pothesis implies that it may be a component of a larger grouping of hypoth-
eses, and thus each possible PART-OF parent hypothesis is activated. Guid-
ance for limiting the number of activations can be obtained from relevant
meta-knowledge associated with the activating hypothesis class. Activation
of hypotheses in this direction implies activation of all IS-A ancestors of
new hypotheses. Arbitrary hypothesis groupings can be accomplished, but
specific groupings can be recognized only if defined as a class.

Lateral Failure-Directed Search

Lateral search is a very different process than the previous two, since it is
failure-driven. The search is along the SIMILARITY dimension (figure 3)
and depends on the exception record of a particular hypothesis. Typically,
several SIMILARITY links will be activated for a given hypothesis, and the
resultant set of hypotheses is considered as a discriminatory set (ie. at
most one of them may be correct). Discriminatory sets are not allowed to
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failure-directed

Figure 3
The directions of search for the failure-directed search process.

intersect. SIMILARITY interacts with the PART-OF relationship in that
exceptions raised that specify missing slot tokens are handled by the
hypothesis’s PART-OF parent. Of course, the source and target classes of
those links are at a different level of resolution.

Two situations may arise that require special consideration. The first
occurs when the failing hypothesis has no PART-OF parent, as may occur
during the first stage of data-driven search. The second may occur when no
similarity link can be found that handles some of the exceptions raised. The
goal of the exception-handling mechanism is to use all raised exceptions in
some way through the similarity links. In the former case, when the failing
hypothesis has no PART-OF parent, the similarity links found -within its
own structure are tried. In the latter case, when no similarity link can be
found that can handle certain exceptions, the IS-A inheritance mechanism
plays a role. If no similarity link can be found within the hypothesis itself
or within a PART-OF parent, this means that the exhibited phenomena
disagree with the hypothesized ones in a major way. For example, suppose
that a hypothesis defining a particular type of “contract” motion was
under consideration. The immediately avilable similarity links may be set
up handle differences in rate of contraction. They would not point to
appropriate hypotheses if the motion simply ceased. Therefore, similarity
links are inherited from IS-A ancestors by either the PART-OF parent or
the hypothesis itself as necessary. The IS-A ancestors of each hypothesis
are also active hypotheses. The end result would be that the exception
causes new hypotheses to be activated at some higher level of general-
ization, rather than at the same level. In this way traversal back up the
IS-A hierarchy can be accomplished. This is not necessarily a form of
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The direction of search for the temporally directed search process.

backtracking. 1t will indeed be backtracking in situations where wrong
hypotheses are activated. However, since the context is time-varying, this
mechanism also allows fast reaction to changes in data from hypotheses
that are no longer viable because their expectations in time are no longer
exhibited in the data.

Temporally Directed Search

Temporal search, a special case of hypothesis-driven search along the
PART-OF dimension, is relevant whenever a class has an IS-A relationship
with the SEQUENCE class. This is shown in Figure 4. Elements of a
sequence may be compound events, such as other sequences, simultaneous
events, or overlapping events. In a sequence, each element has a PART-OF
relationship with the event class. Thus, on activation of the class, it is
meaningless to activate all parts, as stated above, at the same time. Activa-
tion of the parts occurs only when their particular temporal specifications
are satisfied. This form of search can take place only when temporal ranges
are known. Arbitrary forms of temporal grouping can otherwise occur in a
data-driven fashion, and specific groupings, if labeled by the creation of a
class, can be recognized from them. (Causal or existential dependencies, a
special case of temporal search, are not discussed here.)

The Search Cycle

The four search dimensions described must be coordinated in order to
achieve the desired results, namely that each is used when appropriate.
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Decisions on which dimension to use are governed by the following:

« There is a drive to instantiate the most specific classes for each data
item at each time interval. Therefore, as soon as a successful match is
obtained for a hypothesis, activate the next most specialized hypothesis for
that data grouping.

« Instantiation implies a drive for completeness of description involving
all components of a class description.

« There is a need to achieve instantiation in as few time samples as
possible. Thus, as soon as an unsuccessful match is obtained, activate the
relevant alternate hypotheses for that data grouping.

« Acquisition of new data items, regardless of whether they be acquired
as the basic sampled data or as data found by specialized procedures
initiated by hypotheses, necessitates data-driven search.

- Specific data items or groupings of data items must be considered in-
dividually with respect to the appropriate search scheme at specific points
in time.

« Activation of a hypothesis by any method implies activation of all IS-A
ancestors (perhaps several levels) and each direct PART-OF component
(unless already active).

These basic rules ensure that the search schemes are indeed mutually
complementary and are used only when appropriate.

Figure 5 presents the coordination of the different search modes within
the processing cycle.

Hypothesis Structure and Its Properties

Hypotheses, like generic knowledge classes, are organized in specific ways.
Connections among hypotheses are referred to as conceptual adjacencies. If a
knowledge organization relation (IS-A, PART-OF, SIMILARITY, Temporal
Precedence) exists between two classes and hypotheses are active for those
two classes such that one hypothesis was activated by the other, then the
hypotheses also have that same relation. The conceptual adjacency is one
of the major components of hypothesis ranking, since it specifies what
kinds of global and local consistencies play a role for a given hypothesis.
In fact, the certainty updating scheme only uses information about concep-
tual adjacency and hypotheésis matching. The set of conceptual adjacencies
for a given hypothesis varies with time, as do its matching characteristics.
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An attentive control strategy.

Temporal order satisfaction plays a role in the determination of component
grouping strength, but is not the only actor. Each hypothesis has a self-
contribution as well, which is based on the matching result of internal
constraints.

Basically, hypotheses that are connected by conceptual adjacencies that
imply consistency support one another, and those linked by adjacencies
that imply inconsistency compete with one another by inducing inhibition.
The IS-A relationship is in the former group; the SIMILARITY relationship
is in the latter group. The focus of the system is defined as the set of
hypotheses whose elements are the highest-ranked hypothesis at each
level of specificity for each set of structural components being considered
in the given time slice. Because of the slow change of certainties inherent
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in relaxation schemes, this focus exhibits inertia, or procrastination; i.e., it
does not alter dramatically between certainty updates. It is a nonlinear
scheme. Both global and local consistency are enforced through the contri-
butions of hypotheses to one another via their conceptual adjacencies.

For the cooperative process, there are four major components that
contribute to the certainty for each hypothesis: contributions from more
general hypotheses along IS-A; contributions from competing hypotheses
along SIMILARITY; contributions from component hypotheses along
PART-OF; and the grouping strength of those components due to the
satisfaction of temporal ordering considerations, spatial constraints or
other component interrelationships, and matching results. Each of these is
relevant only among active hypotheses.

Hypothesis Structure Consistency

It is important to define the notion of “consistency” in such a network
of hypotheses. Within our framework, there are really three views of
consistency that are considered:

global consistency (Are all the instances resulting from interpretation re-
lated to one another in reasonable ways?)

internal consistency (Does each instance have sufficient support from the
data elements that directly constitute it?)

competition consistency (Do the competing hypotheses for each instance
“believe” that the correct hypothesis was instantiated?)

These three considerations will be assumed to have equal importance.

Global consistency is required among all instances along their IS-A
relationships. The semantics of IS-A imply strict inheritance, so that if
a hypothesis is instantiated, then all its IS-A ancestors must also be
instantiated. Thus, along the IS-A dimension, hypothesis responses are
related by
R(h,y < min R(j, f),

Jje Nisalh,t)

where N (h 1) is the set of IS-A ancestors for hypothesis h at time ¢,
the hypotheses j are elements of that set, and R(k,#) is the response of
hypothesis h at time ¢.

Internal consistency, or sufficient internal support, is reflected by specific
mechanisms within the updating rule. Unfortunately, no characterization is
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possible, and instances are created when their total support from all sources
causes their certainty to achieve a threshold.

Competition consistency is defined along the SIMILARITY dimension.
Each competing group has the same set of direct IS-A ancestors by definition
(because otherwise the competition would not be meaningful). Moreover,
the hypotheses in a competing group are mutually exclusive, so only one
can be instantiated. Therefore, responses of a discriminatory group are
related by -

R(h,H) = min R(j ¥,

he Ngu(x.t) JjeNigalx.t)

where Ngy(x, f) is the set of competing hypotheses at time f and where
Nis.a(*, 1) is the set of IS-A ancestors for that group. If the IS-A ancestors
have been instantiated, then the right-hand side reduces to 1.0, which is
the same as in standard relaxation. Consistency is enforced through the
response-normalization process, and these relationships will appear in the
updating rule to be presented below.

Compeatibilities for the Cooperative Process

The conceptual adjacency relations manifest themselves as compatibilities
in the updating of hypothesis certainty. In standard relaxation (Zucker et al.
1977), compatibility factors form the “model” (the view of consistency that
the RLP has). In our scheme, each organizational relation has an associated
compatibility. Each has a very intuitive meaning, and they are all listed
below.

« self-compatibility: If a hypothesis succeeds—that is, if its internal con-
straints match the data successfully (the “glue” or “grouping strength” that
binds its parts together)—it supports itself. If it fails, it inhibits itself. A
failing hypothesis is not deleted from consideration on match failure alone.

« PART-OF compatibility: If a hypothesis has parts (features that can be
observed), it receives a positive contribution from each part. A hypothesis
cannot inhibit a part, because that part must be allowed to participate in
other groupings in an unfettered manner.

+ IS-A compatibility: Let hypothesis h, be IS-A related to h,, i.e., h, IS-A
h,. When updating h,, if both h, and h, match successfully, h, supports h;.
If h; succeeds and h, fails, h, inhibits k. Failure of /i, has no effect on h,.

« SIMILARITY compatibility: Hypotheses related by SIMILARITY are
competitors—only one out of such a discriminatory set can be instantiated.
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Let 1, be related via a SIMILARITY link to h,. When updating h,, if h,
fails, h, supports hy, and if h, succeeds, h, inhibits 4, .

» temporal compatibility: Let the temporal relation between hypotheses

hy, hy, and h; be
h, « previous — h, « previous — h.

Also let hqyence be the hypothesis that represents this sequence, so that
each of h;, h,, and h; is PART-OF hg,,cnee. When updating Heequence, €ach
of hy, hy, and h; would contribute to A qyence When they appear through
PART-OF. If no special mechanism were present for temporal order, the
PART-OF contribution alone would not provide a discriminatory effect if
the order were wrong. Therefore, there is a bonus contribution to Hecquence
during the event , due to the last nonzero response of 4, if it appeared in
the correct order, and likewise if /3 follows h,. This contribution decays
exponentially; thus, the further in the past it happened, the smaller the force
of the “glue” that groups these elements together. This will be termed
“previous” support. Similarly, hqyence Teceives a bonus inhibition due to h,
that does not decay with time if h; appears before h, and this is the “next”
inhibition. The same occurs if h, occurs before h,. Clearly, “next” and
“previous” are reciprocal relations except at the ends of the sequence.

Compatibilities are set to values between 1.0 and — 1.0, where 1.0
means that the hypotheses are strongly compatible, 0.0 means that they are
independent, and — 1.0 means that they are strongly incompatible. They
will appear in the form 1/k; ; in the remainder of the discussion, where
the absolute value [k; ;| > 1.0, so that —1.0 < 1/k; ; < 1.0. Here “i, j”

corresponds to the type of compatibility between hypotheses i and j and
can be of the following types:

self-compatibility: k.

SIMILARITY compatibility: kg,

[S-A compatibility: kg

PART-OF compatibility: kpapt.0F

temporal compatibility: “previous” support is embodied in k.,
temporal compatibility: “next” inhibition is given by k,.,,.

Each compatibility value is positive unless explicitly prefixed with a minus
sign. A set of empirically derived inequalities that constrain the values of
each of these compatibilities will be presented.
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Initial Certainties of Hypotheses

The activation of hypotheses is the first step of processing. Once an initial
set has been activated, matching is performed for each of those active
hypotheses. Then, depending on those results, other hypotheses may be
activated. On activation, each hypothesis receives an initial certainty, and
this certainty is updated after all hypothesis activation and matching has
been completed for that time interval.

Hypotheses are activated via the search mechanisms outlined above.
Each hypothesis has an associated structure that conforms to the generic
class to which it is related. In addition, each is assigned an initial certainty
depending on how it was activated and ensuring that consistency relation-
ships are maintained. Let the activated hypothesis be h, a single activating
hypothesis be h,, a set of simultaneously activating hypotheses be H,, the
activation time be f,, and the hypothesis response be R. Initial certainties
are assigned depending on the following activation types.

. Data-driven activation along PART-OF. The parts of a class, from which
a hypothesis is derived, are represented by the set Npspr or(h *) and each
of those parts can activate the hypothesis. (Of course, there can be only a
single activator as well.) Thus, H, © Npagr.or(h %), and the initial certainty
is given by

Rk to) = -———Zf“!’}f|(" o),

- Hypothesis-driven activation along PART-OF: R(h, t,) = R(h,, t,).

. Hypothesis-driven activation along IS-A where several hypotheses in
the set H, < Nga(h *) may participate in the activation: R(h,f,) =
min;, g, R(J. fo)-

. Temporally driven activation. This is a special case of hypothesis-driven
activation along PART-OF, and thus the initial certainty is computed in the
same manner.

« Failure-driven activation along SIMILARITY: When a competitive set
Ny first comes into being at time ¢, it does so by hypothesis-driven
activation along IS-A, so that each hypothesis receives an equal share of
the minimum certainty of their activating IS-A ancestors H, < Nig a(h, *):

minjEH,R(j' ko)
| Nl
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Suppose there is currently a set of competitors Ngy(x,{; — 1) and K
new hypotheses are added to that set at time to. The already existing
hypotheses donate half of their response to a pool, and then that pool is
shared equally over the new and old hypotheses. Thus, the initial certainty
of each of those K new hypotheses is given by

R(jfo — 1)/2
JENsim(*,19—1)

|NSIM(*« b — DI+ K

and each of the hypotheses /1 in Ny (%, fo — 1) has its certainty adjusted to

R(jty — 1)/2
R(h, f() - 1) + J€ Nsim(* to—1) e

2 [Nsim(*, to — 1)| + K

These certainties are the adjusted ones before updating is done for time
to. This sharing scheme maintains that the sum of the certainties in the
competing set satisfies the definition of IS-A consistency. The design of
the certainty sharing was motivated by the fact that the addition of a
competing hypothesis must not undo the accumulated results of the acti-
vating hypothesis’s matching history, i.e., hypothesis's matching inertia. It
is an assignment that preserves hypothesis relative ranking.

Certainty Updating in Time

A variant of the temporal relaxation rule introduced in Tsotsos et al. 1980
will be used for hypothesis certainty updating. Basically, a neighborhood
whose members change with time is responsible for the contribution part
of the update. The hypothesis must reflect the same IS-A and PART-OF
relationships with other hypotheses as does the generic class of which it
may be an instance, with classes the generic class is related to. However,
the temporal and SIMILARITY relationships of the hypothesis may only
be a subset of those in the class. It will not, for example, always be the
case that the discrimination will take place among all possible choices, nor
will it always be the case that the correct temporal sequence of events
will occur. Figure 6 shows a typical set of relationships among generic
classes and hypotheses during the recognition process. This neighborhood,
derived from the conceptual adjacencies described above, may be thought
of as a “conceptual receptive field” for the hypothesis, because changes in
response in any of the neighborhood members will result in changes in the
hypothesis itself. Although the numbers of contributors may vary widely
for given hypotheses, this variation has no adverse effect on the certainty
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Figure 6

The relationship between generic knowledge (a) and a representative hypothesis structure
(b) that may be created from it.
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updating, since the magnitude of each contribution is weighted by the
number of contributors where necessary.

The rule is now presented. The response of hypothesis  at time f + 1
is defined by

je Nt kn i (B) ] aeNgath)

R(h,t)( Y w(h,j,t)m> min  Rg, t+ 1)
Rht+ 1) =

Y <R(m,f) > w(m,n,t)R(n't)>
me Ngu(h, 1) ne N(m,t) km,n(t)

where R(h, §) is the hypothesis response (or certainty) at time f and is
restricted to the range from 0.0 to 1.0, and where N4, ) is the set of all
hypotheses that are neighbors to h at time f and is the union of the
following five sets:

Nom(h, 1), the set of all hypotheses that are neighbors to through a
SIMILARITY connection at time f (including h),

Nis.a(h, 1), the set of all hypotheses that are neighbors to h through an IS-A
connection at time ¢,

Neart.or(h, 1), the set of all hypotheses that are neighbors to h through a
PART-OF connection at time £,

Njrevious (. ), the set of all hypotheses that are neighbors to h through the

p
temporal sequence connection “previous,” and

Niexi(h, 1), the set of all hypotheses that are neighbors to h through the
temporal sequence connection “next.”

Also in the above equation, w(h,j, f) is the weight of the contribution by
hypothesis j to hypothesis / at time ¢ in relation to the other contributions.
The sum of the weights over the set Ngy(h, £) U Nig o (1, £) U Nyrevious(H) U
Niex(t) must be 1.0, and the sum of the weights over the set Npsrt.op(h, £)
must be 1.0 for convergence purposes. Since the hypothesis structure
varies with time, so clearly do the assignments of weights. Furthermore,
ki.j() is the compatibility between hypotheses & and j at time f and is
determined by the type of relationship between the two hypotheses. There
are six types, as described above, and the hypothesis matching result at
time ¢ determines whether the value is positive or negative for certain ones.

The contribution portion of this rule, through judicious choices of
weighting factors, is restricted to the range 0.0 < contribution < 2.0, as it
is in Zucker et al. 1977. However, normalization takes place only among
hypotheses that are comparable, that is, elements of the same discrimina-
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tory set. It would be meaningless to try to normalize between levels of
abstraction. Moreover, because of the definition of IS-A consistency, the
sum of the responses over a discriminatory set is not normalized to 1.0
necessarily, but rather to the minimum updated response of the IS-A
ancestors of the hypothesis, thus the last term of the numerator. This
implies that the normalization process must be done in a strict order, from
general hypotheses to specific ones along the IS-A relationship. If there is
no discriminatory set the denominator is set to 1.0, and if there are no IS-A
ancestors that term is also 1.0.

If we expand the contribution portion of the rule, the values of the
weights will become apparent.

R(;.H

hj H—-~
jeN(h,t)w( ! )k;.,j(f)

expands out to the sum of the following terms:

R(h, ¢
« self-contribution: w(h, h, # ( ).
kself (t)
R(:
« SIMILARITY contribution: > w(h,j, 1‘)M
JeNsiuth, 1), j#h kSlM(t)
i f
o IS-A contribution: Y w(h,j,#) RG.H .
J€Nis.ath, 1) kls-A(f)
WR{j, £

« PART-OF contribution: > wh,j, b

J€ Npartorth,t) kPART-OF 0]

where WR(j, f) is the weighted response of the PART-OF subtree rooted
at hypothesis j.

« previous contribution: Y W, HR(j, kg ) T s ocer,
J € Nprevious(s 1)

R{j, has
- next contribution: Y whj, t)M

J€ Noexih, 1) knext '
The following are the weight assignments.

1
[NparT.0F (1, B
so that 3" n. oy ow(hj b = 1.0. Of course, the number of PART-OF
contributors varies with time.

« for PART-OF contributors: w(h, j, ) =

» The sum of the weights of all the remaining contributors, including the
self contribution, must be 1.0. The weights, therefore, are not fixed but
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vary with time depending on which contributors are present. The remain-
ing major contributions reflect the hypothesis’s internal consistency, its
global consistency, and its consistency as viewed by its competitors.
Each of these three contributions is weighted equally. In the case that all
are present, the following weights are assigned: For IS-A contributors,
w(h, j, ) = 1/3|Ns.alh, D]. (The number of IS-A contributors changes with
time.) For SIMILARITY contributors, w(h, j, ) = 4. (The weighted sum is
not required here, since the sum of responses may be at most 1.0, and this
is enforced through normalization.) For grouping strength, self-contribution,
previous support, and next inhibition are equally weighted, and when all
are present w(h, j, ) = § so that the sum of the weights is %. If only the
self-contribution is present, then it is weighted by the entire § amount.
If the self-contribution and (say) the next inhibition are present, each is
weighted by ¢.

The PART-OF contribution is always present and is positive. The weights
on any other contributions may vary, but the sum of those weights must
always be 1.0.

Result Propagation through the Network

Since iterations are related to time samples, it is important to address the
problem of result propagation through the network of hypotheses. In
standard RLPs, results propagate to neighboring processes, as a result of
several iterations, and the field of influence of a given process is determined
directly by the number of iterations; the greater the number of iterations,
the larger the field. In our case, all results must propagate to any other
processes that may need them during a small fixed number of iterations,
because for the next iteration new data will be presented to the system.
This does not mean that a consistent solution is also found within that
same small number of iterations; iterations are required for the temporal
integration of results.

The results that must be communicated are of two types: changes in
certainty and changes in hypothesis matching state. The hypotheses are
organized in the same fashion as the generic knowledge classes from
which they are derived, namely along the IS-A, PART-OF, SIMILARITY,
and Temporal Precedence dimensions. The first three of these (Temporal
Precedence is a special case of PART-OF) enable results to propagate
as desired. SIMILARITY networks pose no problem, since each active
hypothesis is directly connected to each other active hypothesis.
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PART-OF also poses no problem, because the PART-OF contribution is
computed as a weighted sum of the entire subtree rooted at the contributing
hypothesis. This, in addition, imposes an ordering on the computation of
updated certainty values.

The role of the IS-A dimension requires more elaboration. Because of
inheritance, match results are conveyed down the IS-A hierarchy implicitly.
There is no upward communication along this dimension. Because of the
strict order of normalization (downward along I1S-A), changes in an IS-A
ancestor’s certainty will result in changes in the normalization factor for the
IS-A child. Increases in ancestor certainty will allow the child's certainty to
increases, and vice versa. Communication along all relevant branches of the
hypothesis network, both of match results and of certainty changes, is thus
guaranteed by the nature of the knowledge organization and definitions of
network consistency.

Nonlinearity and Feedback

A linear system has response that is computed according to current input
and current state, independent of the rate at which response is changing.
The updating rule presented above is nonlinear. Because of the multipli-
cative nature of the rule’s numerator, the change in response is greater with
increasing previous response, and with increasing IS-A parent response.
The question that must be asked here is: “Are the nonlinearities inherent in
the theory, or do they appear as a result of the particular realization of the
theory?” This will be only partially addressed here. However, owing to
other aspects of the theory, the effect of the nonlinearities is minimal.

One important aspect of the updating rule is the normalization of re-
sponse. This is necessary because of the definitions of network consistency,
and is thus an inherent nonlinearity of the theoretical foundations of this
framework. Moreover, from a practical point of view, normalization is
necessary in order to ensure that responses do not grow unchecked,
something that would occur even with a linear rule. A second source of
nonlinearity is due to the first term of the numerator, the multiplication by
the response of the hypothesis under consideration. This is present in the
original RLP model of Zucker et al. 1977, and is a carryover from there. It
is an implementation-dependent nonlinearity, and no attempts were made
to reformulate this in a linear manner.

Nonlinear, time-varying systems in open loop configuration are rather
difficult to characterize and control. The incorporation of feedback, on the
other hand, has definite advantages. Feedback reduces sensitivity of re-
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sponse to parameter variations (in this case, compatibility values), reduces
the effect of noise disturbances, and makes the response of nonlinear
elements more linear.

The essential property of feedback is its iterative comparison of the
current state with the desired state in such a way that results of comparison
can be used to correct the system toward the desired state (Zucker 1978b).
The desired state in a recognition task is unknown, yet global consistency
is sufficient to ensure that a correct interpretation can be obtained. Feed-
back is inherent in this framework in two ways: exception recording and
handling via the similarity mechanism, and levels of IS-A abstraction and
downward communication between them. It is evident from the experi-
mental results that the resulting scheme is well behaved, yet analytic proof
is elusive.

Performance of the Temporal Cooperative Process

Let us take a simple situation and see how this updating rule performs.
Figure 7 presents a single hypothesis, totally disconnected from any other
hypotheses, whose contributions come from its own matching success or
failure and from its PART-OF elements.

The PART-OF contribution, for purposes of the first few examples, is
1.0. There is no need for normalization, since there is no discriminatory set.

1 1
> >
£ £
‘m ]
8 3
o] O4- v
0 time 50 0 time 50
(a) Hypothesis succeeding (b) Hypothesis failing
(c) (a)+
(b)-
Figure 7

Certainty changes with time for a single hypothesis with self-contribution and PART-OF

contributions.
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On the other hand, this forces the need for a careful analysis. Normalization
forces all responses to behave, that is, to stay between 0.0 and 1.0. Without
it, response may be unbounded. Figure 7c shows the hypothesis con-
figuration, while figures 7a and 7b show the certainty over time if the
hypothesis always succeeds or always fails in matching, respectively. The
updating rule in this case reduces to

R(Lt—1)2
R(1L,H =R(1,t—1)+ u
ksclf
for figure 7a and to
R(1,t — 1)?
R(1,Hh =R t—1)— *(———>
kself

for figure 7b. Approximating each of these with an ordinary differential
equation and solving, the response functions become, respectively,

R(L — R(1,0)
1 — R(1, 0%tk

and

R(L ) — R(1,0)

14+ R(1,0)*/ky

In the constant failure case, the response smoothly tends toward 0 with
increasing time and the speed of decrease can be controlled by adjusting
k.eic. For the constant success case, as is intuitively clear, there is no such
nice property. Indeed, the response will achieve 1.0 at time

koe*(1 — R(1,0))
R(1,0)

and keep on increasing. Clearly, the smaller k_ is, the faster this occurs.
We will want decisions on interpretation to occur as close to the end time
of an event as possible, but most definitely not after the event has ended.
Therefore,

R(1,0)

k¢ < minimum event duration*————"
self 1 — R(1,0)

where the minimum event duration has units of “temporal measurements.”
A temporal measurement is taken “between” two data samples. For sim-
plicity we will ignore the final term due to initial hypothesis response.



Tsotsos 392

1 1

> >

E =

£ 3

8 S
ot O
0 time 50 0 time 50

(a) Hypothesis 1 (b) Hypothesis 2
]
: + :
Figure 8

Certainty changes with time for a pair of competing hypotheses with SIMILARITY and
PART-OF contributions.

It will be apparent that this does not ill affect the remainder of the
analysis, since a structure with an isolated hypothesis can never occur. We
will require that the number of iterations (or the number of temporal
measurements) required in order to “recognize” a particular concept always
be less than or equal to k. In other words, we equate iterations with
temporal measurements.

Hypotheses are never alone; they have neighbors. The first neighbor
that will be investigated is the one connected via SIMILARITY. Figure 8
presents hypotheses where both PART-OF and SIMILARITY contribu-
tions are present, but not self-contributions. Hypothesis 1 always succeeds;
hypothesis 2 always fails. The updating rule for this situation reduces to
the pair

R(1t— 1*R(2,f — 1
4 R . ( )

s1m

R(LH=R(L,F—1)

’

R(2,t — I)*R(1,t — 1)
3 .

R2,H=R@2+t—1)—
In this case the normalization factor has a value of 1.0. The initial values
R(1,0) and R(2,0) sum to 1.0, and it is clear from the updating rule that the
denominator of the updating rule will always be R(1, f — 1) + R(2,f — 1),
or 1.0. By the same approach as in the preceding example, the response
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curves can be approximated by

1
R(1LH) = '
L ROy .
R(1,0)
R2, 8 = I
IR0,
R(2,0)

In both cases, desirable properties are exhibited. The response for hypothesis
1 tends to 1 with increasing time, and the rate can be controlled by
adjusting kgy. The response for hypothesis 2 tends to 0 with increasing
time, and again the rate is set by kgy.

Let us now join these two examples and investigate the situation where
there is both self-contribution and SIMILARITY contribution. This is por-
trayed in figure 9.

Two hypotheses are present: that hypothesis 1 always succeeds and that
hypothesis 2 always fails. The updating rule for this situation is

+ R(1,F— 1))  R(1t— 1*RQ2,t— 1)

R(1,F—1)
. stelf 2kSIM
R(L A = NORM '
RQ2,t—1)?% R t— D*R(L,t—1
RQE—1)— ( ) R( J*R(1 )
_ stclf 2‘kSlM
R(2,H = NORM ,
where
R(1,t— 1) R(2,t—1)?
NORM =1 + ~( ) — (2t ) .

stelt' Z‘kself

This is not easy to deal with analytically, and thus an approximation will
not be presented. However, figures 9a and 9b show the typical response
profiles that such a configuration produces. It appears as if these results are
well behaved, and indeed through experimentation it was found that this is
the case.

All response computations are subject to lower and upper thresholds for
hypothesis deletion and instantiation, respectively. The curves shown in
the preceding figures have a passing resemblance to exponential functions.
A common notion for exponentials is the time constant, or the amount of
time required for the function to reach 1/¢ of its initial value if decreasing
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Two competing hypotheses with SIMILARITY, PART-OF, and self-contributions.
Diagrams ¢ and d show the effect of applying the dynamic threshold mechanism for
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hypothesis instantiation and deletion. Upper (instantiation) and lower (deletion) thresholds

are shown as dotted lines. The change in threshold values with time is apparent.
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or (1 — 1/e) of its final value from an initial value of 0.0 if increasing.
Using the initial values of hypotheses in competing sets defined earlier to
compute the height of the exponential, we set the instantiation threshold at

(1 ! )*(1 4t
- — € .
[ Noml | Nsin|

| N is the number of competing hypotheses in the discriminatory set, and
this relationship is derived under the assumption that all hypotheses start
at equal certainties (which is the case when they are all activated at the
same time.) The corresponding deletion threshold is set at

e—l

|NSIMI .

The effects of applying these thresholds to the previous case are shown in
figures 9¢ and 9d. The amount of time required to reach the instantiation
threshold is the response time of the system. With contributions other
than the self-contributions, this response time is significantly shorter than
with self-contribution alone. For the remainder of this discussion, a given
hypothesis will have achieved convergence (or the reaching of a decision)
when the hypothesis's response achieves the instantiation threshold. It
will have achieved useful convergence if the number of iterations (or time
samples) is less than or equal to the minimum duration of the event repre-
sented by that hypothesis.

Using the above definition of convergence, 1 now elaborate on the
experimentation performed for the current configuration. Figure 10 (a solid
family of curves) shows the empirical relationships found between k..,; and
ksim for varying values of | Ngy|. It was found that in order to ensure the
required behavior, namely convergence in no more than k., iterations,
ke must be greater than or equal to kgy. More precisely, the following
was found to be the relation among k.., kgy, and the number of com-
petitors in the set Ngy:

7| N,
ksiy = 1.0 for 2|Ngy| < koor < l SSIMI ,
(ke — | N
kSIM - M fO!' kgelf = M

4’NSIMI

These relationships are conservative approximations to the family of curves
presented in figure 10. Spot checks for values of | Nyl not on this graph
were tested with satisfactory results. There is no convergence within k.
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Figure 10

The empirical relationship between the self-contribution compatibility k.., and the
SIMILARITY compatibility kg for varying numbers of competing hypotheses. The solid
curves show the relationship without the IS-A compatibility; the dotted curves show the
effect with IS-A.

time units (iterations) for values of k,;; < 2|Ngy!. The fastest convergence
occurs when kg = 1.0 (approximately 2|{Ngy| time units).

The next compatibility type we will discuss in IS-A compatibility. A
hypothesis configuration with IS-A comtribution is shown in figure 11.
IS-A contributions may be considered as a “high-level bias” mechanism. If
the biased hypothesis is succeeding, it should speed up its increase in
response. Indeed, for an IS-A hypothesis with response 1.0 the updating
rule reduces to

R(1,t— 1)) R, +— D*R(2,t—1
+ ( )+ ( Y*R( )

R(1,5) = R(1,t—1)
stelf Zkls.A

where hypothesis 1 IS-A hypothesis 2. The normalization factor is 1 since
there are no competitors, and it is assumed that the IS-A parent hypothesis
has response 1.0. This will cause the response of hypothesis 1 to increase
faster than the hypothesis with self-contribution alone, and the degree of
speedup can be controlled by kis.». If the hypothesis fails, there is no IS-A
contribution. Thus, failing hypotheses are allowed to decay on the basis
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Figure 11
Certainty changes with time for two hypotheses related by IS-A with IS-A, PART-OF,
and self-contributions present.

of their self-contribution, while succeeding hypotheses are given an extra
boost.

An important question, however, is: How much faster is the increase
in response? In the case where self, SIMILARITY, and IS-A contributions
are present, experiments reveal the results shown in figure 10 (the dashed
family of curves) for the empirical relationship between k.. ; and kg for
varying values of |[Ngy| and where the largest value of ki, that allowed
useful convergence was used. This largest value and its relationship
with ks are shown in figure 12. Without IS-A useful convergence
could not be achieved for ks < 2|Ngyl, but with IS-A it is possible for
kee = |Ngul| + 2 with kgy = 1.0 and kg, = 1.0 in time approximately
INsiul + 1. For kyye > [Ngml + 3, we have kgy < ko and kg p < Koo/
(INg| + 1). (This is a very conservative estimate when |Ngy| = 2.) Of
course, ki, = 1.0 will ensure the fastest decision.

Two final considerations will complete the characterization of the above
three types of compatibilities. For the case where h, IS-A h,, the values of
the compatibilities should ensure that if h, succeeds and h, fails then the
response of h, decays. This will be true if

Rhy, 0 Rl OR(ip, ) _
kself kIS—A
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Figure 12

The empirical relationship between the largest value of the IS-A compatibility that enables
useful convergence and the corresponding values of the self-contribution compatibility for
varying numbers of competing hypotheses.

Since by IS-A consistency R{h,, #) = R(hy, b, necessarily ks > kg . If a
third hypothesis h; is added such that k5 IS-A h, and h, SIMILARITY ks,
and if h, and h, succeed and hj; fails, we want to ensure that h; decays
more rapidly than without the IS-A relation. This will be the case if

—R(ha, ) | 2R(y ) _ Ry, b

kSlM le-A kself

This comes from the differences in the denominators of the rule between
the two cases. Since R(h,,t) > R(hs, ), and k¢ > kgy as described previ-
ously, then necessarily kgy > kig.a. The result is that ke > kgy > kis.a,
with specific values being set using the relationships derived experimentally.

For the previous discussion, it was assumed that the PART-OF contri-
bution was always 1.0. In general, this is clearly not the case. Experiments
were conducted on the full range of acceptable values for the compatibilities
discussed above, for sets of competitors that had all manner of varying
PART-OF contributions, and with kpsgr.or = 1.0. The longer the event
duration (that is, the larger the value of k), the smaller the difference of



Representational Axes and Temporal Cooperative Processes 399

PART-OF contribution that could be present if a proper decision was to
be made. (Roughly speaking, for short events the difference required was
about 50 percent; for longer events it could be as little as 20 percent.) Large
values of kg, coupled with relatively small values of kg and ks, were
preferred so that the the number of iterations (time samples) would be large
enough to accumulate information over the entire duration of the event.
No additional restrictions on the values of the other compatibilities were
necessary, and the ranges for convergence defined above still held. There-
fore, the final ordering of compatibility values was

kself > kSlM > kISvA = kPART-OF = 10!

with further restrictions on k) and k5 5 as defined above.

The next example is a simple sequence group that embodies the PART-
OF contribution as well as the support and inhibition available for temporal
grouping (figure 13). The hypothesis representing the sequence is labeled
1. The stimuli, numbered 2 through 6, have a high response of a given
duration beginning at a specific time and a zero response elsewhere. The
response of group 1 decays rather quickly but recovers when a new
stimulus of the sequence appears. In figure 13a the stimuli are on for one
time unit and off for nine. During those nine time units, the sequence
hypothesis self-inhibits because there are no component parts to support it
and cause it to match successfully. The sequence in figure 13a is never very
sure of itself. In figure 13b, each stimulus is on for three time units and off
for seven. In this case, there is some consistency to the response, and as the
stimulus-on period increases to five in figure 13c and nine in figure 13d the
sequence becomes more consistent with time.

There are three mechanisms at work in this example: self-contribution,
PART-OF contribution, and PREVIOUS contribution. In this example, the
stimuli were moving in the correct direction. A PREVIOUS contribution
(always positive) appears only if the hypothesis IS-A SEQUENCE. NEXT
contributions are always negative.

The value of the PREVIOUS compatibility is set depending on the
temporal separation of events for which it is desired to cause a strong
“gluing” effect. This can be accomplished if k
separation in time units (or iterations). Therefore, for temporal separations

orey = Maximum temporal
between events in a sequence less than this value the compatibility will be
greater than 1/¢; if the separation is greater, the compatibility will be less
than 1/e.

The situation when the correct direction is observed causes faster response
time for the sequence hypothesis due to the PREVIOUS contribution than
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Figure 13

Certainty changes with time for a simple sequence grouping of hypotheses, with varying
durations for the hypotheses 2, 3, 4, 5, and 6. PART-OF, PREVIOUS, and self-contributions
play a role.
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without it. However, in cases where the data are not in the correct order
the setting of compatibilities requires more care. The contributions from
previous or next events are taken into account each time the contribution
from any single event is computed. Only the previous or next events of
that single event are considered. The certainty of the previous or next
contribution is determined using its most recent certainty value, denoted
by £, below. In the case where both the previous elements and next
elements are present, there are two competing contributions, weighted
equally, to the updating of the sequence hypothesis (that are different from
previous situations):

R(h‘t' tlasl)

R(hz, tlaSl)*e(*t*rt.m)/kpm —
next

The sequence constraints of the hypothesis are violated, so the hypothesis
itself is self-inhibiting. It is important that the positive term due to the
previous event not outweigh the negative term due to the next event.
Indeed, the desired result is that the decay is accelerated because of the
next effect, and this would be ensured if the negative term were larger in
magnitude than the positive term of the above contributions. Therefore, if
both next and previous events were of the same strength, and in the worst
case where f, is just the previous time interval rather than farther back in
time, the following relation should hold in order to ensure this:

kpeey
Kpoy < etffores,

The situations presented above make it possible to derive empirical
constraints on the values of the compatibilities and to relate those values
to characteristics of the temporal domain being considered.

A Brief Look at Some More Complex Examples

The remaining several examples are too complex to permit any specific
quantitative analysis. They do, however, represent common situations in
low-level and high-level vision. They are presented to demonstrate that
the machinery presented does indeed function in complex situations as
long as the guidelines for the setting of compatibility constants are obeyed.
Figure 14 illustrates a rather common situation, that of orientation selection,
with static data. Assume that all eight orientations are considered here,
even though pictorially is it difficult to portray both orientations along a
single line.

The stimulus array is 5 x 5; the darker the element, the higher the
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An orientation-selection hypothesis structure, with stimuli on a grid, of varying strengths
(coded by shading), and the resulting certainty-vs.-time profiles for each of the eight
orientation hypotheses. As the hypothesis number increases, the orientation it represents

rotates 45° clockwise, with the orientations for hypotheses 1 and 2 shown.
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response value. (The black ones have response 1.0, the striped ones 0.5, the
white ones 0.0, and the remainder 0.2.) Eight hypotheses are in competition
here, with hypothesis 1 representing the dark elements (which form a
consistent orientation grouping going from the top left of the array to the
bottom right) and with hypothesis 2 representing the striped elements
(which form a consistent orientation grouping from the top to the bottom
of the array). The 180° opposite orientation to these, we assume, is incon-
sistent. Both hypotheses 1 and 2 succeed in their matching, since they are
looking at elements that semantically form an orientation group. The other
hypotheses fail. The result for hypothesis 1 is shown in figure 14a, and that
for hypothesis 2 in figure 14b. The results for hypotheses 3, 4, 7, and 8 are
the same and are shown in figure 14c. The results for hypotheses 5 and 6,
which also are the same, are shown in figure 14d. The clear winner is
hypothesis 1 after about 25 time units (iterations). The other hypotheses
are never even close to the instantiation threshold. The threshold de-
pendency on the number of competitors is very clear. It jumps when
hypotheses 3, 4, 7 and 8 are deleted, when hypotheses 5 and 6 are deleted,
and again when hypothesis 2 is deleted.

Figure 15 shows exactly the same setup, except that there is an IS-A
constraint that affects each of the eight competing orientation hypotheses.

Basically, it is a hypothesis that biases the situation—it communicates to
each hypothesis that there is indeed an orientation element in the stimulus
array. It does not identify which one, however. The successful hypotheses
accept this bias, while the failing ones reject it. The effect is that the only
change from the previous case is that the instantiation of the correct
hypothesis occurs sooner, by about five time units. Response time is
decreased by the addition of top-down biases.

Using the same stimulus array but adding the time dimension, figure 16
portrays a direction-selection experiment.

Each stimulus is on for eight time units and off for two. The correct
ordering for hypothesis 1 is from the top left corner to the bottom right
corner. For hypothesis 2, each of the stimuli has the same characteristics as
for hypothesis 1 except for strength, and the correct order is from top to
bottom. In fact, all hypotheses share an event: the middle one. Hypotheses
I and 2 succeed in matching; the remainder do not. Each stimulus, when it
becomes active, activates of reactivates each higher-order hypothesis that
it is PART-OF. The life span of hypothesis 5, whose elements are as strong
as its correctly matching counterpart 1 but whose ordering is wrong, is
rather short. In fact, as soon as the inhibition due to the reversal in order
comes into play at the start of the second stimulus, it is quickly removed.
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An orientation-selection hypothesis structure, with stimuli on a grid, of varying strengths
(coded by shading), and the resulting certainty-vs.-time profiles for each of the eight
orientation hypotheses. As the hypothesis number increases, the orientation it represents
rotates 45° clockwise, with the orientations for hypotheses 1 and 2 shown. This structure
has an IS-A relationship for each of the orientation hypotheses that acts as a top-down bias.
The resulting speedup in time to convergence can be seen.
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A direction-selection hypothesis structure, with stimuli on a grid, of varying strengths
(coded by shading), and the resulting certainty-vs.-time profiles for each of the eight
direction hypotheses. As the hypothesis number increases, the direction it represents rotates
45° clockwise, with the directions for hypotheses 1 and 2 shown. For example, hypothesis 5
represents the exact opposite direction to hypothesis 1. The temporal precedence relations
among the grid stimuli are shown. Each stimulus is allowed to (re-)activate its PART-OF

parent hypothesis.
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Hypothesis 1 is again the clear winner. During the stimulus-off period,
however, there is self-inhibition. The total decrease in response is, of
course, a function of the duration of the off time as well as the decay
constant.

Figure 17 shows the results of the same direction-selection task, with an
added IS-A constraint. The effect of the IS-A constraint should be the same
as was shown for the orientation-selection case. Indeed, the slope of initial
increase of response for hypothesis 1 is slightly higher, but the time for
instantiation could not be shorter since the second stimulus must appear
before discrimination can occur. The decays are compensated slightly.
Figure 18 shows the results from the same structure, but with a different
definition of SEQUENCE; only the first stimulus of a sequence can activate
the higher-order SEQUENCE unit. This is included for purposes of com-
parison with the previous example. The definition of SEQUENCE used
here leads to a more stable response curve for hypothesis 1. It is clear that
one may experiment with a variety of schemes. With these more complex
examples, in each case the structure over which the cooperative process
operates changes with time; however, even more complex situations arise
in a real application.

To summarize: The temporal cooperative process displays qualitative
results in both static and dynamic situations that are both desirable and
consistent. Guidelines were presented for the setting of compatibility values
that would achieve such results. The process is remarkably insensitive to
actual compatibility values so long as the guidelines are obeyed. Since
iterations are considered in time and have the same meaning in either static
or dynamic situations, we can begin to relate system response time in static
cases using the same terms as for dynamic cases.

Noise Effects

Up to this point, the effect of noisy data has not been addressed. Experi-
ments conducted with randomly generated, normally distributed, noisy
matching data are described in detail in Tsotsos 1981b. Basically, a set
of competing hypotheses are created, with no semantics, and a match
result over time is generated for each. For example, for two competing
hypotheses where one is correct, the other is false, and the data are perfect,
true matching data would be generated for the former and false data for
the latter. With the addition of 10 percent noise, the matching data for
the correct hypothesis would be true only for 90 percent of the samples
generated; they would be false for only 90 percent of the samples
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A direction-selection hypothesis structure, with stimuli on a grid, of varying strengths
(coded by shading), and the resulting certainty-vs.-time profiles for each of the eight
direction hypotheses. As the hypothesis number increases, the direction it represents rotates
45° clockwise, with the directions for hypotheses 1 and 2 shown. For example, hypothesis 5
represents the exact opposite direction to hypothesis 1. The temporal precedence relations
among the grid stimuli are shown. Each stimulus is permitted to (re-)activate its PART-OF
parent hypothesis. An IS-A relationship as top-down bias is added to this structure.
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A direction-selection hypothesis structure, with stimuli on a grid, of varying strengths
(coded by shading), and the resulting certainty-vs.-time profiles for each of the eight
direction hypotheses. As the hypothesis number increases, the direction it represents rotates
45° clockwise, with the directions for hypotheses 1 and 2 shown. For example, hypothesis 5
represents the exact opposite direction to hypothesis 1. The temporal precedence relations
among the grid stimuli are shown. The IS-A relationship is also present. Only the
expected first stimulus of a hypothesized sequence is permitted to activate a hypothesis.

generated for the false hypothesis. The figures from Tsotsos 1981b that
summarize the experimental findings are reproduced here as figure 19 and
20. The main results can be summarized as follows:

« When the number of competitors increases, the time to reach a decision
also increases, roughly linearly.

- When varying amounts of noise are added, the slope of the curve in-
creases in a smooth manner. The more noise, the longer it takes to reach a
decision.

« When there is 50 percent noise (no information), no decisions can be

reached.

These results are all very intuitive, yet it is satisfying to know that the
temporal cooperative process possesses these characteristics.
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Figure 19

The results of experiments on time to decision with respect to size of discriminatory set
for a particular setting of parameter values. In addition, varying amounts of random noise
were included and the experiments repeated. The plots show a roughly linear relationship
between time and number of competitors (as would be expected). Also, the addition of
noise causes a graceful degradation of performance.

The effect on the exact same set of experiments of an added IS-A
constraint are also described in Tsotsos 1981b. The slope of each curve,
except the 50 percent noise curve, drops significantly. The added constraint
can actually compensate for noise, to some degree, through feedback.

Temporal Sampling

Temporal sampling is an important issue. The guidelines presented earlier
for the setting of compatibility values have presented some interesting
possibilities for the determination of sampling rate. Intuitively, one might
believe that the following play a role in the calculation of the sampling rate:
the size of the discriminatory set, the expected noise level of the data, the
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The same experimental setup as for figure 19 was used, with the addition of an IS-A
constraint on the discriminatory set. It is clear that the time to decision is significantly
decreased, even in the presence of moderate amounts of noise.
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shortest duration for events in each discriminatory set, and, of course, the
system response characteristics. With the size of the discriminatory set
known, the time in iterations to make a useful decision was designed
into the compatibilities; it is given by k. for discriminatory set Ngy;.
Proper performance is guaranteed for kg, > |Ngw| + 3, and thus this
compatibility can be set independently. Since k. has units of “temporal
measurements” where measurements are made “between” time samples,
ke + 1 gives the number of time samples required for k., temporal
measurements. The minimum event duration in seconds for a given dis-
criminatory set is dur,;,. If we assume the possibility of individualized
compatibility values, where the subscript j ranges over all the individual

groups, the minimum sampling rate can be given by

(INow| + 4);

SRpin =
e i gdurmin)j

Appropriate settings of kgy and kig 4 (that is, increasingly larger values)
will compensate for reasonable amounts of noise. The resulting sampling
rate must clearly be within the physical capabilities of the sampling system.
If this is not true, it may be that changing k., (that is, increasing
this parameter) may shift it appropriately. If this is not possible, then
the framework presented here is not applicable to the domain under
consideration.

Note that 1/dur,,, may be considered as the temporal frequency of the
shortest event. If all discriminatory sets are considered, the value used in
the sampling-rate determination is the maximum temporal frequency that
is represented in the knowledge of the system, and thus the maximum
temporal frequency that must be recognized. The standard Nyquist sampling
rate for signal reproduction is 2F,

max’/

where F, ., is the maximum frequency
present in the signal. Therefore, we know that sampling at a higher rate will
not yield new information. We can conclude that [(|Ngy! + 4)/2], must be
performed per time sample. This satisfies our original goal, namely, that we
are interested in a cooperative process such that the only decisions that are
made are those that can be made within a small fixed number of iterations,
and that this small number be sufficient for all events of interest. From an
efficiency point of view, the smaller | Ny y| is, the fewer the iterations. This
value can be kept small by appropriate use of concept organization along
the IS-A dimension.

Finally, the PART-OF hierarchy of temporal concepts implicitly repre-
sents increasingly coarser levels of temporal as well as spatial resolution for
concepts such as sequences. Using the relationship for sampling rate
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presented earlier, it is clear that, as temporal resolution becomes coarser,
the sampling rate and thus the number of applications of the cooperative
process iterations becomes smaller. This poses interesting possibilities for
increasing the efficiency of the scheme, and it requires further exploration.

Discussion

Representational dimensions such as those described in the third major
section of this paper have been prominent for some time in the literature
on the representation of knowledge. The arguments for their use have been
mostly qualitative, that is, they seem to have nice formal properties and
lend themselves naturally to the construction of knowledge bases. In this
work, it has been shown not only that these aspects are present but also
that each representational dimension has a distinct role to play in an
interpretation scheme. In fact, each has two important roles. One role is
that of enabling multiple, interacting search mechanisms. This function
should not be underestimated. Rule-based recognition paradigms, for
example, only offer a single dimension of search. As was pointed out
by Aiello (1983), such systems suffer from serious problems due to the
one-dimensionality of the inference procedure. The conclusion is that
goal-directed, event-directed, and model-directed inference mechanisms
can most effectively compensate for one another’s deficiencies if used
in concert. For example, a data-directed scheme considers all the data and
tries to follow through on every event generated. It can be nonconvergent,
can produce only conclusions that are derivable directly or indirectly from
the input data, and cannot focus or direct the search toward a desired
solution. The goal-directed strategy is easy to understand and implement,
and at each step of the execution the next step is predetermined. Rules are
evaluated in the same order regardless of the input data. Thus, this strategy
is inefficient and cannot exhibit a focus with respect to the problem being
solved, since there is no mechanism that determines what is important
and what is not. Finally, the model-directed approach, although the most
efficient and the one that exhibits correct foci of problem-solving activity,
has the disadvantage that its conclusions depend heavily on the availability
of the correct model and initial focus. An incorrect initial focus will lead it
to the examination of useless and incorrect analyses and will cause some
perhaps relevant data to be ignored.

In our scheme, each dimension of search compensates for the failings
of another, and thus as a whole the scheme offers a rich and robust
framework. The several dimensions of search are tied to the knowledge-
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organization principles. Also, each organization dimension offers distinct
and necessary contributions to the updating of hypothesis certainty, to the
definition of neighborhoods and compatibilities, and to the maintenance of
consistency within an interpretation:

» IS-A, besides offering a definition of global consistency of hypothesis
certainty, plays the role of speeding up the convergence of results. This
allows smaller temporal sampling rates. Owing to inheritance, the problem
posed by the propagation of results disappears. IS-A also has an important
part in the graceful recovery from poor predictions. Finally, feedback
imposed by the IS-A hierarchy increases the stability of the cooperative
process and partially compensates for the effects of noise disturbances.

» SIMILARITY plays the discrimination role, and is the only mechanism
that allows for competition between hypotheses, enabling “best choice”
selection. In conjunction with the exceptions that drive SIMILARITY
activations, this is a strong feedback mechanism, enhancing the stability
of the cooperative process. Moreover, it is central to the definition of
temporal sampling rate and of compatibility values.

» PART-OF is the mechanism that permits the selection of the stronger
of two equally consistent hypotheses on the basis of the strength of their
components. .

« Temporal Precedence assists in the discrimination of proper temporal
order, which is important for temporal grouping and for temporal “gluing”
of events into higher-order ones.

Moreover, each of these representational dimensions is integrated into
the certainty updating scheme in an intuitive manner through the use of
separate compatibility values and the use of neighborhoods or “conceptual
receptive fields” for hypotheses.

It should be clear from the discussions in this section that there is
no optimal setting of compatibility values for an entire knowledge base.
Setting the values to accommodate the worst case may cause too quick
a decision for other cases. Thus, it is natural to consider individualized
settings of compatibilities, with a particular set of values holding over
each hypothesis in a discriminatory set. This would allow for the best
performance characteristics. Fach conceptual receptive field thus has an
individualized compatibility profile that is computed automatically and
dynamically depending on the hypothesis structure that it is involved
with and on the only three domain-specific constants required for each
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hypothesis (namely, minimum duration, number of active competitors,
and—if it is a sequence—maximum temporal separation of its parts).

We have achieved one of our original goals: that of discovering the
conditions under which this cooperative process can reach decisions about
time-varying events within a small, fixed number of iterations. This result
has led to the first stages of a sampling theory. Sampling considerations,
woefully missing from much of computer-vision research, are clearly
necessary within the spatio-temporal context that is required for visual
perception.

Conclusion

A framework for the integration of time into high level or attentive vision
was described. The key elements are an organization of knowledge along
several axes, including time; several search modes facilitated by the
knowledge organization; a hypothesize-and-test reasoning framework; and
a temporal cooperative process driven by the knowledge organization. The
goal of the research was to tie together work in knowledge-representation
theory with cooperative processes, which are important for vision. Knowl-
edge or concept organization is seen as the key and not the internal
form of knowledge packages. The analysis and the examples presented
demonstrate that each of the common representational axes—IS-A, PART-
OF, SIMILARITY, and Temporal Precedence—has a natural place within
the temporal cooperative process, and, moreover, make important contri-
butions to it. Temporal considerations have played a key role, and have led
to a useful version of a relaxation rule for time-varying interpretation
under the severe constraints that a changing environment places on the
number of iterations that can be performed. Although this scheme has been
successfully implemented within the ALVEN expert system, much work
remains, particularly with its mathematical foundations.

Acknowledgments

I am indebted to Allan Jepson for his useful suggestions. David Fleet and
Niels da Vitoria Lobo read drafts and provided many useful comments.
Niels also assisted with the implementation and experimentation. This
paper also benefited from discussions with Allen Hanson, Ed Riseman, and
Roger Browse. Financial support was received from the Canadian Heart
Foundation and from the Natural Sciences and Engineering Research
Council of Canada. The author is a Fellow of the Canadian Institute for
Advanced Research.



Representational Axes and Temporal Cooperative Processes 415

References

Aiello, N. 1983. A comparative study of control strategies for expert systems:
AGE implementation of three variations of PUFF. In Proceedings of AAAI,
Washington.

Allen, J. 1981. Maintaining Knowledge about Temporal Intervals. Report TR-86,
Department of Computer Science, University of Rochester.

Anstis, S. 1978. Apparent motion. In Handbook of Sensory Physiology, ed. Held,
Leibowitz, and Teuber (Springer).

Ballard, D., C. Brown, and ]. Feldman. 1978. An approach to knowledge-directed
image analysis. In Computer Vision Systems, ed. Hanson and Riseman (Academic).

Brachman, R. 1979. On the epistemological status of semantic networks. In Asso-
ciative Networks, ed. Findler (Academic).

Brachman, R. 1982. What IS-A and isn’t. In Proceedings of CSCSI-82, Saskatoon.

Braddick, O. 1974. A short range process in apparent motion. Vision Research
14: 519-528.

Brooks, R. 1981. Symbolic reasoning among 3D models and 2D images. Artificial
Intelligence 17: 285—-348.

Bugelski, B, and D. Alampay. 1962. The role of frequency in developing per-
ceptual sets. Canadian Journal of Psychology 15: 205—-211.

Cooper, L., and R. Shepard. 1973. Chronometric studies of the rotation of mental
images. In Visual Information Processing, ed. Chase (Academic).

Down, B. 1983. Using Feedback in Understanding Motion. M. Sc. thesis, University
of Toronto.

Dretske, F. 1981. Knowledge and the Flow of Information. MIT Press.

Gibson, J. J. 1957. Optical motions and transformations as stimuli for visual
perception. Psychological Review 64, no. 5: 288—295.

Glazer, F. 1982. Multilevel Relaxation in Low Level Computer Vision. Report
TR 82-30, Department of Computer and Information Science, University of
Massachusetts, Amherst.

Hanson, A., and E. Riseman. 1978. VISIONS: A computer system for interpreting
scenes. In Computer Vision Systems, ed. Hanson and Riseman (Academic).

Hartley, D. 1749. Observations on man, his frame, his duty, and his expectations.
Reprinted in A Source Book in the History of Psychology, ed. Herrnstein and Boring
(Harvard University Press, 1968).

Hay, J. 1966. Optical motions and space perception: An extension of Gibson's
analysis. Psychological Review 73, no. 6: 550—565.



Tsotsos 416

Hinton, G., and T. Sejnowski. 1983. Optimal perceptual inference. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Washington,
D.C.

Hummel, R, and S. Zucker. 1980. On the Foundations of Relaxation Labelling
Processes. Report TR-80-7, Department of Electrical Engineering, McGill University.

Julesz, B. 1980. Spatial nonlinearities in the instantaneous perception of textures
with icentical power spectra. Philosophical Transactions of the Royal Society of London
290: 83—94.

Julesz, B, and R. Schumer. 1981. Early visual perception. Annual Review of Psychology
32:575~627.

Kanade, T. 1980. Survey: Region segmentation: Signal vs. semantics. Computer
Graphics and Image Processing 13: 279—297.

Kandel, E., and J. Schwartz, eds. 1981. Principles of Neural Science. Elsevier/North-
Holland.

Levesque, H, and ]. Mylopoulos. 1979. A procedural semantics for semantic
networks. In Associative Networks, ed. N. Findler (Academic).

Levine, M. 1978. A knowledge-based computer vision system. In Computer Vision
Systems, ed. Hanson and Riseman (Academic).

Mackworth, A. K. 1978. Vision research strategy: Black magic, metaphors, mech-
anisms, miniworlds, and maps. In Computer Vision Systems, ed. Hanson and Riseman
(Academic).

Mackworth, A. and W. Havens. 1982. Representing visual knowledge. IEEE
Computer 16, no. 10: 90—98.

Marr, D. 1982. Vision. Freeman.

Mill, J. 1829. Analysis of the phenomena of the human mind. Reprinted in A Source
Book in the History of Psychology, ed. Hermstein and Boring (Harvard University
Press, 1968).

Minsky, M. 1975. A framework for representing knowledge. In Phychology of
Computer Vision, ed. Winston (McGraw-Hill).

O'Rourke, ], and N. Badler. 1980. Model-based image analysis of human motion
using constraint propagation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 522—536.

Palmer, S. 1975. The effects of contextual scenes on the identification of objects.
Memory and Cognition 3: 519—526.

Sabbah, D. 1981. Design of a highly parallel visual recognition system. In Proceed-
ings of the International Joint Conference on Artificial Intelligence, Vancouver.



Representational Axes and Temporal Cooperative Processes 417

Tenenbaum, ., and H. Barrow. 1977. Experiments in interpretation guided seg-
mentation. Artificial Intelligence 8: 241-274.

Terzopoulos, D. 1982. Multi-Level Reconstruction of Visual Surfaces. Al Lab
Memo 671, Massachusetts Institute of Technology.

Treisman, A. 1982. Perceptual grouping and attention in visual search for features
and for objects. Journal of Experimental Psychology 8, no. 2: 194—214.

Treisman, A., and G. Gelade. 1980. A feature-integration theory of attention.
Cognitive Psychology 12: 97-136.

Treisman, A., and H. Schmidt. 1982. Illusory conjunctions in the perception of
objects. Cognitive Psychology 14: 107—141.

Tsotsos, ]. 1981a. Temporal event recognition: An application to left ventricular
performance assessment. In Proceedings of the International Joint Conference on
Artificial Intelligence, Vancouver.

Tsotsos, ]. 1981b. On classifying time-varying events. In Proceedings of the
Conference on Pattern Recognition and Image Processing, Dallas.

Tsotsos, J. 1983. Medical knowledge and its representation: Problems and per-
spectives. In Proceedings of IEEE MEDCOMP’ 83.

Tsotsos, J. K., J. Mylopoulos, H. D. Covvey, and S. W. Zucker. 1980. A framework
for visual motion understanding. IEEE Transactions on Pattern Analysis and Machine
Intelligence 563—573.

Tsotsos, J. K, D. Covvey, ]. Mylopoulos, and P. McLaughlin. 1984. The role
of symbolic reasoning in left ventricular performance assessment: The ALVEN
system. In Ventricular Wall Motion, ed. Sigwart and Heintzen (Georg Thieme
Verlag).

Wertheimer, M. 1923. Untersuchung zur Lehre von der Gestalt. IL. Psychologische
Forschung 4: 301-350.

Zucker, S. W. 1978a. Vertical and horizontal processes in low level vision. In
Computer Vision Systems, ed. Hanson and Riseman (Academic).

Zucker, S. W. 1978b. Production systems with feedback. In Pattern-Directed Inference
Systems, ed. Waterman and Hayes-Roth (Academic).

Zucker, S. W., R. A. Hummel, and A. Rosenfeld. 1977. An application of relaxation
labelling to line and curve enhancement. IEEE Transactions on Computers 26:
394—-403.



