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IMAGE UNDERSTANDING

Think about the process by which you understand what
you see. Can you determine what is happening and how it
is happening when you look out the window and notice
that your best friend is walking toward your door? As you
may guess, the process by which you arrived at this con-
clusion, and which caused you to go and open the door
pefore your friend knocked, is not a simple one. Ancient
philosophers worried about this problem. Biclogical scien-
tists have been studying the problem in earnest since Her-
mann von Helmholtz (1821-1894), commonly credited as
the father of modern perceptual science. Computer scien-
tists began looking at this problem only recently in these
terms, and the discipline of computer vision is a very
young one. The miracle of vision is not restricted to the
eye; it also involves the cortex and brain stem and re-
quires interactions with many other specific brain areas.
In this sense, vision may be considered an important as-
pect of AL It is the major source of input for man’s other
cognitive faculties.

This article discusses the aspects of vision that deal
with the understanding of visual information. Under-
standing in this context means the transformation of vi-
sual images (the input to the retina) into descriptions of
the world that can interface with other thought processes
and elicit appropriate action. The representation of these
descriptions and the process of their transformation are
not currently understood by the biological sciences. In Al,
researchers are concerned with the discovery of computa-
tional models that behave in the same ways that humans
do, and thus, representations and processes are defined
using the available computational tools.

Image understanding (IU) is the research area con-
cerned with the design and experimentation of computer
systems that integrate explicit models of a visual problem
domain with one or more methods for extracting features
from images and one or more methods for matching fea-
tures with domain models using a control structure. Given
a goal, or a reason for looking at a particular scene, these
systems produce descriptions of both the images and the
world scenes that the images represent.

The goal of an image-understanding system (IUS) is to
transform two-dimensional spatial (and, if appropriate to
the problem domain, time-varying) data into a description
of the three-dimensional spatio-temporal world. The de-
scription can take many forms, and the particular form
associated with a given implementation depends strongly
on the problem domain and task involved; it may range
from simple “yes-no” answers to full surface reconstruc-
tions of objects and anything in between. In the early to
mid-seventies, this activity was termed scene analysis.
Other terms for this are knowledge-based vision or high-
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level vision. IU is distinguished from model-based vision,
whose main goal is to locate specific models and derive
their transformation parameters in images (see OBJECT
rEcoGNITION). The descriptions sought in IUSs are more
general. Several survey papers have appeared on this
topic. The interested reader is particularly referred to pa-
pers by Binford (1982), Kanade (1977), Matsuyama
(1984), and Tsotsos (1984) as well as the excellent collec-
tion of papers in Computer Vision Systems (Hansen and
Risemon, 1978) and Readings in Computer Vision (Fisch-
ler and Firschein, 1987). Those readers interested in the
biological side of image understanding are referred to an
excellent book by Uttal (1981), A Taxonomy of Visual Pro-
cesses.

Integration is the key phrase when describing an IUS.
Research on IUSs has experimented with ways of inte-
grating existing techniques into systems and, in doing so,
has discovered problems and solutions that would not oth-
erwise have been uncovered. Integrated within a single
framework, an IUS must:

Extract Meaningful Two-Dimensional (2-D) Grouping
of Intensity-Location-Time Values. Images or image se-
quences contain a tremendous amount of information in
their raw form. The process of transformation thus begins
with the identification of groups of image entities, pixels.
These pixels are grouped by means of similarity of inten-
sity value, for example, over a particular spatial location.
They can also be grouped on the basis of intensity discon-
tinuity or similarity of change or constancy over time. The
assumption is that groups of pixels that exhibit some simi-
larity in their characteristics probably belong to specific
objects or events. Typical groupings are edges, regions,
and flow vectors.

Infer 3-D Surfaces, Volumes, Boundaries, Shadows,
Occlusion, Depth, Color, Motion. Using the groupings of
pixels and their characteristics, the next major transfor-
mational step is to infer larger groupings that correspond,
for example, to surfaces of objects or motion events. The
result of the inference may be quantitative or qualitative
depending on the problem task. The reason for the need
for inference is that the pixels by themselves do not con-
tain sufficient information for the unique determination
of the events or objects; other constraints or knowledge
must be applied. This knowledge can be of a variety of
forms, ranging from knowledge of the imaging process
including viewpoint, knowledge of the image formation
process including camera or sensor motion, and knowl-
edge of physical constraints on the world, to knowledge
of specific objects being viewed. Typically, the most
appropriate knowledge to use is an open question, but
the simplest and least application-specific knowledge is
preferred.

Group Information Into Unique Physical Entities. Sur-
faces can be connected to form 3—D objects, and changes in
trajectories can be joined to describe motions of specific
types. Again, the original pixel values do not contain suffi-
cient information for this process, and additional knowl-
edge must be applied. This knowledge is perhaps in the
form of connectivity and continuity constraints, and in
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many cases these are embedded in explicit models of ob-
Jjects of the domain.

Transform Image-Centered Representations Into
World-Centered Representations. To this point the de-
scriptions created have all been in terms of a coordinate
system that is “image centered” (also called “viewer cen-
tered” or “retinotopic”). A key transformation is to convert
this coordinate system to one that is “world centered”
(also called “object centered”), that is, the description is no
longer dependent on specific locations in images. This is a
crucial step—otherwise, the stored models must be repli-
cated for each possible location and orientation in space.

Label Entities Depending on System Goals and World
Models. It almost never occurs that humans are given a
picture or told to look out the window and asked to de-
scribe everything that is seen in a high and uniform de-
gree of detail. Typically a scene is viewed for a reason.
What exactly this goal is has direct impact on how the
scene is described, which objects and events are described
in detail; and which are not. Second, scenes are always
described based on what is known about the world; they
are described in terms of the domain that is being viewed.
A factory scene, for example, is almost never described in
terms of a hospital environment—that would not be a
useful description (unless metaphoric use is the goall).
This knowledge base permits the choice of the most appro-
priate “labels” to associate with objects and events of the
scene. Labels are typically the natural-language words or
phrases that are used in the applications domain. The
process of finding labels and their associated models that
are relevant is called “search.” Models that are deemed
relevant may be termed “hypotheses.” Each hypothesis
must be “matched” against the data extracted from the
images. In the case where the data is insufficient to verify
a model, “expectations” may be generated that guide fur-
ther analysis of the images. Labels are necessary for com-
munication to other components of a complete intelligent
system that must use interpreted visual information. The
label set forms the language of communication between
vision and the remainder of the intelligent system.

Infer Relationships Among Entities. In viewing a
scene, not only are individual objects and events recog-
nized but they are also interrelated. Looking out the win-
dow, for example, one may see a tree in a lawn, a caron a
driveway, a boy walking along the street, or a girl playing
on a swing set. The relationships may play an important
role in assisting the labeling process as well. These rela-
tionships form a spatio-temporal context for objects and
events.

Construct a Consistent Internal Description. This
really applies to all levels of the transformation process
that is being described here. The output of an image-un-
derstanding system is a representation of the image con-
tents, usually called an “interpretation.” Care is required,
however, in defining what an interpretation actually in-
volves. Little attention has been given to this, and current
systems employ whatever representation for an interpre-
tation is convenient and appropriate to the problem do-
main. Basically, an interpretation consists of inferred
facts, relationships among facts, and representations of

physical form. Issues of consistency and foundations of the
underlying representational formalism are important, yet
they have not received much attention with the IUS com.
munity. The output of an IUS usually takes one of twg
forms: a graphic rendition of the objects recognized is dis-
played, perhaps with natural-language labels identifying
various parts, or textual output describing the character.
istics of the objects observed and recognized is generated.
Some systems employ both methods, and the choice de-
pends on the particular problem domain being addressed.

Two basic questions arise when describing an IUS to
the uninitiated. The first question is “Why did this field
arise as distinct from so-called low-level vision or early
vision?” There are two main reasons for the distinction:
the bottom-up approach (see PROCESSING, BOTTOM-UP AND TOP.
powN) embodied in early vision schemes is inadequate for
the generation of complete symbolic descriptions of visual
input, and there is a need to describe visual input using
the same terminology as the problem domain. There are
several basic realities that impact the design of image-
understanding systems. The first is that images undercon-
strain the scenes that they represent. The reason is
straightforward: in human vision, a 3-D scene undergoes
a perspective projection onto a 2-D retina in order to be-
come an image. Thus, much information is lost, particu-
larly depth information. The image is just a snapshot in
time of the scene, and both spatial as well as temporal
continuity information is lost. Further, the image created
is a distorted view of the scene that it represents. The
distortion is not only due to the perspective transforma-
tion, but, also, there is noise involved in the image crea-
tion process. Finally, a purely bottom-up (or data-di-
rected) approach does not lead to unambiguous results in
all cases. A data-directed scheme considers all the data
and tries to follow through on every hypothesis generated.
Consideration of all data and all possible models in a sys-
tem of size and scope comparable to the human visual
system leads to combinatorial explosion and is thus an
intractable approach. Moreover, it can be nonconvergent,
can only produce conclusions that are derivable directly or
indirectly from the input data, and cannot focus or direct
the search toward a desired solution.

A vision system must be able to represent and use a
very large number of object and event models. If the input
is naturally ambiguous, a purely bottom-up activation of
models will lead to a much larger set of models to consider
than is necessary or salient. The working hypothesis of
IUSs is that domain knowledge (qv), in addition to the
bottom-up processes, can assist in the disambiguation pro-
cess as well as reduce the combinatorial problem. How
that knowledge is to be used is a key problem.

The second question that often arises is “Is image un-
derstanding computationally the same as speech under-
standing?” On the surface, it may seem that the tech-
niques applicable to the speech understanding (qv)
problem are directly applicable to the image-understand-
ing problem. A simplified view of the speech understand-
ing process leads to this conclusion. The differences arise
if content is considered, rather than form alone. Speech
understanding (qv) may be regarded as the recognition of



phonemes, the grouping of phonemes into words, the
grouping of words into sequences, the parsing of word se-
quences into sentences, and the interpretation of the
meaning of the sentences. Indeed, in a paper by Woods
(1978), the similarity is presented in some detail. Woods
speculates on the applicability of the HWIM architecture
for the image-understanding problem and concludes that
it may be worth the attempt. However, a closer examina-
tion of the differences between speech and image interpre-
tation tasks reveals that the image-understanding task is
significantly different and more difficult.

The similarities between the speech and image tasks
are many. Both domains exhibit inherent ambiguity in
the signal, and thus signal characteristics alone are insuf-
ficient for interpretation. Reliability of interpretation can
be increased by the use of redundancy provided by knowl-
edge of vocabulary, syntax, semantics, and pragmatic con-
siderations; and both domains seem to involve a hierarchi-
cal abstraction mechanism. The differences include the
facts that: (a) speech exhibits a single spatial dimension
(amplitude) with a necessary temporal dimension,
whereas images display two spatial dimensions as well as
the temporal dimension; (b) a speech segment has two
boundary points, whereas an image segment, as a spatial
region, has a large number of boundary points; (c) speech
has a relatively small vocabulary that is well documented
(eg, in dictionaries) and images have much larger, undoc-
umented vocabularies; (d) grammars have been devised
for languages, but no such grammars exist for visual data;
(e) although speech differs depending on the speaker, im-
ages vary much more because of viewpoint, illumination,
spatial position, and orientation of objects, and occlusion;
(f) speech has a convenient and well-accepted abstract de-
scription, namely, letters and words, whereas images do
not; and (g) the speech signal is spatially one-dimensional,
and when sampled by the ear, there is no equivalent of the
projection of a 3-D scene onto a 2-D retina. Thus, it seems
that the image-understanding situation is radically differ-
ent, particularly in combinatorial terms, and it is for this
reason that very different solutions have appeared.

REPRESENTATIONAL AND CONTROL REQUIREMENTS

This section attempts to summarize the experience of the
IU community in the design and implementation of IUSs
with a statement of components currently believed to be
necessary for vision systems. It should be clear that this is
not a formal definition of an IUS in a strict sense; many of
the requirements are really topics for further research.
The section does not contain specific references; instead, it
refers to other entries in this encyclopedia. Specific solu-
tions and vision systems and how they deal with each of
these requirements appear in a subsequent section.

Representational Requirements

Many IUSs distinguish three levels of representations: a
low level, an intermediate level, and a high level. These
levels do not necessarily refer to particular types of for-
malisms but rather simply point out that in the interpre-
tation process, a transformation of representations into
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more abstract ones is required and that typically three
levels of abstraction are considered. These levels can usu-
ally be characterized as follows: Low level includes image
primitives such as edges, texture elements, or regions;
intermediate level includes boundaries, surfaces and vol-
umes; and high level includes objects, scenes, or events.
There is no reason why there should be only three levels,
and in fact, the task of transforming representations may
be made easier by considering smaller jumps between rep-
resentations. It should be clear in the descriptions that
follow which level or levels are being addressed.

Representation of Prototypical Concepts. A prototype
provides a generalized definition of the components, at-
tributes, and relationships that must be confirmed of a
particular concept under consideration in order to be able
to make the deduction that the particular concept is an
instance of the prototypical concept. A prototype would be
a complex structure spanning many levels of description
in order to adequately capture surfaces, volumes, and
other events, to construct discrete objects into more com-
plex ones, to define spatial, temporal, and functional rela-
tionships for each object, and to assert constraints that
must be satisfied in order for a particular object in a scene
to be identified.

Concept Organization. Three kinds of abstraction are
commonly used, namely, feature aggregation, called
“PART-OF”, concept specialization, called “IS-A”, and in-
stantiation, called “INSTANCE-OF”. The PART-OF hier-
archy can be considered as an organization for the aggre-
gation of concepts into more abstract ones or as an
organization for the decomposition of concepts into more
primitive ones, depending on which direction it is tra-
versed. The leaves of the PART-OF hierarchy are discrete
concepts and may represent image features. It should be
pointed out that concept structure does not necessarily
mean physical structure only, but similar mechanisms
with different semantics may be used to also represent
logical components of concepts. IS-A is a relationship be-
tween two concepts, one of which is a specialization of the
other. An important property of the IS-A relationship is
inheritance of properties from parent to child concept,
thus eliminating the need for repetition of properties in
each concept. Finally, the relationship between prototypi-
cal knowledge and observed tokens is the INSTANCE-OF
relationship. These three relationships are typically used
in conjunction with one another. Consideration of the se-
mantics of these relationships is important, and such is-
sues are discussed elsewhere (see INHERITANCE HIERARCHY).

Spatial Knowledge. This is perhaps the main type of
knowledge that most vision systems employ. This includes
spatial relationships (such as “above,” “between,” “left
of”), form information (points, curves, regions, surfaces,
and volumes), location in space, geometry, and continuity
constraints (see REASONING, spaTIaL). Spatial constraints for
grouping have appeared in the Gestalt literature in psy-
chology and include the tendencies to group using smooth-
ness of form, continuity of form, spatial proximity, and
symmetry. The PART-OF relationship is used to repre-
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sent aggregates of simple forms into more complex ones.
Properties or attributes of spatial forms are also required,
namely, size, orientation, contrast, reflectance, curvature,
texture, and color. Maps are common forms of spatial
knowledge representation, particularly for vision systems
dealing with domains such as aerial photographs or navi-
gation tasks.

Temporal Knowledge. Information about temporal con-
straints and time is not only necessary for the interpreta-
tion of spatio-temporal images but can also provide a con-
text in which spatial information can be interpreted. Time
can provide another source of constraints on image objects
and events. Temporal constraints for motion groupings, in
the Gestalt sense, include the tendencies to group using
similarity of motion. The basic types of temporal informa-
tion include time instants; durations and time intervals;
rates, such as speed or acceleration; and temporal rela-
tions such as “before,” “during,” or “start.” Each of these
has meaning only if associated with some spatial event as
well. PART-OF and IS-A relationships can be used for
grouping and organizing spatio-temporal concepts in
much the same fashion as for purely spatial concepts. A
difficulty with the inclusion of temporal information into
an IUS is that an implicit claim is made of existential
dependency. That is, if a relationship such as “object A
appears before object B” is included in a knowledge base,
and object B is observed, then according to the knowledge
base, it must be true that object A must have appeared
previously (see REASONING, TEMPORAL).

The Scale Problem. It has been well understood since
the early days of computer vision that spatial and spatio-
temporal events in images exhibit a natural “scale.” They
are large or small in spatial extent and/or temporal dura-
tion with respect to scale, for example. This problem is
different than the image resolution or coarseness problem,
and there is no relationship between the two. It is impor-
tant that an IUS deal with this as well. There are implica-
tions not only for the design of the image-specific opera-
tions that extract image events (a given operator cannot
be optimal for all scales and thus is limited for a particu-
lar range of events that it detects well) but also for the
choice of representational and control scheme. If spatio-
temporal events require representation at multiple scales,
the matching and reasoning processes must also be able to
deal with the multiple scales. The unification of informa-
tion from multiple scales into a single representation is
important (see SCALE SPACE).

Description by Comparison and Differentiation. Similar-
ity measures can be used to assist in the determination of
other relevant hypotheses when matching of a hypothesis
fails. This is useful in the control of growth of the hypothe-
sis space as well as for displaying a more intelligent guid-
ance scheme than random choice of alternates. The simi-
larity relation wusually relates mutually exclusive
hypotheses. The relation involves the explicit representa-
tion of possible matching failures, the context within
which the match failure occurred, binding information
relevant to the alternative hypothesis, as well as the al-

ternate hypothesis. Thus, the selection of alternatives ig
guided by the reasons for the failure.

Inference and Control Requirements

A brief note is in order before continuing this section ¢n
the difference between inference and control, particularly
since in some works they are used as synonyms. Inference
refers to the process of deriving new, not explicitly repre-
sented facts from currently known facts. There are many
methods available for this task, and they are discussed in
detail in other entries (see INDUCTVE INFERENCE; INFERENCE;
ReasonING). Control refers to the process that selects which
of the many inference, search, and matching techniques
should be applied at a particular stage of processing. The
remainder of this section briefly discusses these issues and
others in roughly the order that a designer of a typical
image-understanding system would confront them.

Search and Hypothesis Activation. The basic interpreta-
tion paradigm used in IUSs, as is developed later in the
Historical Perspective and Techniques section, is “hypoth-
esize and test.” There are several aspects to this, and these
are described in turn beginning with search and hypothe-
sis activation. A general vision system must contain a
very large number of models that represent prototypical
objects, events, and scenes. It is computationally prohibi-
tive to match image features with all of them, and there-
fore, search schemes are employed to reduce the number
of models that are considered. Only the salient models
need be considered, and the determination of which are
salient is termed the “indexing” problem. The catalog of
search methods includes breadth-first, depth-first, hill
climbing, best-first, dynamic programming, branch-and-
bound, A*, beam search, information gathering or con-
straint satisfaction, relaxation labeling processes, and
production systems. These are all described elsewhere (see
A* ALGORITHM; SEARCH, BEAM; CONSTRAINT SATISFACTION; RULE-
BASED SYSTEMS; SEARCH, BEST-FIRST; SEARCH, BRANCH-AND-BOUND;
SearcH, pEPTH.FIRST). A different categorization of search
types, and one that is more frequently found in the IUS
literature, is in terms of knowledge interactions. The fol-
lowing schemes are described below: model-directed
search, goal-directed search, data-directed search, failure-
directed search, temporally-directed search, hierarchical
models, heterarchical models, blackboard models, and
beam search. The choice of search method employed de-
pends on a number of factors, including the form of the
representation over which the search is to be performed,
the potential complexity problems, and the goals of the
search process.

Saliency of a model depends on the statement of goals
for the search process. The search can be guided by 2
number of trigger features, for example, and any models
that are encountered that embody those features are se-
lected. The selection of a model for further consideration is
termed “hypothesis activation.” A search process that
leads to a very large set of active hypotheses is not desired
since the object of search is to reduce the space of models.

Matching and Hypothesis Testing. Once a set of active
hypotheses has been determined, further consideration of



each hypothesis takes place. The first task to be carried
out is to match the active hypothesis to the data. It is
important to note that data here do not necessarily only
mean image-specific information. Matching is defined as
the comparison of two representations in order to discover
their similarities and differences. Usually, a matching
process in vision compares representations at different
levels of abstraction and thus is one of the mechanisms for
transforming a given representation into a more abstract
one. The result of a match is a representation of the simi-
larities and differences between the given representations
and may include an associated certainty or strength of
belief in the degree of match.

The specific matching methods used depend largely on
the representational formalisms that are used to code the
data being compared. They can range from image—image
matching, subgraph isomorphisms, or shape matching, to
matching only selected features with a model, such as
identifying structural components. Matching processes,
particularly ones that involve matching images directly,
are usually very sensitive to variations in illumination,
shading, viewpoint, and 3-D orientation. It is preferred,
therefore, to match abstract descriptions such as image
features against models in order to overcome some of
these problems. However, for 3-D models it is not always
the case that image features can trigger proper models for
consideration. Rather, the process must also involve the
determination of the projection of the model that can be
matched (see TEMPLATE MATCHING).

Generation and Use of Expectations. Expectations are
beliefs as to what exists in the spatio-temporal context of
the scene. The concept of expectation-directed vision is a
common one that appears in most systems. Expectations
must bridge representations in a downward direction, go-
ing from models to image appearance. Projection is a term
commonly used to denote the connection between repre-
sentations of the same concept but in differing domains. It
is, for example, the relationship between a prototypical
object and its actual appearance in an image. Thus, a
mechanism is required that takes object position, lighting,
observer motion, temporal continuity, and viewpoint into
account to create an internal representation of an object’s
appearance in an image. Complete projections may not
always be necessary, and in most cases it seems that ex-
pectations of important distinguishing features or struc-
tures are sufficient. The most common use of expectations
is in directing image-specific processes in the extraction of
image features not previously found (see also ParsiNG).

Change and Focus of Attention. Even the best of search
and hypothesis activation schemes will often lead to very
large hypothesis sets. Computing resources are always
limited, and thus the allocation of resources must be made
FO those hypotheses that are most likely to lead to progress
in the interpretation task. This can be done in a number of
ways, including the use of standard operating system
measures for resource allocation, as were used in an aug-
mented fashion in HEARSAY (Erman and co-workers,
1980), ranking hypotheses by means of certainty or good-
ness-of-fit estimates, or by considering the potential of a
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hypothesis in conjunction with the expense that would be
incurred in its evaluation. These best hypotheses, which
are usually those that are confirmed or virtually con-
firmed, are also termed “islands of reliability.”

Not only is it important to determine a focus of atten-
tion but it is also important to determine when to abandon
a current focus as unproductive. The change of focus can
be determined in one of two ways: the focus could be re-
computed each time it was required or it could remain
fixed and only change when circumstances necessitated
the change. The latter is clearly more desirable; yet mech-
anisms for its implementation are few. It should be
pointed out that a focus of attention does not necessarily
refer only to a hypothesis set but may also refer to a region
on an image or a subset of some representation.

One important type of perceptual attention is that re-
ferred to by the term “active vision” (see EARLY VISION; Vi
suaL REcovery). Active perceptual strategies, which pro-
vide for dynamic changes in the image acquisition
process, are useful in at least the following ways: to see a
portion of the visual field otherwise hidden; to compensate
for spatial non-uniformity of a processing mechanism; to
increase spatial resolition; to disambiguate aspects of the
visual world (through induced motion, or lighting changes
for example); to enhance the efficiency of processing by
restricting the search space; and to provide for a better
mathematical problem formulation. All of the above tac-
itly assume that some hypothesize-and-test mechanism is
at work. Only if hypotheses are available, can a particular
action due to an active perception mechanism actually
yield benefits. Otherwise the search space is simply too
large.

Certainty and Strength of Belief. The use of certainty
measures in computer vision arose due to two main rea-
sons: biological visual systems employ firing rate (which
may be thought of as a strength of response), as the almost
exclusive means of neural communication, and computa-
tional processes available currently are quite unreliable.
This strength of response may be thought of as brightness
for simplicity. Lateral inhibition (one of the processes of
neural communication), whereby neurons can inhibit the
response of neighboring ones based mainly on magnitude
of the firing rate, is a common process, if not ubiquitous. It
motivated the use of relaxation labeling processes in vi-
sion. In relaxation, the strength of response is termed
“certainty,” and is often used as a measure of reliability of
a corresponding decision process, for example, the good-
ness of fit of a line to the data. Since visual data are
inherently noisy due to their signal nature, measures of
reliability are important in the subsequent use of infor-
mation derived using unreliable processes.

Yet another use of certainty is in hypothesis ranking.
The ranking of hypotheses is useful not only for the deter-
mination of a focus of attention but also for determining
the best interpretation. Most schemes introduce some
amount of domain dependence into the control structure,
and this seems to lead to problems with respect to general-
ity. An important problem is the combination of certain-
ties or evidence from many sources.
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Inference and Goal Satisfaction. Inference is the process
by which a set of facts or models is used in conjunction
with a set of data items to derive new facts that are not
explicitly present in either. It is also called reasoning. The
many forms of reasoning include logical deduction, inheri-
tance, default reasoning, and instantiation. (See INHERI-
TANCE HIERARCHY; REASONING, DEFAULT.)

However, it should be pointed out that the vision prob-
lem adds a few different wrinkles to this task that may not
appear in many other reasoning processes. It is not true in
general that the data set is complete or correct, and pro-
cessses that can reliably draw inferences from incomplete
data are required. Second, since vision is inherently noisy
and as described above requires reliability measures, in-
ference schemes should also permit reliability measures
to be attached to derived conclusions. Finally, since the
process of vision involves a transformation from images to
a final description through many intermediate represen-
tations, a reasoning scheme must be able to cross between
several representations.

Most IUSs are not explicitly driven by a goal when
interpreting images. They typically have implicit goals,
such as to describe the scene in terms of volumetric primi-
tives, to describe everything in as much detail as possible,
or to describe the scene in the most specific terms possible.
Human vision usually does involve a goal of some kind,
and the area of Al that is concerned with how to achieve
goals given a problem is called “planning.” Systems that
can plan an attack on a problem must contain meta-
knowledge, that is, knowledge about the knowledge that
the system has about the problem domain (see MEeTa-
KNOWLEDGE, META-RULES, AND META-REASONING). The meta-
knowledge allows the system to reason about its capabili-
ties and limitations explicitly. Such systems have a set of
operations that they can perform, and they know under
which circumstances the operations can be applied as well
as what the effects may be. In order to satisfy a goal, a
sequence of operations must be determined that, in a
stepwise fashion, will eventually lead to the goal. At-
tempts to find optimal plans usually are included in terms
of minimization of cost estimates or maximization of po-
tential for success. In vision the sequence of operators may
involve image feature extraction, model matching, and so
on (see PLANNING).

HISTORICAL PERSPECTIVE AND TECHNIQUES

The historical development of the techniques of image un-
derstanding provides an interesting reflection of the major
influences in the entire field of AL The emphasis in the IU
community has been primarily in the control structure,
and this discussion begins with the sequence of contribu-
tions that led to the current types of control mechanisms.
Rather, little emphasis has been placed on integrating the
best of the early vision schemes into IUSs, and one notices
the range of weak solutions to the extraction of features.
Little discussion is thus provided; however, in the descrip-
tion of control structures for specific systems, appropriate
notes are made.

Control Structures

The heart of virtually all IU systems is the control struyc.-
ture (qv). Features universal to all working IUSs are cy.
clic control involving feedback (see CyBERNETICS) and the
requirement of specific solutions to the problem of uncer.
tainty. This survey of the development of control structure
highlights only those systems that require and use ex-
plicit models of objects or events of the domain. Other
important contributions that impact IUSs are allocateq
their appropriate historical due but are not considered
part of the direct line of development. Finally, with twg
exceptions, the hypothesis of Marr and Nishihara (1978)
and the intrinsic image concept of Tenenbaum and Bay-
row (1977), only implemented and tested systems are de-
scribed in this section.

Developing the Cycle of Perception. Roberts was the
first (1965) to lay out a control scheme for organizing the
various components of a vision system. They are shown
pictorially in Figure 1. He defined several of the major
processing steps now found in all vision systems: extract
features from the image, in his case, lines; activate the
relevant models using those features; project the model’s
expectations into image space; and finally, choose the best
model depending on its match with the data. This is not a
true cycle, and because of the lack of feedback, it was very
sensitive to noisy input. Falk (1972) realized that Roberts’
work involved an assumption that would rarely be satis-
fied in real application domains, namely, that of noise-free
data. If noisy data were to be correctly handled, enhance-
ments to Roberts’ processing sequence were required
(1972). In Figure 2 Falk adds a new component, the fill in
incompleteness step, and closed the loop, allowing partly
interpreted data to assist in the further interpretation of
the scene. His program was called INTERPRET.

Shirai (1973) defined a system for finding lines in
blocks world scenes and interpreting the lines using
models of line junctions and vertices for polyhedral ob-
jects. Thus, he was able to use interpreted lines as guid-
ance in subsequent line finding. He first extracted fea-
tures from a reduced image, thus smoothing out some of
the noise and smaller detail features, and then used these
gross features in subsequent guidance. Shirai's cycle is
shown in Figure 3. Shirai, however, was not the first to
employ reduced images in a preprocessing stage. Kelly

Project models into
image space

\ Choose

best fit

Model activation via
image features

Extract line
drawing

\ \mage

Figure 1. The control structure of Roberts (1965).
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Figure 2. The control structure of Falk (187 2).

(1971) had the intuition that if an image that was reduced
in size was processed initially, instead of the full-size im-
age, much of the noise could be reduced, and the resulting
edges of lines could be used as a plan for where to find
edges and lines in the full image. This was applied to the
domain of face recognition. Kelly reduced an image to
64 x 64 pixel size, thus minimizing noise effects, and then
located the outlines of the faces. Those outlines then
formed a plan for the full-size image, limiting the search
space for the detailed facial outlines. However, Kelly’s
system contained no models and was a sequential two-step
process.

Several incarnations of the cycle appeared subse-
quently, and one example of note is presented here,
namely, the work of Tenenbaum and Barrow (1977) in
their interpretation-guided segmentation (IGS) program.
Their version of the cycle is shown in Figure 4. IGS experi-
mented with several types of knowledge sources for guid-
ance of the segmentation process: unguided knowledge,
interactive knowledge, both user driven and system
driven; models; and relational constraints. They con-
cluded that segmentation is improved with the applica-
tion of knowledge when compared to the unguided case,
and with little computational overhead—the more knowl-
edge, the faster the filtering process. Perhaps the most
elegant portrayal of the cycle of perception, and also the
coining of the term itself, is due to a contribution by Mack-
worth (1978) and is shown in Figure 5. This basic cycle
appears, in a variety of forms, in virtually all IUSs that
have appeared since. Kanade’s modification of the cycle
(1980) explicitly included the separation of scene domain

Interpretation

\ Verification

Extract features based
on interpretation

Extract most
obvious contours

image

Figure 3. The control structure of Shirai (1973).
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Figure 4. The interpretation-guided segmentation control struc-
ture of Tenenbaum and Barrow (1977).

and image domain considerations, a requirement that was
first pointed out by Huffman (1971) and also indepen-
dently by Clowes (1971). This refers to the difference be-
tween an object’s 2-D appearance in an image versus an
object’s 3-D representation in the world. Figure 6 portrays
Kanade's cycle.

Tsotsos and co-workers (1985) further elaborated the
model for the ALVEN system by specifying exactly at
which points of the cycle the different hypothesis activa-
tion (or indexing) methods are applied. In addition, since
his task was to understand visual motion, the element of
time was also added. To this point in the development of
the cycle of perception, although use had been made of
different representational tools for organizing models, no
explicit consideration had been given to how to best take
advantage of the organization. Tsotsos used the common
organizational tools of specialization (IS-A), decomposi-
tion (PART-OF), and SIMILARITY (mutual exclusion of
models, or winner take all) and add temporal precedence
in order to organize a large set of models. His cycle is

Model

/ verification \

Model Model
invocation elaboration

N e

Cue discovery

Image

Figure 5. The cycle of perception of Mackworth (1978).
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Figure 6. The control structure for Kanade (1980).

shown in Figure 7. Definitions of the different hypothesis
activation methods driven by knowledge organization re-
lationships were also provided by Tsotsos. The methods
are briefly summarized below.

Goal-Directed Activation. The goal of the vision system
is to find the most specific, or specialized, description in
the system’s repertoire for the image contents. The spe-
cialization of hypotheses involves top-down traversal,
from general to specific, on an IS-A hierarchy, moving
downward when concepts are verified. Verification of an
IS-A parent concept implies that perhaps one of its IS-A
children applies, although the confirmation of a concept
implies that its IS-A parents must also be true. Multiple
IS-A children can be activated, but a more efficient
scheme would be to activate one of the children if all chil-
dren form a mutually exclusive set, or one from several
such sets, and then allow failure-directed search to take
over,

/

/ Create instances

Refinements complete

Model-Directed Activation. The elaboration of models
involves top-down traversal of the PART-OF hierarchy,
This too implies a constrained form of hypothesize and
test for components of classes that reflect greater resolu-
tion of detail. Movement down the PART-OF hierarchy
forces activation of hypotheses corresponding to each of
the components of the PART-OF parent hypothesis.

Data-Directed Activation. The PART-OF hierarchy can
also be traversed bottom up in aggregation mode. Bottom-
up traversal implies a form of hypothesize and test, where
hypotheses activate other hypotheses that may have them
as components.

Failure-Directed Activation. Failure-directed search is
along the SIMILARITY dimension. Typically, several
SIMILARITY links will be activated for a given hypothe-
sis, and the resultant set of hypotheses is considered as a
discriminatory set, that is, at most, one of them may be
the correct one. SIMILARITY interacts with the PART-
OF relationship in that exceptions raised that specify
missing components are handled by the hypothesis’
PART-OF parent, the hypothesis that contains the con-
text within which the exception occurred.

Temporally Directed Activation. Temporal search is a
special case of model-directed search along the PART-OF
dimension. Concepts may represent compound temporal
events, such as sequences, simultaneous events, or over-
lapping events. In a sequence each element of the se-
quence has a PART-OF relationship with the event. Thus,
on activation of the class, it is meaningless to activate all
parts, as stated above, at the same time. Activation of the
parts only occurs when their particular temporal specifi-
cations are satisfied. Temporally-activated hypothesis in-
vocation and prediction is an instance of an active vision
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strategy. This necessarily requires time and image sam-
ples acquired over time.

Marr, usually credited with contributions only in early
vision, also had specific processes in mind for the high
levels of vision presented in his book Vision (1982). It
would indeed have been interesting to have seen an at-
tempt at implementation and testing of his ideas. Marr, in
his own words, viewed “recognition as a gradual process
that proceeds from the general to the specific and that
overlaps with, guides, and constrains the derivation of a
description from the image.” He proposed that a catalog of
models be constructed using volumetric primitives and
organized using a specialization hierarchy (IS-A) as well
as a decomposition hierarchy (PART-OF). Models were
selected based on the distribution of components along
principal axes of the derived volumetric primitives repre-
sented in the 3-D sketch. He proposed three indexing
schemes: The primary one was the “specificity index,” tra-
versal from general to specific models (goal-directed); the
secondary ones, used in support of the first, were the “ad-
junct index,” traversal from models to model components
(model-directed), and “parent index,” traversal from
model components to parent models (data-directed). The
model provided relative orientation constraints used to
determine absolute orientation. An image space processor
then related image-centered and object-centered descrip-
tions and computed relative lengths of component axes.
This new information can be used to disambiguate shapes
at the next level of specificity. It is interesting to note that
Marr did not propose a cycle of processing and that the 3-D
sketch represented all possible information derivable di-
rectly from the image. In general, this is not realizable,
and a scheme without feedback is insufficient.

In several models the issue of feedback and the rela-
tionship between explicit models and their appearance in
an image was mentioned. The projection of hypotheses
into image space is a difficult problem for which few solu-
tions exist. As pointed out previously, expectations have
been used in most IUSs since Kelly’s and Shirai’s work.
Expectations were used in the SEER system of Freuder
(1977) to guide region growing and identification of spe-
cific portions of a hammer. A thorough understanding of
human body motions and a model of the allowed joint
configuration enabled the design of a constraint propaga-
tion network that integrated current motions and known
body positions with hypothesized ones, producing ex-
pected locations in 8-D for given body joints (O’Rourke
and Badler, 1980). An interesting conclusion from the
ALVEN system’s use of expectations is that the informa-
tion contained in an IS-A hierarchy of concepts can be
exploited for the generation, verification, and modification
of expectations of actual object appearance in a sequence
of images. If expectations fail, movement up the hierarchy
to a more general concept provides the next best alterna-
tive consistent with the semantics of the interpretation.
However, the key problem of relating 3-D object view-
point-independent models to image-specific ones is still an
outstanding one. A good example of work on this topic is
the ACRONYM system (Brooks, 1981). Given a geometric
object model and viewpoint and illumination, ACRONYM
predicts partial object appearance in the image. That is,
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only the important features required for identification are
predicted since the whole problem is so computationally
expensive. Recently, an additional dimension to this prob-
lem has been added through active strategies. Califano,
Kjeldsen, and Bolle (1990) provide an interesting ap-
proach which uses models combined with foveation strate-
gies in order to deal with feedback, tractability, and inte-
gration of successive sensor fixations.

Heterarchical Models. A heterarchical model of vision
is one made up of a collection of separate modules, each
module performing some specialized task and each com-
municating with all others as appropriate. Freuder was
perhaps the first within the vision community to apply
such an idea in his system for recognizing tools called
SEER (1977). “Active knowledge” was his term for the use
of procedural knowledge in directing the control,
Freuder’s work is thus an early precursor to the recent
wave of interest in active perception strategies. Knowl-
edge was represented as semantic networks (gv). Nodes
represented objects and links represented how objects help
establish one another. Each object encoded procedural
knowledge, and together the objects formed the set of
modules, each communicating with other relevant mod-
ules.

Another form of heterarchy is the “demon” scheme,
where each knowledge source continuously monitors a
database of assertions about the images and of models to
see if its prerequisites are present. If found, the demon
then carries out some actions that may involve changes to
the database. Badler (1975) used a demon model for event
analysis, and each demon represented the knowledge re-
quired to recognize a particular event type. Two other
specific versions of heterarchy are presented by Nevatia
(1978) and Levine (1978). They provide two other views
for the composition of the collection of modules. They are
presented in Figures 8 and 9. Perhaps the main conclusion
that can be drawn from the heterarchical models is that as
the number of interacting modules grows, the communica-
tion and organization problems increase dramatically.

Hierarchical Models. Hierarchical models are com-
prised of a specialized collection of modules, but the com-
munication pathways are restricted, reflecting an order-
ing of both processing steps and levels of abstraction in
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Figure 8. The control structure of Nevatia (1978).
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Figure 9. The control structure of Levine (1978).

the computation. One of the best known is due to Barrow
and Tenenbaum (1978) and is diagrammed in Figure 10.
This model reflects a major contribution in representa-
tion, namely the idea of “intrinsic images.” This is de-
scribed in Spatial Relationships, below.

Another important hierarchical model that elaborates
on Barrow and Tenenbaum’s model is that of the
VISIONS system (Hanson and Riseman, 1978). This fills
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Image features
(edges, regions)

Date driven
.
Intrinsic images
(distance, orientation, reflectance, etc.)

Symbolic

Segmentation
Domain specific ¢ T

Interpretation
Goal driven

|

Figure 10. The control structure of Barrow and Tenenbaum
(1978).

- e

in several details regarding communication and contrg]
across the multiple levels of representation that are
present in all image-understanding systems. Yet another
specific type of hierarchical model emerged, conformip

with the basic definition and philosophy but also attempt.
ing to provide a solution to the spatial scale problem, Uhr
called these models “recognition cones” in his contribution
(1972), and they have also been termed “pyramid models”
(Tanimoto and Klinger, 1980). The major distinctiong
come from the facts that each layer of the cone computes
image properties at successively coarser resolutions and
each computation communicates only with computationg
occurring in layers immediately above or below or with
computations within the layer. An unfortunate result of
this idea is the linking of spatial scale with resolution; as
noted earlier, the optimal scale for the detection of specific
spatial forms has little relationship to image resolution.

Blackboard Models. Blackboard models (see Brack.
BOARD SYSTEMS) were borrowed for use in vision from the
HEARSAY work in speech understanding. In fact, they
are a specific form of heterarchy in that each knowledge
source (module) can communicate with any other. Knowl-
edge sources are organized hierarchically. The major dif-
ference and improvement over the versions of heterarchy
that were presented earlier is that the communication
occurred through a global data structure called a black-
board rather than the communication pathways being
fixed. The VISIONS system (Hanson and Riseman, 1978)
incorporates this idea as well as pyramid processes. The
knowledge sources defined are inference net, 2-D curve
fitting; 2-D shape; occlusion; special attribute matcher;
3-D shape; perspective; horizon; and object size. The
VISIONS structure is shown in Figure 11. The advan-
tages of blackboard models include their modularity; how-
ever, their utility in speech has not been repeated in vi-
sion, primarily because of the important differences
between speech and vision.

Beam Models. Once again, speech understanding influ-
enced the design of a vision system. In this case the
HARPY system (Lowerre and Reddy, 1980) influenced the
1980 design of the ARGOS system of Rubin (1980). Ru-
bin’s work is interesting because it was the only attempt
to use beam search (qv) (also called locus search) in vision.
Beam search produces a “beam,” a pruned search tree that
contains a list of near-miss alternatives around the best
path. Both signal and model characteristics are included
in this consideration. The scheme as realized in ARGOS is
not one that has promise for general-purpose vision sys-
tems. ARGOS looked at images of downtown Pittsburgh,
attempting to classify regions as sky, buildings, or moun-
tains, for example. The network over which the beam
search was performed was a large one whose nodes were
pixels or image regions and whose arcs were spatial rela-
tions.

Rule-Based Approaches. Rules (of the if <premise>
then <action> form) were introduced into vision at about
the same time that they appeared in production systems.
The introduction is due to Baird and Kelly (1974), who
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claimed that context is a necessary consideration in the
development of their paradigm for semantic picture recog-
nition. They used inference rules to incorporate contex-
tual considerations, and premises were features extracted
from images. More recently, perhaps due to the success of
the expert systems approach, several other vision systems
have appeared that utilize rule-based knowledge and rea-
soning (see RULE-BASED SYSTEMS).

Typically, pure data-directed reasoning is insufficient
as described above, and rules are fired in both goal-
directed (backward-chaining) and data-directed (forward-
chaining) modes (see PROCESSING, BOTTOM-UP AND TOP-DOWN).
Rules are used to represent various facts about images.
For example, in SPAM, the system of McKeown and co-
workers (1984), rules are used to encode spatial relation-
ships among entities in the scene as well as to encode
constraints on sizes and shapes of visual entities. Rule-
based reasoning is used to provide the system with the
best next task based on the strength of expectations as
well as for the generation of expectations. Other IUSs that
employ rule-based reasoning are the systems of Nagao
and Matsuyama (1980); Ohta (1980); Ferrie, Levine, and
Zucker (1982); and Riseman and Hanson (1984).

Representation Formalisms

The development of representational tools used in the IUS
community mirrors quite closely developments in other
subdisciplines of Al The use of heuristics (qv) reflects the

power-based era of AL The appearance of semantic net-
works (qv) in the memory-modeling community and their
use by the knowledge representation (qv) and language-
understanding communities (see NATURAL LANGUAGE UNDER-
sTANDING) influenced their use in TUSs. Blackboards and
beam searches were developed for the major speech-
understanding systems (HEARSAY and HARPY, respec-
tively) and subsequently appeared in vision systems.
Minsky’s (1975) frame theory (see Frames), developed with
a specific eye toward vision, was used in several vision
systems. The success of expert systems prompted the use
of rule-based approaches in IUSs as well.

Spatial Representations. Vision systems require the ex-
plicit representation of points, curves, surfaces, and vol-
umes. There are a number of schemes that are employed,
namely, points, line segments, splines, fractals, and gen-
eralized cylinders, among others. As an example, the
VISIONS system employs a representation of 3-D complex
surfaces and 2-D curves based on B-splines and surface
patches and also makes use of the PART-OF and
INSTANCE-OF relationships in building complex struc-
tures. ACRONYM uses a generalized cylinder representa-
tion in conjunction with PART-OF and IS-A organiza-
tions. There is no real consensus yet on what constitutes
an adequate set of primitives for spatial representations.
Discussions and examples can be found for several repre-
sentational points of view: Marr and Nishihara (1978) for



652 IMAGE UNDERSTANDING

generalized cylinders; Pentland (1985) for the super-quad-
ric approach; Kass, Witkin and Terzopoulos for snakes
(1988); Terzopoulos, Kass and Witkin for deformable,
symmetry-seeking 3-D models (1988); and Biederman
(1988) for geons, etc (see SHAPE).

Much work in representation and reasoning about space
has appeared outside the vision community. Comparison
of object location and the representation of the corre-
sponding relations is considered in Freeman (1975).
Kuipers (1978) describes his TOUR model for route-solv-
ing problems and discusses the spatial knowledge rele-
vant to that task. McDermott and Davis (1984) also in-
clude a representation for spatial knowledge and a scheme
for reasoning about it. However, both Kuipers and McDer-
mott and Davis were concerned with spatial route-finding
tasks, and this is not directly comparable to the reasoning
required for vision systems. Spatial representations are
covered in other entries (see REasoNING, sPaTIAL). The repre-
sentation of maps is quite straightforward and does not
require further elaboration. The interested reader should
consult articles on the MAPSEE (Mackworth and Havens,
1983) or HAWKEYE (Barrow and co-workers, 1977) sys-
tems.

Two specific representations can be considered major
contributions, namely, the schemes of Marr (1982) and
Barrow and Tenenbaum (1978). Marr proposed a progres-
sion of representations that he termed the “primal
sketch,” the 23-D sketch, and the 3-D sketch. The primal
sketch represented information about the 2-D image, pri-
marily intensity changes and their organization. The 2{-D
sketch represented the orientation and depth of surfaces
and discontinuity contours. Finally, the 3-D sketch repre-
sented shapes and their spatial organization in an object-
centered manner. In contrast, Barrow and Tenenbaum
claimed that the appropriate intermediate-level represen-
tation consisted of a number of separate feature maps, all
image centered, that perhaps interact in order to be com-
puted unambiguously. These features include surface dis-
continuities, range, surface orientation, velocity, and
color.

Heuristics. The use of heuristics (qv) appears in most
vision systems in one form or another. Systems that used
only heuristics, however, appeared only during the power-
based era of Al and do not really qualify as IUSs using the
definition requiring explicit object or event models. Those
systems typically deal with blocks-world scenes.

Semantic Networks. Semantic networks (qv), that is,
graph structures whose nodes represent objects or events
and whose arcs represent relationships between the ob-
jects and events, have made an important impact on IUSs.
Two examples are the work of Levine (1978) and that of
Badler (1975). Levine’s system deals with the interpreta-
tion of natural scenes, and he constructs a knowledge base
with nodes representing entities such as sky, road, and
house. Arcs represent spatial relations, such as left of,
above, or behind. Badler used the same idea but repre-
sents events as well as objects with nodes, whereas arcs
represent spatial as well as temporal relations.

Frames. Minsky’s frame theory (1975) was one of the
most influential works within the representation commuy.
nity, and since it was designed as a representation for
vision, it left a mark on the IUS community as wel].
Frames are data structures representing a prototypical
object or event. The components of the structure are slots
that are filled with specific instances of visual entities,
Slots may specify a type of instance, may specify a default
value that can be used if the instance is not found, and
may have associated constraints that relate one slot to
others. Frames, sometimes also called “schemata,” are
used in the SIGMA (Matsuyama and Hwang, 1985)
ALVEN (Tsotsos, 1985), ACRONYM (Brooks, 1981),
MAPSEE (Mackworth and Havens, 1983), and VISIONS
(Hanson and Riseman, 1978) systems among others.

The concept of a “representation space” was described
by Bobick and Bolles (1989) in an attempt to deal with the
integration of visual information over time as it was ac-
quired. This space is a lattice of evolving representations
as the certainty in an object’s description increases as
more data is acquired. This represents early work on an
important issue.

A large collection of frames poses a serious indexing
problem, and one solution for this is to organize the
frames into a semantic network. In such a representation
nodes are frames that represent objects or events, and arcs
are network organizational primitives, such as general-
ization, specialization and aggregation, decomposition.
The similarity relationship, motivated by Minsky, is
added to the ALVEN scheme, as well as a temporal prece-
dence dimension, as further organizational relations
among frames.

Rules. Rules may be used to encode object characteris-
tics, spatial relationships among objects, constraints on
shape and sizes, and so on, for use in an IUS. The use of
rules in the SPAM system (McKeown and co-workers,
1984) has already been mentioned. In the VISIONS sys-
tem (Parma and co-workers, 1980) rules are applied to the
attributes of the lines and regions in an intermediate rep-
resentation. Simple rules define ranges over a feature
value and, if fired, are considered as a vote for an object
label. Here image features include color, texture, shape,
size, and location, and feature values include length, loca-
tion, orientation, contrast, and width. They allow complex
combinations of simple rules. For example, they have &
rule that measures excess green present in grass by com-
puting the appropriate mean of color values in the R-G-B
ranges for pixels in the region in question. This approach
can also be found in the work of Nagao and Matsuyama
(1980), and Ohta (1980).

Reasoning and Uncertainty

Relaxation-Labelling Processes. Relaxation-labeling pro-
cesses appeared first as discrete constraint propagation
schemes and then as probabilistic ones (see REaSONING,
PLAUSIBLE). The primary difference between the discrete
and continuous schemes is that decisions in the discreté
case are binary—a label is either true or it is removed
from consideration—and in the continuous case, labels



have an associated strength that is increased or decreased
depending on the constraints imposed on it by its neigh-
boring context. One may think of strength in this context
as a measure of goodness of fit—it is not a probability in
the formal sense (see Hummel and Zucker, 1980, on con-
tinuous relaxation). Relaxation labeling is commonly
used in recognition cone approaches, within layers of the
cone, and hierarchically between layers. Also, the excur-
sion into a time-varying continuous relaxation scheme
called “temporal cooperative computation” is presented by
Tsotsos (1987).

Evidential Reasoning. One method for making decisions
based on uncertain information is the use of Bayesian
probabilities. This method is described elsewhere (see
BAYESIAN INFERENCE METHODS). Another method for combin-
ing evidence in order to draw conclusions that has been
applied in vision is the Dempster-Shafer Theory (qv). The
major difference between Dempster-Shafer and Bayesian
probabilities is that an explicit representation of partial
ignorance is provided. Belief is represented in the range
[0,1], and lower bounds within this interval are moved
higher and upper bounds are moved lower, reflecting the
addition of supporting or conflicting evidence, respec-
tively. The width of the remaining interval is regarded as
ignorance. This scheme is being applied in the VISIONS
work (Parma and co-workers, 1980).

Jepson and Richards (1990) have considered percep-
tual reasoning given beliefs of the world. They have pro-
posed a “lattice theory” where a lattice of belief states
reflects the possible interpretations of a scene. A local
maximum in the lattice partial ordering is the require-
ment for an acceptable percept.

Spatiotemporal Reasoning. Reasoning systems that deal
primarily with axioms whose propositions are spatial re-
lations or facts can be termed “spatial reasoners.” Simi-
larly, those dealing with temporal relations are “temporal
reasoners” (see REASONING, TEMPORAL), and those that deal
with geometric information are “geometric reasoners.”
Grouping processes, such as those reflected by inferences
along the PART-OF representation dimension, are also
included here. It is clear that the inclusion of such reason-
ing processes is important in IUSs. ACRONYM (Brooks,
1981) uses 3-D object models and can reason about com-
plex coordinate transforms of them. It also includes an
algebraic reasoner that reasons about sets of non-linear
algebraic symbolic inequalities and bounds and deter-
mines satisfying sets for those inequalities. Other systems
that explicitly address the problem of spatial reasoning
are SIGMA (Matsuyama and Hwang, 1985) and SPAM
(McKeown and co-workers, 1984). In both cases, the rea-
soning is 2-D and is based on image-centered representa-
tions. A specific type of spatial reasoning uses maps. The
Premise behind the use of maps is that explicit map-to-
Image correspondence can be derived using models of the
Imaging process and models of the terrain in the maps.

he correspondence can be used to guide the interpreta-
tion of detailed features of the image (See REasonng,
SPATIAL.)
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An example of an IUS that deals with temporal reason-
ing is the ALVEN system (Tsotsos, 1985). The form of
reasoning is very different than the temporal calculus of
Allen (1984), which is an example of the pure temporal
reasoning methods. Allen’s scheme was not intended for
vision, and it therefore displays several deficiencies that
are important for vision: it does not allow for strength of
belief in a temporal relation; it does not provide a recogni-
tion structure for detecting and labeling temporal rela-
tions; and it does not account for the fact that in a real-
time recognition situation, all data in time are not
available to the system. The ALVEN framework incorpo-
rates all of these points, in addition to the fact that all
temporal relations in ALVEN are really spatiotemporal.

Planning. As mentioned previously, planning (qv) has
played a role in vision since Kelly first used plans in his
program for face recognition (1971). Kelly applied edge
operators to a reduced image in order to extract the face
outline and then expanded the outline to the original im-
age size and searched for details only within this predic-
tion window. This type of planning, using explicit predic-
tion windows, has been used in many systems.

An example of an IUS that uses planning with goal
satisfaction is Garvey's system (1976). In the domain of
indoor office scenes, Garvey defined operators such as
“find seat” (of a chair), “validate seat,” “grow seat,” and
similarly for all objects that were known. Sequences of
operators were planned and represented in an AND/OR
tree (see AND/OR crapus). Plans were scored depending
on cost and confidence. On execution, the outcome of par-
ticular steps can be used to modify other parts of the plan.
The system of Ballard, Brown, and Feldman (1978) also
has a limited planning capability. It is limited in that only
a very small number of operators are available, and no
plan hierarchy is constructed. In the domain of locating
ribs in chest radiographs, for example, Ballard and co-
workers included three independent rib-finding proce-
dures that were managed by an executive procedure.

EXAMPLE SYSTEMS FOR SPECIFIC PROBLEM DOMAINS

The description of systems provided in Table 1 is necessar-
ily abbreviated and incomplete. It does not include all
systems, nor all details for each system included. The ta-
ble presents information for each system, along with rele-
vant pointers to the literature. All systems employ the
basic cycle of perception in some form, perhaps with im-
portant enhancements that have been described previ-
ously, unless otherwise noted. Thus, they all involve the
interaction of both top-down and bottom-up methods. All
systems make the assumption that knowledge can com-
pensate for poor quality input and weak image-specific
segmentation processes. All systems have demonstrated
some reasonable level of performance, usually on a small
set of carefully chosen example images. The systems are
grouped according to application domain and are listed
alphabetically by the system name or the principal au-
thor’s name. Within each category, at least one example of



Table 1. Example Systems for Specific Problem Domains

Not available
(see Figure 14)

H. Novak

Y. Ohta

Kyoto University

Novak, 1983

Ohta, 1980
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Bscenes

Outdoor color
scenes of sky,
trees, buildings,
and roads

verbs of locomotion
hierarchically orga-
nized; 3-D shape;
temporal knowledge;
IS-A; PART-OF

2-D spatial knowledge;
color parameter
representation; regions
and attributes; rules
for object properties
and relations

Name Authors Institution References Domain Representation Control
Aerial Photographs
ACRONYM T. Binford Stanford University Brooks, 1981; 1983; Airport scenes 3-D geometric models; Line finding; rule-based
(see Figure 12) R. Brooks Brooks and co- generalized cones; problem solving; graph
R. Greiner workers, 1979 ellipses, ribbons; matching between
frames; PART-OF; IS- prediction, graph, and
A; object graphs for picture; graph of image
geometric constraints; features; prediction of
restriction graphs for object appearance
algebraic constraints; based on viewpoint and
context graph; coarse- illumination, but only
to-fine detail; models of important features;
independent of view- geometric reasoning;
point; user interface algebraic reasoning
for model definition
using volumetric
primitives
Not available D. Ballard University of Rochester Ballard and co- Ship dock scenes in 2-D spatial knowledge; Distributed control;
C. Brown workers, 1978 satellite photos semantic network; model-image mapping
dJ. Feldman meta-knowledge for via procedural knowl-
planning; sketch map edge of objects; execu-
as intermediate image tive chooses most likely
representation; mapping procedure
procedural knowledge
HAWKEYE H. Barrow SRI International Barrow and co- Aerial photographs 2-D topographic maps as Parametric correspon-
R. Bolles workers, 1977 symbolic scene model; dence for map match-
T. Garvey geometric camera ing camera model
T. Kremers model calibrated on land-
J. Tenenbaum marks, then used to
H. Wolf predict precise loca-
tions of other features
Not available W. Cole University of Southern Huertas and co- Airport scenes 2-D spatial knowledge; Hierarchical hypothesize.
A. Huertas California warkers, 1989 generic knowledge and-test; perceptual
R. Nevatia about airport and grouping for initial
associated structures; hypotheses; objects
structures represented decomposed into parts
by their parts and for image search
boundaries directed by hypotheses
MAPSEE-1, W. Havens University of British Mackworth, 1977; Freehand drawings 2.D spatial knowledge; Extended Waltz filtering
MAPSEE-2, A. Mackworth Columbia Mackworth and of maps on cartographic elements; to n-ary relations and
MAPSEE-3 J. Mulder Havens, 1983; satellite images schemata; IS-A; PART- hierarchies (hierarchi-
Mulder and co- OF; Waltz-like primary cal arc consistency);
workers, 1988 cues in drawings such region growing
as TEE, OBTUSE L,
MULTI; composition
and specialization
hierarchies; diserimi-
nation graphs
Not available T. Matsuyama Kyoto University Nagao and Matsu- Aerial photographs 2-D spatial knowledge; Blackboard-style special-
M. Nagao yama, 1980 of roads, houses, regions with attributes ized subsystems for
forests, fields, including spectral specialized features;
and rivers information; objects interpretation is image
defined using 2-D centered
heuristics
SIGMA V. Hwang Kyoto University, Matsuyama and Aerial photographs Frames; PART-OF; IS-A; Three communicating
T. Matsuyama University of Maryland Hwang, 1985 of roads, houses, rules attached to slots experts, geometric
forests, fields, for constraint and reasoner, model
and rivers instantiation inforra- selector, and low level;
tion; 2-D spatial intersection of predic-
knowledge; spectral tion areas in image-
knowledge centered representa-
tion; evidence
accumulation in image-
centered representation
SPAM W. Harvey Carnegie Mellon Univer- McKeown, Harvey, Airport scenes 2-D spatial knowledge; Short-term memory acts
(see Figure 13) J. McDermott sity and McDermott, pyramids for image as blackboard; dynamic
D. McKeown 1984 features; viewpoint programming for
dependent; short- and segmentation; local
long-term memory; graph matching for
relational database intermediate-level
representation; rela-
tional database
operations; production
system for high-level
representation; confi-
dence measures for
region-object
Outdoor Scenes
NAOS B. Neumann University of Hamburg Neumann and Street and traffic Case frames based on Linear programming for

matching; expectations
in time; question
answering (qv) and
connection with a
natural-language
system

Rule-based reasoning;
coarse-to-fine region
growing; rule applica-
bility ranked on
correctness value; focus
on best rules for
execution



Table 1. (continued)

Name

Authors

Institution

References

Domain

Representation

Control

SCHEMA

VISIONS
(see Figure 15)

Indoor Scenes

ABLS
(Address Block
Location System)

Not available

1GS
(see Figure 16)

PSEIKI

Medical Images

ALVEN
(see Figure 17)

Not available

dJ. Brolio
R. Collins
B. Draper
A. Hanson
E. Riseman

A. Hanson
E. Riseman
and many others

S. Srihari
C. Wang

T. Garvey

H. Barrow
J. Tenenbaum

K. Andress
A. Kak

H. Covvey
J. Mylopoulos
dJ. Tsotsos
S. Zucker

D. Ballard
C. Brown
J. Feldman

University of Massachu-
setts at Amherst

University of Massachu-
setts at Amherst

State University
of New York at Buffalo

SRI International

SRI International

Purdue University

University of Toronto

University of Rochester

Draper, Collins,
Brolio, Hanson,
and Riseman,
1989

Hanson and
Riseman, 1978;
1984; Parma,
Hanson, and
Riseman, 1980;
York, Hanson,
and Riseman,
1981

Wang and Srihari,
1988

Garvey, 1976

Tenenbaum and
Barrow, 1977

Andress and Kak,
1988

Tsotsos and co-
workers, 1980;
Tsotsos, 1985;
1987

Ballard, Brown,
and Feldman,
1978
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Outdoor scenes of
roads and houses

Outdoor color
scenes of houses
and trees

Localization of
mail labels

Office scenes of
known objects,
telephones,
desks, and chairs

Rooms, mechanical
equipment, and
landscapes

Hallway-following
and sidewalk-
following mobile
robot

Evaluation of
human left
ventricular
performance
from X-ray
movie

Identification of
ribs in chest
radiograph

Object schemas; PART-
OF; contexts and
scenes; 5-point cer-
tainty scale; rules;
strategies associated
with schemas

Initial development: 2-D
spatial knowledge; 3-D
spatial knowledge;
schemata organized
along PART-OF and
IS-A; more recent
development; rules for
object hypothesis and
focus of attention

Dependency graph
crganization for
knowledge sources;
rules with confidence
values; Dempster-
Shafer evidence
combination; statistical
mail database; hypoth-
esis, block and context
frames

3-D spatial knowledge;
relations; objects as
conjunctions of histo-
grams of local features;
regions are lists of
image samples or
bounding polygons in
space

2-D spatial knowledge;
region based; rela-
tional constraints;
object models as 3-D
polyhedral representa-
tions

Maps; production system
in OPS3; hierarchy of
scenes, objects, faces,
edges, vertices;
geometric constraints

2-D spatial knowledge;
spatiotemporal repre-
sentation; frames
organized with IS-A,
PART-OF, similarity
temporal precedence;
siots have attached
interslots constraints
for verification and
instantiation

See entry under Aerial
Photographs

Blackboard; hierarchical
knowledge source
organization; expecta-
tion; generation; data
and goal-driven
processing; distributed
processing architecture;
large number of
specialized knowledge
sources for computing
wide variety of scene
physical parameters

Initial development:
blackboard communica-
tion; processing cones
and relaxation for edge
and region extraction;
procedural knowledge
representation; more
recent development:
rule-based focus of
attention; region and
line algorithms without
relaxation; intermedi-
ate grouping and
organizational pro-
cesses; sensor and
representation fusion
during interpretation;
knowledge-directed
feedback to low level
processing; some effort
to integrate evidential
reasoning

Three-level hierarchical
blackboard; top-down
and bottom-up control

Based on planning of
operator sequences;
plans represented as
AND/OR tree; involved
three stages, acquire
samples, validate and
bound to object model;
operators are object
specific; cost/confidence
scoring measures

Generalized Waltz
filtering; semantic
region growing;
visibility matrix for 3-
D models computed
using camera model

Blackboard control; OPS3
demons; Dempster-
Shafer evidential
reasoning in hierarchi-
cal space; expectation
generation based on
current scene beliefs

Combination of model,
goal, data, failure, and
temporally directed
hypothesis activation;
temporal cooperative
computation for
hypothesis certainty
driven by knowledge
organization semantics;
temporal expectation
generation; expectation
failure handled by
prediction generaliza-
tion (see Figure 17)

See entry under Aerial
Photographs
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Table 1. (continued)

Name Authors Institution References Domain Representation Control
Not available F. Ferrie McGill University Ferrie, Levine, and Tracking cell 2-D spatial knowledge; Views next state predic-
M. Levine Zucker, 1982 motion and motion knowledge, tion and best-match
S. Zucker morphology in including shape selection as minimiza-
microphotograph changes; region based; tion problems; solution

image sequences

cell state changes
encoded as rules

similar in form to a
Newton-Raphson
method; rule inter.
preter for cell identifi-
cation and state
changes
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Figure 12. Example of the input and output from the ACRONYM system (Brooks, 1983). An
original image is shown, with three steps toward the labeling of the fuselage and wings (a—d).

Figure 13. (p. 657) Example of the input and output from the SPAM system (McKeown and co-workers, 1984). (a) Original image of an
airport scene; (b) region-based segmentation produced by SPAM; (c) the functional areas extracted by the system.
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7 S

A

{c)

(d)

Figure 14. Example of input and output from Ohta’s system (1980). (a) digitized input scene;
(b) result of preliminary segmentation; (¢) plan image; (d) result of meaningful segmentation
(S = sky, T = tree, B = building, R = road, C = car, CS = car shadow).

sample input and output of a system is provided. Where
more than one example is given, it will be for the purpose
of illustrating performance of different control structures.
The reader should not assume that the omission of exam-
ples for a particular system is a statement on the system’s
quality.

RESEARCH ISSUES

There are a great many issues outstanding in the field.
Perhaps the most important one, and one that is not
unique to IU, is the need for a scientific framework within
which to design, describe, experiment, and document ex-
periences in IUS building. Few if any attempts at inde-
pendent verification of claims made are carried out. In
other scientific fields, independent duplication of results is

a crucial component of the acceptance of a result as a
contribution to the field. The lack of much activity in
this area may be due to the lack of an overall framework
for vision research; the “big picture” within which indi-
vidual contributions can be placed and interrelated is
missing.

Most of the topics covered in this entry require further
research, and many issues have already been mentioned.
Additional topics specifically addressing the open prob-
lems of the IU field are given below.

What Is the Role of Domain Knowledge? Is its applica-
tion always necessary or does its application depend, per-
haps, on the complexity of the scenes being interpreted7
Many researchers in the vision community contend that
most, if not all, visual interpretation tasks can be carried
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Figure 15. Example of input and output from the VISIONS system (Riseman and Hanson, 1984).
(a, b) Original images; (c, d) final segmentation and labeling.
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Final Region Interpretations

Interpretations  Regions
Door

Wall

Floor

Picture
Tabletop
Chairseat
Chairback
Waste Basket

ONOOO D WN —

Figure 16. Example of input and output from the IGS system
(Tenenbaum and Barrow, 1977).

out without domain knowledge (qv), and this issue needs
to be explored more fully. A growing segment of the psy-
chology community raises the distinction between atten-
tive and preattentive vision. These are fundamentally dif-
ferent from the high-level/low-level distinctions that
computer vision draws and explicitly address the goals of
a system in viewing a particular scene as well as scene
complexity. The two visual processes are distinguished by
their parallel or serial nature, and domain knowledge
may play a role in each.

How Can the Best of the Early-Vision Schemes Be Inte-
grated with High-Level Schemes in a Coherent Manner?
There currently seems to be no real relationship between
the techniques used to extract image features and those
used to interpret them. Yet there must be an effective
interface, if not also efficient representation transforma-
tions, in biological systems.

What Is the Nature of Top-Down Feedback? Does this
only impact search schemes, or could it also play a role in
expectation generation, in fine tuning of image operators,

in priming of semantic concepts, or in bridging the gap
between image-centered and world-centered representa-
tions, and if so, how? Tsotsos has proven that visual tasks
(specifically those that can be cast as visual search prob.
lems) become significantly easier if task information is
provided (1989) in the same way as model-based visiop
uses models (see OBJECT RECOGNITION).

Does There Exist a Sufficient Set of Image Features for
Image Interpretation?

What Should be Done in Parallel and What Serially,
Why and How? How can computations be coordinated
and organized?

What is the Nature of the Mechanism That Allows for
the Combination of Evidence or Response Strengths?

How Can the Biological Sciences Motivate the Design of
Image-Understanding Systems? What goes on between
the input and the output is a totally unconstrained pro-
cess, and this points to the major objective in this field: the
discovery of computational models that can transform im-
ages plus world knowledge into scene interpretations.
Guidance from biological research on vision can assist in
providing some constraints on the characteristics of the
interpretation process. In Tsotsos (1988; 1990), an argu-
ment is presented which ties together a great deal of neu-
roanatomy, neurophysiology, and psychophysics with the
thread of complexity satisfaction. An architecture for
vision systems, both biclogical and machine, is derived
that satisfies the constraints for human-like visual per-
ception. Much more research along this line is needed
however.

Does a Representational Formalism Exist That Spans
the Many Required for Vision? Biological vision seems to
be nonlinear, time varying, hierarchical, and parallel
with a superimposed serial component. Do formalisms ex-
ist that can deal with this?

How Can Vision Systems be Integrated into Purposeful,
Intelligent Agents Such As Mobile Robots? This research
issue incorporates not only topics of vision, sensor and
robot control, but also most of Al, specifically knowledge
representation, planning, problem-solving, and human-
machine communication interfaces.

What Exactly Can Be Learned From System Building?
The bottom line is that although image-understanding
systems can be engineered to perform reasonably for a
tightly constrained domain, the engineering is not yét
completely based on sound scientific principles. There 13
still a long way to go.

Figure 17. Example of input and output from the ALVEN S}'S'
tem (Tsotsos, 1985). (a) Example of marker finding using motiof
hypothesis predictions; (b) highlighted extracted markers for oné
image of the image sequence; (¢, d) inward and outward patLerni
of motion, respectively, for a complete heart cycle; (e} textu?
output describing the performance characteristics and anomalies
detected by ALVEN.




(b)

LEFT VENTRICLE exhibits:
TRANSLATING—time interval (0, 6)

rate (mm/s) — 15, 33, 15, 33, 1, 21

trajectory (rad) — 4.71, 1.05, 1.24, 1.05, 1.24, 2.36

TRANSLATING—time interval (7, 15)
rate (mmvs) — 15, 15, 15, 15, 15, 15, 15, 15
trajectory (rad) — 4.71, 4.71, 4.71, 3.14, 4.71, 3.14, 0.00, 4.71

VOLUME CHANGE—time interval (0, 16)
rate (mls) — —57, ~216, —75, —168, ~186, —138, 2, 120, 57, 54,
120, 162, 90, 27, 45, 90, 80
specializations:
UNIFORMLY CONTRACTING during (0, 1)
SYSTOLE during (1, 6)
UNIFORMLY CONTRACTING during (2, 6)
UNIFORMLY EXPANDING during (7, 11)
DIASTOLE during (7, 16)
UNIFORMLY EXPANDING during (12, 14)
UNIFORMLY EXPANDING during (15, 16)

PERIMETER CHANGE—time interval (0, 6)
rate (mm/s) — 15, —150, 15, —165, —165, —105
specializations:
LENGTHENING during (0, 1)
SHORTENING during (1, 2)
LENGTHENING during (2, 3)
SHORTENING during (3, 6)

PERIMETER CHANGE—time interval (7, 8)
rate (mm/s) — 90
specializations:

LENGTHENING during (7, 8)

PERIMETER CHANGE—time interval (9, 16)
rate (mm/s) — 30, 75, 150, 60, 15, 60, 60, 60
specializations:

LENGTHENING during (9, 16)

WIDTH CHANGE—time interval (0, 16)
rate (mmJ/s) — —15, —15, —60, ~15, —60, —860, -60, —60, —60, 60,
75, 45, 45, 45, 45, —15, —15

LENGTH CHANGE—time interval (0, 16)
rate (mm/s) — 30, —45, —15, —60, —60, ~30, —30, 45, 15, 15, 15,
45, 45, 45, 45, 45, 45

Others:
Isometric contraction during (0, 1)
No translation during (6, 7)
No perimeter change during (6, 7)
No perimeter change during (8, 9)
No translation during (15, 16)

Exceptions to normal detected:
Mildly dyskinetic—contraction during (3, 4)
Ischemic anterior isometric relaxation during (6, 7)
Severely poor systole during (7, 7)

(e) Moderately dyskinetic—expansion during (9, 15)

661
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