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A Framework for Visual Motion Understanding
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Abstract—A framework for the abstraction of motion concepts from
sequences of images by computer is presented. The framework includes:

1) representation of knowledge for motion concepts that is based on
semantic networks; and

2) associated algorithms for recognizing these motion concepts.

These algorithms implement a form of feedback by allowing competi-
tion and cooperation among local hypotheses. They also allow a
change of attention mechanism that is based on similarity links between
knowledge units, and a hypothesis ranking scheme based on updating of
certainty factors that reflect the hypothesis set inertia.

The framework is being realized with a system called ALVEN. The
purpose behind this system is to provide an evolving research prototype
for experimenting with the analysis of certain classes of biomedical
imagery, and for refining and quantifying the body of relevant medicat
knowledge.

Index Terms— Artificial intelligence, computer vision, knowledge-
based systems, left ventricular wall motion analysis, motion under-
standing.

I. INTRODUCTION
Motivation

A FRAMEWORK has been developed for the abstraction
of motion concepts from sequences of images by com-
puter. This framework is being tested through the implemen-
tation of a system called ALVEN (A Left Ventricular Wall Mo-
tion Analysis Consultant) that analyzes films of the human left
ventricle and generates a conceptual description of the shapes
and motions exhibited by the left ventricular wall, noting ab-
normalities and unusual occurrences. A complete current de-
scription of ALVEN can be found in [9].

From an artificial intelligence point of view, the research
conducted in the ALVEN project is concerned with the prob-
lems inherent in designing computer-based “motion under-
standing” systems. In our view, this research has the potential
of contributing a new framework for research on computer vi-
sion which, unlike earlier ones, accounts fully for the “prag-
matics” of visual understanding (i.e., the context within which
each incoming picture should be analyzed). Clearly, such a
framework will not always be applicable. We claim, however,
that there are many domains for which representations are
most naturally structured around motion concepts, and in
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which motion information provides a useful guiding principle
for the analysis of images. The importance of this research for
expert computer vision systems rests on this claim.

The framework to be described is based on the assumption
that the design of an expert system for the performance of
some task requires the representation and use of knowledge
relevant to that task. This assumption has forced us to con-
front the problem of knowledge representation for shape and
motion concepts, as well as for concepts related to left ven-
tricular wall motion analysis. Furthermore, since most of this
knowledge is verbal and qualitative, we were forced to address
the interface between this kind of knowledge base and quanti-
tative image data.

From a medical point of view, ALVEN’s importance rests on
its ability to assess the human left ventricle (hereafter LV), as
a functioning muscle. This assessment must be based on the
velocity profile of the LV wall segments. This calculation of
such profiles and their descriptions in qualitative terms is a
problem that has not yet been tackled successfully by medical
researchers, although some progress has been made towards its
solution.

The visual data for assessing LV wall motion are provided by
X-ray cineangiography, with an image rate of 60 images/s.
When the heart muscle is impaired or damaged, abnormalities
occur regionally, and different segments of the LV often be-
have differently. Furthermore, there is some evidence that if
one segment is damaged, another may “overperform’ to make
up this deficit on a more global scale. Thus, if the ventricle is
to be assessed as a muscle, it must be assessed regionally, as
well as globally. The extent, velocity and acceleration of con-
traction must be measured for as many regions as are necessary
to determine muscle competence.

There are two central difficulties facing any approach to the
analysis of cinecardioangiograms: the huge number of images
that must be analyzed, and the poor quality of the individual
images due to X-ray dosage limitations. These difficulties
make an objective and consistent analysis very difficult for hu-
mans, and provide the motivation for selecting this problem
domain as the application area for our research. From a medi-
cal point of view, the aim of the research is twofold:

1) to produce a system that can aid in the qualitative and
quantitative analysis of cinecardioangiograms, and

2) to provide a framework for the representation and quan-
tification of medical knowledge about the dynamics of the hu-
man left ventricle.

ALVEN is a first step towards achieving these objectives.
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What is a Motion Understanding System?

Let us first define what we mean by the term “motion un-
derstanding” (MU). It is not enough to just determine the
movements or changes that occur between a pair of consecu-
tive images (“‘interimage descriptions” [7]). In many cases it
is possible (indeed, it is desirable) to use a single motion con-
cept to describe the changes exhibited in several consecutive
images. Such a motion term would abstract a summary de-
scription from the multitude of interimage descriptions gen-
erated for the sequence. As a simple example, consider a
sequence of images that show a person walking. If only inter-
image descriptions are used, the result is a complicated and
cumbersome set of terms. It is not only desirable, but it
would be necessary if we wish to claim that our system has
“understood” these movements, to summarize them as a
“walk” motion. Therefore, a system that can provide inter-
image descriptions as well as “sequence spanning” descrip-
tions, with the semantic components of the specific motion
terms used being stored in a knowledge base that is used to
guide the recognition process, will be termed a motion under-
standing system.

The problem of motion understanding can be broken down
into several subproblems.

1) Computer vision:

a) image segmentation and object recognition
b) object description
¢) motion detection
d) motion tracking
e) interimage movement description.
2) Representation of knowledge:
a) general temporal concept representation
b) problem domain motion concept representation
¢) recognition biased knowledge organization.

3) Recognition control structure:

a) integration of descriptive and visual concepts

b) change and focus of attention mechanisms

c) temporal segmentation

d) disambiguation due to object occlusion

e) goodness-of-fit measures

f) generation of low-level guidance

g) scene sampling rate considerations

h) artifactual motion handling, i.e., “temporal noise”
i) generation of sequence spanning descriptions.

In the main, past motion research has dealt with the prob-
lems under the first heading above—the vision aspects of mo-
tion [4], [7] with very little work in the last two main sub-
tasks. Our research follows generally the approaches of past
research in the vision aspects, but expands upon the represen-
tation and control aspects. Specifically, we address each of
the subtasks outlined above under the representation and con-
trol headings with the exception of disambiguation due to ob-
ject occlusion. In addition, we assume that all the motions are
two-dimensional (no depth information), that the observer is
fixed and plays no role in the descriptive process, and that
causal information and descriptions are not part of the sys-
tem’s repertoire. In order to simplify the process so that we
concentrate mainly on the study of motion, we assume that a
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conceptual description of the first image of the sequence is
provided.

II. REPRESENTATION OF MoTION CONCEPTS
Overview

Our representation has its roots in semantic network theory
[21, and in particular, in the PSN formalism [3]. Each mo-
tion concept has a frame associated with it that defines it. A
frame is not a fixed unit: it is definable by the user and may
encompass as large a knowledge unit as desired. Frames have
an arbitrary number of slots that form their parts, and each
slot has an associated #ype that refers to another frame, thus
defining a PART_OF hierarchy of description. Each level
down in this hierarchy provides a more detailed form of de-
scription for the motion concept, spanning all the levels be-
tween the most abstract motion terms to the picture elements
in the images. Slots come in two varieties: prerequisite and de-
pendent. Prerequisite slots specify concepts that must be ob-
served before the frame can be instantiated, while dependents
provide additional semantic components that are included
along with the frame concept on instantiation. In addition,
slots can have constraints and defaults associated with them,
and associated with each of those is an exception frame that is
generated when the constraint is violated by the input data.

A simple example of a frame is given below. It defines
the knowledge the system uses to recognize the concept of
contraction. It is defined in terms of the primitive frame
AREA_CHANGE.

frame AREA_CHANGE with
prerequisites
subj: CONTRACTILE _OBJECT;
time_int:TIME_INTERVAL:
start_a:AREA_VALUE;
end_a:AREA_VALUE;
end
frame CONTRACT iS—a@ AREA_CHANGE with
prerequisites
start_a:such that
start_a > end_a;
dependents
speed:SPEED_V with
speed < (start_a-end_a) + time_int.duration;
end

These two frames illustrate most of the syntactical con-
structs of our representation formalism. The “speed” of con-
traction is defined as the rate of contraction. It is determined
from the initial and final areas of the contractile object exhib-
iting the change in area, divided by the duration of the change.
The “duration” refers to the slot of the TIME_INTERVAL token
associated with the slot ‘“time_int” in the AREA_CHANGE
frame.

Suppose that we wish to define a more specific type of con-
traction, one which, for example, has a specific rate of con-
traction. Such a constraint could be added to the “speed” slot
so that it becomes
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speed:SPEED_V with
speed < (start_a-end_a) + time_int.duration
such that (speed > 5 and speed < 12)
exception TOO_SLOW with
subj « self.subj
time_int < self.time_int;

Here we have also included the exception “To0_sLow” which
would be instantiated if the observed rate of contraction were
slower than that specified by the constraint.

The two frames above are organized in terms of the I1S_A re-
lationship. This relationship organizes the frames into a sec-
ond hierarchy, the 1s_A hierarchy, which places more general
frames at the top and more specialized ones at the bottom.
1S—A implies inheritance of properties from father to son
frame in the knowledge base. A son frame can refer to any
slot of a father frame simply by the slot name. We have ob-
served that the 1S_A and PART_OF relationships are suffi-
cient for automatic creation of sequence spanning descriptions
in certain cases as a result of the instantiation process. (See
[9] for further discussion.)

Similarity links [6] relate one frame to another and aid in al-
tering the system’s active hypothesis set. Similarity links in-
clude information such as common components of two
frames, the time course of differences that must be observed in
the image sequence in order to discriminate between the two
frames, and activation binding information. Using such a for-
malism, a knowledge base is defined for the motion concepts
necessary for the application domain.

Specific frame instances are linked to the frames with the
INSTANCE_OF relationship. This relationship compels an
instance frame or token to have the structure dictated by
its type, i.e., the frame it is associated with through the
INSTANCE_OF relationship. Objects bound to slots in a token
are determined either from the image (prerequisites) or through
calculations (dependents). More details about the knowledge
representation formalism can be found in [9].

Motion Concepts

In natural language, the tools used for description of motion
concepts are verbs such as “cross,” “lift,” and “run”; direc-
tional prepositions such as “towards,” “through,” and “over”;
and adverbs such as “slowly” or “quickly.” In order for these
concepts to make sense in a sentence, certain semantic compo-
nents must be present. These components completely define
the motion concept. Miller [5] has done a very good analysis
of the semantic components for a large class of English motion
verbs. Using Miller’s work as a foundation, Badler [1] refined
these concepts, gave detailed definitions of the directionals,
and outlined a framework within which recognition can be
done. Further investigation of the semantic components of
motion verbs and on their representation appears in [8]. The
work presented here is strongly based on these three research
efforts.

Miller did his analysis from a linguistic point of view, using
natural language. Components such as “propellant” or “per-
missive,” which describe the intent of the agent of the action,
may be impossible to detect from a sequence of images.

“Speaker” is nonexistent but may be interpreted as “observer,”
and we assumed that the observer plays no role in the motion
description process. In addition, there are no components for
the description of the changes in an object’s physical proper-
ties such as “expansion” or “joining two objects to form one.”
The components only describe motions of rigid or jointed ob-
jects. We will not include three of Miller’s components: causa-
tive, instrumental, and deictic. The first two require causative
knowledge which is not part of ALVEN. The latter requires
participation of the observer in the description process as
well as three-dimensional data, and these are also not part of
ALVEN.,

Let us now discuss the motion semantic components that are
included in ALVEN, defining them in a way that is appro-
priate for use in a visual motion understanding system.

Motion: An object, of any type, has exhibited a motion if a
change of location has been observed for its centroid, or for
any of its parts. This definition may be applied recursively to
any of the object’s parts.

Reflexive-Objective: The distinction between reflexive and
objective verbs or directionals depends on the reference point
for the descriptive term used. If the reference is the computer
imposed coordinate axes, then the descriptive term to be used
is reflexive. Examples of reflexive terms are the directionals
“upwards” and “leftwards” or the verbs “rise” and “fall.” If
the description is in terms of some other object, whether it is
in motion or not, then the term to be used is objective. Exam-
ples of objective directional prepositions are “towards” or
“over,” while verbs are “cross” or “approach.”

Permissive: This component implies knowledge of the intent
of the agent exhibiting the motion. However, several verbs
such as “drops” or “releases” do not require intent in order to
be recognized. Such motions require complex semantics: the
agent of the action must initially be restraining the object of
the motion so that the object cannot move in some specific di-
rection or with some specific velocity. The agent then exhibits
some motion, which is dependent on the agent’s type, that
frees the object to exhibit some motion that it previously
could not exhibit.

Propellant: The application of force can be considered for a
vision system so that agent intent or forces such as gravity or
magnetism need not be considered. The participating objects
must be in contact, at least one of them must be capable of
self-propulsion (have a motion capability of “motile”), and the
resulting motion of the nonmotile object is in the same direc-
tion as the motion of the motile object that applies the force.
Examples of such verbs are “lift,” “lower,” “push,” “pull,”
“shove,” or “drag.”

Directional: Directionals, as mentioned previously, have
been adequately defined by Badler [1]; his definitions will be
used with little or no modification. Examples of directionals
are “across,” “through,” “into,” etc. In general, all objective
directional definitions involve a sequence of changes in the
spatial relations between the participants.

Medium: The medium here defines the element in which the
motion is taking place whether it be on land, in the air, in the
water or in a patient’s chest. For our application domain, it is
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clear that the medium is a patient’s chest. Therefore, the me-
dium will not be explicitly referred to, but the methodology
could take care of it if the problem domain required it.

Inchoative: This defines changes of an object’s condition or
spatial relations. An example is “the door opened”—rephrased
so that the inchoative component becomes more clear, “the
door became open.” The change described by the verb “open”
is that the size of the aperture between the door proper and
the door jamb becomes larger. The form of the inchoative
component is generally “becomes adjective,” and in many
cases, single verbs may be found that describe the change.
Such changes in physical properties or spatial relations are not
well defined by Miller and are expanded upon by ALVEN.
ALVEN contains several physical property change concepts in-
cluding changes of length and of area. See [9] for further
discussion.

Change-of-Motion: This component describes not only the
beginning or the ending of a motion, but also the change from
one motion class to another for the same object when the two
motions are adjacent in time. This component appears only
implicitly as the start and end time relationships for any mo-
tion and the constraints on which motions may preceed or fol-
low it. Instances of this component are determined by the
temporal segmentation process.

Velocity: Velocity terms such as “slowly” or “quickly” are
used in relation to the object’s motion capabilities. For exam-
ple, a car moving at 30 km/h is moving slowly, while that
speed for a person is quite fast. Thus, if velocity descriptions
are required, they must be defined individually for every class
of objects in the system’s domain.

Our knowledge representation was designed to accommodate
all of the above motion semantic components, except for
those involving causation or three-dimensional movements.
These components appear in our knowledge base in diverse
ways. If an object exhibits a motion then some frame within
the motion hierarchy is instantiated to represent the motion,
with the subject of the motion being the object which exhibits
the motion. Subjects will always appear under the slot name
“subj”. In addition to the “‘subj” slot, there is always a time
interval during which the motion occurs. This slot is always
named “time_int”. Reflexive and objective motions are dis-
tinguished by the absence or presence respectively of a refer-
ent for the motion. The “ref” slot denotes the object to
which the motion is compared. Permissive or propellant com-
ponents do not appear explicitly, but simply define different
classes of example verbs. Such verbs have both an agent which
appears under the “agent” slot and represents the object which
is producing the motions, and an object which appears under
the “obj” slot and represents the object which is being af-
fected by the motion of the agent. Directionals are used in
two ways—numerical trajectories or qualitative directional
terms. If a numerical frajectory is used to define a motion, it
appears under the slot name “traj”, while directionals always
use the slot name “dir”. Velocity is included as the slot
“speed”. Inchoative components again are not included ex-
plicitly, but provide a different class of verbs. These verbs are
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all characterized by the presence of two slots, the start and
end states, and these slots refer to the subject of the frame,
which is always a physical property of the object (such as
“length’ or “perimeter” or “width” or “shape”). The change-
of-motion component, as explained above, appears as a timing
constraint. If, for example, one motion A must immediately
precede another B, then the constraint is

A.time_int.end_time = B.time_int.start_time

All motions have “‘start_time” and “end_time” slots and thus
for any motion the frame may define the relative start and end
time of the motion and any constraints on which motions may
preceed or follow it.

Primitive Interimage Description Terms

A small set of primitive movement descriptors has been de-
termined in terms of which all higher level motion concepts
are described (using a PART_OF hierarchy). These descriptors
encompass all the basic concepts of the motion semantic
components described above. They are TIME_INTERVAL,
LOCATION_CHANGE, LENGTH_CHANGE, AREA _CHANGE, and
SHAPE_CHANGE. Each of them has its semantics defined by
a frame. The TIME_INTERVAL frame is instantiated for each
interimage interval, and, since each motion concept has
“time_int” as a slot, all change of motion semantics can be ex-
pressed via the TIME_INTERVAL tokens. All motions involve
some type of LOCATION_CHANGE, whether it be at the pic-
ture element level or at the object level. In addition, all
changes of spatial relations between objects involve loca-
tion changes, as well as all trajectory, direction, and speed in-
formation. Inchoative components are handled by the final
three primitives: SHAPE_CHANGE, LENGTH_CHANGE, and
AREA_CHANGE. These are also particularly important for our
application domain of left ventricular wall motion.

Below, we show the LOCATION _CHANGE frame and also a
specialization of it, the TRANSLATE frame, as well as a further
specialization, the RIGHTWARDS frame. This illustrates both
the use of the PART_OF and 1S_A relationships. Many more
examples, as well as the complete frames for normal and ab-
normal heart cycles appear in [9].

frame LOCATION _CHANGE with
prerequisites
subj: POINT such that
for obl:0BIECT where
obl.mot_cap = mobile
subj part_of obl;
time_int: TIME_INTERVAL;
start_loc:POINT;
end_loc: POINT;
end
frame TRANSLATE IiS_a LOCATION _CHANGE with
prerequisites
subj:such that subj instance_of CENTROID;
dependents .
subj: OBIECT with subj < obl;
speed:SPEED_V with
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speed < (((end_loc.y - start_loc.y) **2 +
{end_loc.x - start_loc.x) ** 2) ** 0.5) + time_int.duration;

traj: TRAJ_V with

traj < arctan({end—loc.y - start_loc.y) +
(end_loc.x - start_loc.x));

end

frame RIGHTWARDS iS—_a REFLEXIVE_TRANSLATE with

prerequisites
traj:such that

(traj 2 0 and traj < 3*n/8) or
(traj £ 2*n and traj > 13*n/8);

end

Organization of Motion Concepts

The motion concepts described thus far can be organized us-
ing the 1s_A relationship as noted above. We have defined a
hierarchy of motions that specifies the structure and semantics
that any problem-domain concepts must conform to. One
side of the hierarchy describes motion concepts relevant to sin-
gle object movements with respect to a fixed point of reference
(e.g., object rotation). Single objects are assumed to be indi-
visible and may represent an entity or part of an entity. Such
simple motions are further classified into changes of location
(LOCATION _CHANGE) or changes of physical properties (PHYS_
PROP_CHANGE). In turn, LOCATION_CHANGE’s are either
ROTATE’S Or TRANSLATE’s, while PHYS_PROP_CHANGES’S
are either AREA_CHANGE’S, LENGTH_CHANGE’S, Or SHAPE_
CHANGE’s. Examples of TRANSLATE’s are verbs such as “fall”
or “approach”; examples of AREA_CHANGE’s are “contract”
or “expand”; examples of LENGTH_CHANGE’s are “widen”
and “compress.” The other side of the hierarchy deals with
aggregate motions, i.e., motions of the following kinds: mo-
tions of objects defined in terms of the motions of their parts,
(SIMUL _MOT_PARTS); superimposed motions for a single ob-
ject, (SIMUL_MOT); motions involving independent, simulta-
neously moving participants, (SIMUL _DISTINCT_PARTS); and,
sequences of motions for a single object (SEQUENCE). Exam-
ples of SIMUL_MOT_PARTS motions are “forward right leg
swing” or “left ventricular segmental contraction”; examples
of SIMUL_MOT motions are verbs such as “walk” or “run’’;
examples of SEQUENCE’s are “walk in place” or “heart beat”;
and, examples of SIMUL _DISTINCT_PARTS are verbs such as
“lift,” “drop,” “pull,” or “release.” This classification of mo-
tion concepts is based on work described in [8]. Examples of
the actual frames for each class and of sample verbs can be
found in [9].

II. System OVERVIEW

The paradigms of competition and cooperation among hy-
potheses and hypothesize-and-test form the basis of our recog-
nition control structure. The key feature of the control struc-
ture is that it is driven by the organization of the knowledge
base, that is, by the primitive relations between knowledge
units. A feedback loop is incorporated in order to link the
several components of the structure.

Processing proceeds image by image. The system looks at

one image at a time, and once it is finished, the image is dis-
carded. A simplificiation for our purposes is that the objects
in the first image in the sequence be identified and classified
prior to motion analysis. Expectations produced by the sys-
tem guide the low level process in identifying objects in subse-
quent images. Expectations are in the form of region and
orientation biases for a modified relaxation labeling process
[10]. Such a process only considers pixels within the pre-
dicted region and biases against edge elements that are incon-
sistent with those expected for the region. If an object is not
found at precisely the same location in the image as predicted
by the high levels of the system, then the object has moved
and presumably, motion has been detected. Other portions of
the system are responsible for weeding out true motions from
artifactual ones. This motion is one of two forms: either the
object is being tracked, or the object has just started or stopped
moving. If the object is being tracked, the predictions specify
a range of possible locations for it in the next image. The ob-
ject descriptions are in terms of the low level vision, con-
structs, such as edges in the image, along with descriptors such
as type, axes, area, and arc length. This description is called
the essential trace for the object.

Pairs of timewise adjacent essential traces are combined into
the essential kineses of each object. These are determined us-
ing a set of matching heuristics such as similarity of shape type
and of location. Essential kineses are defined in terms of loca-
tion changes of points, length changes of axes and perimeters,
area changes, and shape changes. These four primitive kineses
provide an intermediate representation for relating quantita-
tive changes to qualitative ones. The kineses are used to match
against the hypotheses which are active for a particular ob-
ject’s motion.

The system must start with an initial hypothesis for the mo-
tion of each object in the image sequence. This initial “‘guess”
need not be a perfect one; however, it is assumed that the
knowledge base’s hypotheses are properly related to one an-
other and that it is complete in this respect. The essential
kineses are described in the same terms as the lowest level of
motion description for each hypothesis of the knowledge base.
It may be necessary in some cases (when the motions are only
very coarsely described) to abstract higher level descriptive
terms from the kineses. Matching failures between expected
and actual kineses are used by the change of attention mecha-
nism. These failures are represented in terms of exception
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frames which contain any information necessary to the change
of attention process so that proper selection can be made of
alternate hypotheses. This selection is made via the similarity
links which are present in the hypotheses. The time course of
differences consist of exception tokens, while the time inter-
vals specified in each token give timing information. Each ac-
tive hypothesis is related to the other active ones by its con-
ceptual adjacency. Conceptual adjacency is defined in terms
of the following primitive relationships of the knowledge base:
IS—A, PART_OF, similarity, and time course.

Since several simultaneous hypotheses can coexist, a focus of
attention mechanism is necessary in order to limit the number
of hypotheses under consideration. Our focus of attention
mechanism uses a property of feedback systems: inertia. That
is, the output of a feedback system changes slowly over time
and therefore changes in focus are continuous. We do not
wish to be faced with the problem of erratically shifting foci.
The system focuses on the best hypotheses under considera-
tion using certainty factors that are attached to each hypoth-
esis. The certainty factors are updated using relaxation label-
ing [10] with dynamic neighbourhoods and compatibilities
that are determined using the conceptual adjacency between
hypotheses and hypothesis matching progress. A single itera-
tion of relaxation is applied between images in order to pre-
serve the inertia of the feedback system. Iteration is not done
until convergence to stable certainty factors is achieved.

The problems encountered by other large application sys-
tems are due to inexact information—either incorrect data, ex-
traneous information (part of the problem domain but not di-
rectly related to the task at hand), or noisy data. This causes
mismatching of hypotheses, leading to erroneous partial
matches and multiple matches where in reality only one hy-
pothesis should match. Consider these problems in the simpler
context of edge detection in single images. Line quantization,
lighting, and shading effects cause erroneous input, while noise
adds another dimension of error to the process. With feed-
back, as in relaxation labeling [10], proper functioning under
such conditions is possible. The reason is that isolated in-
stances of stimuli are rejected. For example, in static situa-
tions, such as in a single image, a noise point is not related in a
meaningful way to its neighbors in the image. Similarly, in
dynamic situations, where events change with time, spurious
events are similarly unrelated to the events in a sequence or
context, i.e., its neighbors in time. The relaxation procedure,
by using slowly responding feedback, can reduce the effect of
such erroneous situations.

The response of a focus mechanism based on feedback is not
instantaneous—there is an inherent delay. Past systems have
attempted to provide a completely updated view of the analy-
sis of the problem domain at each instant during processing.
Therefore, any errors in the input data would be completely
integrated as if they were valid data, rather than waiting to see
if the trend is indeed that which is suggested by the data. The
focus of the system should not shift abruptly—it should only
change if the stimulus dictating the change is present over a
significant period of time. Such time periods are clearly prob-
lem dependent.
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In motion understanding, such a concept is vital. Sequences
of images present difficult problems: occlusion of objects, so
that locations may sometimes only be guessed at; noisy indi-
vidual images within the sequence; hypotheses with overlap-
ping expected time intervals which describe the possible mo-
tion concepts of the domain; and, particularly for our domain
of left ventricular wall motion, poor contrast images. Feed-
back principles allow us to tackle these problems. One way in
which isolated stimuli such as noise or errors can be handled is
by providing descriptions in the KB at varying levels of ab-
straction, from coarse to detailed. Feedback can then be pres-
ent between these levels, with the coarse description placing
strong, more global constraints on the detailed description,
thus assisting in the removal of isolated error stimuli. In addi-
tion, since the relaxation process accumulates the evidence of
the matching history of a hypothesis, it is very difficult for an
isolated error event to negate a large positive history of suc-
cessful matching (or, for that matter, a history of matching
failures).

The focus of attention mechanism ranks the hypotheses on
the basis of their updated certainty factors in order to deter-
mine the best ones. Each hypothesis, when activated, receives
an inijtial certainty factor equal to that of the hypothesis that
activates it. A relaxation process is then used to update the
certainty factors. The relaxation process is based on concep-
tual adjacency that specifies which hypotheses are competitors
and which ones are complementary and in what respect. The
best hypothesis (highest ranked) then are used to derive the
expectations for the next image.

The instantiation of a hypothesis poses a unique problem:
the temporal segmentation of timewise adjacent events. In
other words, where does one motion start and the previous
one end for a particular object? This problem is solved by
analysis of the time course of certainty factors for the two mo-
tions involved, and is described in a subsequent section.

Hypothesis Organization and Change of Attention

Active hypotheses are organized by their “conceptual adja-
cency.” If two hypotheses define motions for the same sub-
ject and for the same time interval, then we say that they sat-
isfy the common subject-time (CST) condition. This concept
is used in the following discussion. By definition, two hypoth-
eses H and H' are adjacent conceptually, if one (or more) of
the following hold.

1) There is-an active similarity link between H and H', and
H and H' satisfy the CST condition. Such an adjacency im-
plies mutual exclusion, i.e., only one of the hypotheses can be
instantiated.

2) H precedes H' in time or H follows H' in time, and they
define motions for the same motion subjects. In this case,
there is overlap of time interval and since only one motion can
exist during any interval, the hypotheses are competitors. The
same problem exists in speech understanding systems at word
boundaries.

3) His_a H'and CST holds.

4) Hhas H' as a direct 1S_A descendent, and the CST condi-
tion holds.
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S) H is adjacent to itself for the next time frame. This han-
dles exceptions in the parts of hypothesis H over time. Thus,
the PART_OF hierarchy is implicitly taken into account.

The system adds hypotheses to its list of active ones via acti-
vated similarity links and via the “next” temporal constraint,
(i.e., if motion X is the “next” one after Y, motion Y has an
end time which is the same as motion X’s start time).

A similarity link in hypothesis H is activated between hy-
potheses H and H' when:

1) the similarity expression is satisfied, i.e., all properties of
H' which must be true before H' can be activated must have
been instantiated; and,

2) at least one of the exceptions in the difference expression
has been instantiated. It is not necessary that this be the first
one in the time course expression since noise effects may mask
it. One must realize, however, that noise or extraneous infor-
mation may erroneously trigger the similarity.

There are several additional considerations that arise when
determining similarities between hypotheses.

1) When a particular exception cannot be handled by the
local similarity links, the links of its 1S_A ancestors are
checked.

2) Since activation of a frame automatically activates its
IS_A ancestors, transfer of parts between the two frames’
IS_A ancestors may be accomplished by the binding expres-
sions of the similarity links (if present) between those frames.

3) There is also a need to propagate similarities upwards
along the PART_OF hierarchy, because possible mismatches of
a motion component may require completely new contexts for
the newly activated parts. This is done by automatically rais-
ing an exception in the parent hypothesis. When an excep-
tion is detected in a part A of frame B, this automatically gen-
erates an additional exception for frame B stating that frame
B has failed. In this way exceptions are propagated up the
PART_OF hierarchy. The exception carries with it a special
slot “prereq_part” which specifies the newly activated frame
name C. The parent frame of B, that is D, can use its similar-
ity links with the added constraint that C must be PART_OF
any newly activated destination frame of D.

The start time of the activated hypothesis is taken to be the
instant of activation of the activating hypothesis. This is rea-
sonable because if it were true that the activated hypothesis
should have started earlier, then a similarity link from a pre-
vious hypothesis in time for that object should have activated
it. If it should start later, then the two hypotheses should be
related by the “next” time constraint. Such considerations are
true only if both of the hypotheses specify durations or start
and end times. If they do not, then it is ambiguous as to
whether the motions follow one another or are competitors
for the same time interval. If a hypothesis A activates B
through a similarity link and no timing information is given,
then this is considered to be a “next” constraint. The descrip-
tion produced would be that the object exhibits motion A for
a duration of X and then motion B for a duration of Y.

Suppose a hypothesis A activates two or more hypotheses
via similarity links at the same time instant. Also, assume that
there is no time information specified. Then frame A has a
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“next” relation with each of the newly activated ones, while
the new ones are in competition with one another for that
time interval. If time information is provided, then the frames
are all similar to one another.

Hypothesis Rating—Focusing in on the Best Hypotheses

A focus of attention mechanism is needed because the pre-
diction mechanism must know which are the “best” hypoth-
eses at any instant in the processing, so that it can base its ex-
pectations on them. The hypotheses will be ordered by means
of the certainty that the system has in them. The best candi-
dates are determined for each object; that is, hypotheses cer-
tainty values are not compared unless the hypotheses define
motions for the same object and for the same time interval,
(the common subject-time condition). Thus, each object
would have a leading hypothesis, and each part of each object
would have a leading hypothesis. It is not necessarily true
that the best hypothesis for an object’s part is PART_OF re-
lated to the best hypothesis for the object as a whole.

Each hypothesis has a certainty factor associated with it—a
number between 0.0 (completely uncertain) and 1.0 (com-
pletely certain). Initial values are set through the conceptual
adjacencies of each hypothesis when it is activated. If a hy-
pothesis H has N competitors (either mutually exclusive ones,
through similarity links, or through the “next” time con-
straint), then each hypothesis of the competing set has an ini-
tial certainty of 1/N # cert(H). If a hypothesis has no com-
petitors, then as far as the system is concerned, it is certain
that the hypothesis will be instantiated—because there is no
other possibility. This is why similarity links are so crucial—
matching failures would not be recorded in a hypothesis’ cer-
tainty factor through the relaxation process unless they also
activate a similarity link to a competing frame. The reason for
this is that certainty factors are normalized over the set of
competing hypotheses. In relaxation labeling for edge detec-
tion, the competing labels for a point were normalized so that
the sum of their certainties remained at 1.0. Here as well, the
competing labels for any object’s motion are normalized.
When a hypothesis activates a similar frame, they share equally
the activating hypothesis’ certainty factor.

Once the initial certainties are set for a hypothesis, the cer-
tainty is updated for each subsequent image. The updating
rule that we use is based on relaxation labeling [10]. The only
syntactic change is that we need to keep track of the certainty
factors at each time instant #. Its form is the following:

cert(t, H) = [1 +q(H)]
norm (H)

cert(t+1,H)=

where cert(t + 1, H) is the certainty factor for hypothesis H at
time instant, # + 1, ¢ (H) is the contribution from its neighbor-
ing hypotheses (assume that there are n of them), and is given

by

n
qH)=>" w(H, H;t) «comp(H, Hy, t) = cert (t, Hy).

i=1

norm(H) is the normalizing factor for hypothesis H. It is
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given by
norm(H) = zn: cert(t, Hy) * [1 + q(H})]

and w is the weighting function of the contribution from one
hypothesis to its neighbor at a particular time instant. The
sum of the contributions must be unity. Finally, comp is the
compatibility function between two hypotheses at a particu-
lar time instant.

The compatibility value is dynamic—it is determined by a
function relating matching progress in the current image for
hypothesis H;, the current time instant and the conceptual ad-
jacency type exhibited by H and H;. If H; fails to match in the
current image, it lends support to H (positive compatibility),
while otherwise it removes support, (negative compatibility).
Rules for selecting values for the various types of compatibili-
ties can be found in [9].

The major change from the process described by Zucker
et al. is that we do not iterate until certainty factors converge
to stable values. Rather, certainties are updated using only
one application of the rule. In this way, each update corre-
sponds to an analyzed image in the sequence. The reason for
this change requires a clear understanding of what the relaxa-
tion labeling process (RLP) does.

For edge determination in single images, the responses of an
edge operator supply the initial certainty factors for the possi-
ble labels for each point. For the purposes of this argument,
let us assume that there are three labels. This initial assign-
ment of certainty factors place the starting point of the RLP
at some point, say A, on the plane formed by the certainty
factor vectors {1, 0, 0}, {0, 1,0}, {0,0, 1}. The plane is as it
is because the sum of the certainty factors must remain at
one; otherwise, the process is not gauranteed to converge.
From point A, the RLP, using good edge continuity criteria
takes the certainty factor vector through some path to a final
convergent labeling. Suppose that in our motion case, the
same were done between images. The effect is disastrous. Be-
cause of the nature of the RLP, the system could never move
away from this final stable state, and therefore after the first
pair of images, the certainty factors could not change. This is
clearly undesirable.

Using the concept of hypothesis set inertia, we can now jus-
tify the design of the updating mechanism. If only one appli-
cation of the updating rule is used between images, the effect
is that the system moves along a short vector tangent to the
path that it would have taken if many iterations were done.
Two images are enough to determine this vector. The system
thus has inertia of location because it does not move very far
away from its current location. This is desirable because hy-
potheses and their compatibility values are uncertain. The
length of the vector is determined by how consistent the
matchings of hypotheses and the kineses are with the con-
straints imposed by the organizational axes of the KB. The
system also has inertia of direction because it moves along a
tangent to its current path in the plane formed by the hypoth-
esis space. The problem of rapidly shifting foci is therefore
greatly reduced. However, other considerations arise. What
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are the limitations of such a process in terms of how many
iterations (in other words, images) are needed in order to de-
termine a consistent labeling, and how is such a process af-
fected by extraneous stimuli? Experimental evidence pre-
sented below answers these questions and provides support for
our design decisions.

Fig. 1 shows two similar hypotheses competing for descrip-
tion of a common time interval and demonstrates how con-
sistent matching history leads to the selection of the correct
hypothesis. Note that the curves look very much like exponen-
tial functions. In electronics, when the response of a circuit
exhibits such a shape, a useful parameter which is calculated is
the system “time constant.” In particular, if the curve can be
approximated by the function

V=Vo(l-e )

for the rising curve, where V is the system output and V, is
the final, stable system output, then 7 is called the “time con-
stant” of the system. The output comes to within 1/e of its
final value in a time interval equal to 7. Or, in other words,
the certainty reaches 0.632 if 1.0 is to be its final value. We
can determine values for 7 in our system as well, with an analo-
gous interpretation. If we use the definition of the critical
value given above, we can say that the system must analyze 7
images in order to discriminate between two competing hy-
potheses under ideal matching conditions. In the example
given, this response time is three images. However, we must be
aware of the fact that the similarity competition is not the
only rating mechanism operating in this example. There is
also the PART_OF compatibility to take into consideration.
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After trying all possible combinations of compatibilities, we
observe that the no combination leads to a smaller 7 than
three images.

The PART.OF compatibility can be viewed as a “noise sensi-
tivity” parameter. The greater the probability of erroneous es-
sential kineses, then the smaller the PART_OF compatibility
should be. However, the price that is paid is that the final val-
ues are not very far apart. That is, there is a low “selectivity”
among the hypotheses. However, we do observe that the final
ordering of hypotheses is independent of the specific values of
compatibilities used, again verifying the proper functioning of
this mechanism.

The graph in Fig. 2 shows the results of tests of the certainty
updating mechanism under the following conditions.

1) Each point is the average time value obtained over 30
trials at the same values for similarity and PART_OF compati-
bility and number of competitors.

2) The trials are run using a sequence of random numbers to
represent matching successes and failures, and are adjusted for
noise levels.

3) The decision threshold, that is, the certainty value that
must be achieved before a particular hypothesis is instantiated
is related to the number of hypotheses in the following man-
ner. The 7; is the time at which the certainty of a hypothesis
reaches

1 1
I-—)*(1-e")+—
( Ni>*( <) N;

which simplifies to

0.368
0.632 + .
N,

This is determined using the assumption that each of the hy-
potheses that are competing start with equal certainty values,
determined using the number of hypotheses N;.

1) Similarity compatibility is set to 1.0 in all cases.

2) Noise-free and 10, 20, 30, 40, and 50 percent noise im-
ages were tested. For our test, 10 percent noise implies that
one out of ten data items passed to the hypothesis matching
process will not match the expected data ranges when in real-
ity, the image data will indeed match.

3) Each test was run on from 2-16 simultaneous competi-
tors. i

The results are approximated by linear relationships, al-
though there is no reason why we should believe that the rela-
tionships should be linear. The 50 percent noise line is very
close to vertical—thus confirming the expectation we get from
information theory that at 50 percent noise there is no signifi-
cant data in the images. The remainder of the lines verify our
intuition in expecting that the noisier the data, the more of it
that is required in order to make decisions with the same
confidence.

Another interesting observation can be made from this
graph. If there are, for example, 5 competing hypotheses, un-
der 10 percent noise conditions, then the system must exam-
ine at least 10 interimage descriptions (11 images) in order to
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discriminate among them. This means that if the motion con-
cepts represented by the hypotheses have expected minimum
duration D, then the sampling rate of the film must be at least
11/D in images/s. This can be generalized to the following
relationship:

max (r; +1)
SRein =" ury
1

where SR i, is the minimum required sampling rate, and 7; is
the minimum number of interimage descriptions required de-
termined from the graph, for discriminating from among a set
of hypotheses {H}, cardinality of which is N; and whose mini-
mum duration is dur;.

This relationship has important implications. It can be used
to determine whether or not a particular image sequence re-
lated to a specific knowledge base, can be analyzed using the
methods presented in this paper.
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Temporal Segmentation

Temporal information is a slot in every frame and defines
when the motion starts and when it ends. The determination
of the start and end times involves both the choice of which is
the best hypothesis for an object in a given time interval and
which time instants define the interval. We call the determina-
tion of this information temporal segmentation.

In our system, the hypotheses considered for temporal seg-
mentation are those in an object’s alternative set—the competi-
tors due to active similarity links and those related by the
“next” constraint.

Let us consider first the simple case of two hypotheses com-
peting in time, neither of which has any competitors outside
the time interval during which they compete. See Fig. 3. In-
tuitively, we expect the first hypothesis’ certainty to be 1.0
until the second one is activated, at which point it abruptly
falls to 0.5. At the instant of activation they have equal cer-
tainties. Suppose that the motion which corresponds to this
second hypothesis does not begin for a couple of images. Dur-
ing those images, the certainty of the first hypothesis will rise,
because it is still successfully matching, and that of the second
will correspondingly fall. When the second motion begins, the
first hypothesis should no longer match. Therefore, its cer-
tainty will begin to fall, and the certainty of the second will
rise. The point at which the second motion began and the first
one ended is marked by the maximum distance between the
two certainty values during the interval of competition. This
defines their time boundary.

This maximal certainty difference criterion is used for seg-
mentation whenever the “next” constraint is present, regard-
less of its origin. However, complications may arise when
there are several hypotheses competing for the same time in-
terval, i.e., related by the similarity adjacency. If a particular
hypothesis H has several possible “next” hypotheses, at the in-
stant H becomes a candidate for instantiation, the best “next”
hypothesis is selected (highest certainty), and the segmenta-

tion proceeds as above. If there are several simultaneous hy-
potheses, the best must be chosen. This is done by selecting
the one with the highest certainty at the minimum end time of
the alternative set. If one waits longer, say until the longest
expected duration elapses, then the already ended hypotheses
will have their certainty values altered as a result of interac-
tions with their “next” hypotheses. Any “next” hypotheses
are then segmented with this best one.

Again, the PART_OF compatibility interacts with the “next”
compatibility. In the figure, these values were 0.8 and 1.0, re-
spectively. If we try all possible combinations of values, we
observe that no combination leads to a faster overtake than in
six images. Therefore, a temporal segmentation procedure is
not needed if the time interval represented by six images is in-
significant for the error factor in the start and end times of
events. In LV motion, this is a significant time interval and
therefore the segmentation is necessary.

IV. CONCLUSIONS

A framework for visual motion understanding has been de-
scribed. The implementation of ALVEN is nearing comple-
tion: most components have been tested and several results
have been shown. Thus far, although it is clear that much
more experimentation is necessary, our results support our de-
sign methodology. Complete details of the design, knowledge
base for general motion concepts and left ventricular motion
concepts, and example operation can found in [9]. Several
further projects have been spawned in the medical application
area that will further examine applicability of our methodol-
ogy in other domains: left ventricular function diagnosis, elec-
trocardiogram analysis, and continuous signal understanding.

ACKNOWLEDGMENT

We wish to thank S. Hume, J. Delgrande, and S. Ho-Tai for
programming assistance.



TSOTSOS et al.: VISUAL MOTION UNDERSTANDING

REFERENCES
[1]

N. Badler, “Temporal scene analysis: Conceptual descriptions of
object movements,” Dep. Comput. Sci., Univ. Toronto, Rep. TR-
80, 1975.

R. Brachman, “On the epistemological status of semantic net-
works in Associative Networks, Findler, Ed. New York: Aca-
demic, 1979.

H. Levesque and J. Mylopoulos, “A procedural semantics for
semantic networks,” in Associative Networks, Findler, Ed. New
York: Academic, 1979.

W. Martin and J. Aggarwal, “SURVEY: Dynamic scene analysis,”
Comput. Graphics Image Processing, vol. 7, 1978.

G. A. Miller, “English verbs of motion: A case study in semantics
and lexical memory,” in Coding Processes in Human Memory,
Martin and Melton, Eds. Washington, DC: Winston, 1972.

M. Minsky, “A framework for representing knowledge,” in The
Psychology of Computer Vision, Winston, Ed. New York:
McGraw-Hill, 1975.

H., H. Nagel, “Analysis techniques for image sequences,” in Proc.
Int. Joint Conf. Pattern Recognition, Kyoto, Japan, 1978.

J. K. Tsotsos, “A prototype motion understanding system,” Dep.
Comput. Sci., Univ. Toronto, Rep. TR-93, June 1978.

—, “A framework for visual motion understanding,” Ph.D. dis-
sertation, Dep. Comput. Sci., Univ. Toronto, 1980.

S. W. Zucker, R. A. Hummel, and A. Rosenfeld, “An application
of relaxation labeling to line and curve enhancement,” IEEE
Trans. Comput.,vol. C-26, Apr. 1977.

S. W. Zucker, “Production systems with feedback,” in Pattern-
Directed Inference Systems, Waterman and Hayes-Roth, Eds.
New York: Academic, 1978.

2]

(3]

[4]
(5]

(6]

(71
[8]
(9]
{10]

[11]

John K. Tsotsos was born in Windsor, Ont.,
Canada. He received the B.A.Sc. degree in engi-
neering science 1974, and the M.Sc. and Ph.D.
degrees in computer science in 1976 and 1980,
respectively, all from the University of To-
ronto, Toronto, Ont., Canada.

He was a lecturer in the Department of Com-
puter Science, University of Toronto, as well as
a Canadian Heart Foundation Research Fellow
at Toronto General Hospital for 1979-1980.
He is currently a Research Consultant in Car-
diology at Toronto General Hospital and Assistant Professor of Com-
puter Science at the University of Toronto. His research interests in-
clude computer vision, knowledge-based systems, and application of
artificial intelligence to biomedical image analysis and diagnosis.

Dr. Tsotsos is a member of the Association for Computing Machinery
and CSCSL

573

John Mylopoulos was born in Athens, Greece.
He completed his undergraduate studies at
Brown University, Providence, RI, in 1966 and
his graduate studies at Princeton University,
Princeton, NJ, in 1970, both in electrical
engineering.

Since 1970 he has been with the Department
of Computer Science, University of Toronto,
Toronto, Ont., Canada. His research interests
include knowledge representation and the de-
sign of knowledge-based systems.

H. Dominic Covvey (M’74) is a specialist in the
field of medical computing. He is Director of
Cardiovascular Computing at Toronto General
Hospital, Assistant Professor of Computer Sci-
ence at the University of Toronto, and Lecturer
in both the Department of Medicine and the
Department of Preventive Medicine there. His
research and development activities are in the
areas of ventricular function analysis, pace-
maker follow-up, database management sys-
tems, and medical image analysis.

Mr. Covvey is a member of the Association for Computing Machinery
and the Canadian Cardiovascular Society.

Steven W. Zucker (S’71-M’75) received the B.S. degree in electrical en-
gineering from Carnegie-Mellon University, Pittsburgh, PA, in 1969, and
the M.S. and Ph.D. degrees in biomedical engineering from Drexel Uni-
versity, Philadelphia, PA, in 1972 and 1975, respectively.

From 1974 to 1976 he was a Research Associate at the Picture Pro-
cessing Laboratory, Computer Science Center, University of Maryland,
College Park. He is currently an Associate Professor in the Department
of Electrical Engineering, and the Computer Vision and Graphics La-
boratory, McGill University, Montreal, P.Q., Canada. His research in-
terests include computer vision, graphics, perceptual modeling, image
processing, pattern recognition, and artificial intelligence.

Dr. Zucker is a member of Sigma Xi and the Association for Comput-
ing Machinery.




