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The task of distinguishing material changes from shadow boundaries in chromatic images is discussed. Although
there have been previous attempts at providing solutions to this problem, the assumptions that were adopted were
too restrictive. Using a simple reflection model, we show that the ambient illumination cannot be assumed to have
the same spectral characteristics as the incident illumination, since it may lead to the classification of shadow
boundaries as material changes. In such cases, we show that it is necessary to take into account the spectral
properties of the ambient illumination in order to develop a technique that is more robust and stable than previous
techniques. This technique uses a biologically motivated model of color vision and, in particular, a set of chromatic-
opponent and double-opponent center-surround operators. We apply this technique to simulated test patterns as
well as to a chromatic image. It is shown that, given some knowledge about the strength of the ambient illumina-
tion, this method provides a better classification of shadow boundaries and material changes.

INTRODUCTION

The perception of color has been a subject of research in
many disciplines, including image understanding. One ap-
proach to color-image understanding has mainly involved an
application of algorithms originally developed for achromat-
ic images to three-dimensional color space. These include
edge detection,! clustering,?* region splitting,> and region
growing.57 These schemes regard color as a random vari-
able that is analyzed statistically without regard to any mod-
el of specific physical processes of color generation. A sec-
ond approach involves the explicit use of knowledge about
the generation of color. One example is the work of Sloan,8
which shows that simple statements can be made about
outdoor shadows and object colors. Similarly, Rubin and
Richards®!® demonstrated that by analyzing processes that
cause changes in color, one can distinguish material changes
from shadow boundaries in some situations. Finally,
Shafer!! presents a theoretical analysis of highlights and
object-color reflection that provides a way to remove high-
lights from portions of images.

In this paper we consider the task, originally proposed by
Rubin and Richards, of distinguishing material changes
from shadow boundaries in chromatic image. A simple re-
flectance model is used to illustrate the effect on shadow
boundaries of an ambient illumination having a different
spectral power distribution from the direct illumination. It
is clear from this model that in order to distinguish shadow
boundaries reliably from material changes solely on the basis
of local measurements of reflected light, some information
about the ambient illumination is needed. In particular, it
is shown that the technique proposed by Rubin and Rich-
ards!® can incorrectly label a shadow boundary as a material
change when the spectral properties of the ambient illumi-
nation are sufficiently different from those of the direct
illumination. Here we present a new method for labeling
shadow boundaries in the presence of ambient illumination.
The method is based on the output of biologically motivated
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operators and on an a priori estimate for the strength of the
ambient illumination.

A SIMPLE REFLECTANCE MODEL

The appearance of objects is a result of interaction between
illumination and reflectance. Thus it is necessary to de-
scribe briefly the physics of reflection since it governs the
appearance of these regions. In this section we present a
simplified model of reflectance that is used in both computer
graphics and image understanding®!2 and that captures the
important aspects of the reflection process.

In order to describe the spatial and chromatic properties
of the reflected light, we use a reflection model composed of
three components: ambient, diffuse, and specular. These
reflectance components are properties of any illuminated
object. In addition, we assume that there are two types of
illumination: ambient (or indirect) and incident (or direct).
The ambient illumination represents light incident from the
environment, i.e., reflections of the direct light from all the
materials in the scene, while the incident illumination is the
light originating from specific light sources with no interme-
diate reflections. The product of illumination and reflec-
tance yields the reflected intensity of the object. Therefore
the ambient reflected intensity is the result of the interac-
tion between the ambient illumination and the surface of the
object; the diffuse reflected intensity reflects the light that is
scattered generally equally in all directions and represents
the color of the object itself, since it is the result of incident
illumination interacting with the pigments within the ob-
Ject; the specular reflected intensity represents the high-
lights, the glossy reflection of objects, which is the result of
the incident illumination’s bouncing off the surface. There-
fore, when all three components are taken into account, the
image intensity of the reflected light [I,;(), x)] at a given
point, given some illumination and viewing geometry, is for-
mulated in a simple form as
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Irefo" X) = Iambient()" x)pambient(}" X) + Iincidento" X)
X [épspecular()" X) + (1 - 6)pdiffuse(>" X)]’ (1)

where I mbient(M, X) and Tingigent (A, X) are the intensities of the
ambient and incident illuminations, respectively; pambient(X,
X), Pepecular(, X), and pgisruse(A, X) are the ambient, specular,
and diffuse reflectances, respectively; and § is a fraction of 1
expressing the magnitude of the surface specularity. Be-
cause the reflected ambient intensity is a result of interac-
tion of some illumination (ambient) with the surface of the
object, it has often been assumed that the ambient reflec-
tance [pambient(?, X)] can be represented as a linear combina-
tion of the diffuse and specular reflectances.'12 (It is im-
portant to emphasize that this assumption is true for the
ambient reflectance and not for the ambient illumination.)
We can therefore replace the term that represents the ambi-
ent reflectance with a combination of the diffuse and specu-
lar ones. Furthermore, if we confine our analysis to regions
that do not contain highlights, that is, ones in which the
proportion of specular reflectance is almost constant (i.e., 0
~ constant and is usually close to zero), we can represent the
reflectance in one term, which will be denoted as p(A, x).
The formulation for the intensity of the reflected light is
therefore

Iref()\’ X) = Iambient()\’ X)p(), X) + Iincident()" X)p(}\, X)
= [Iambient()\’ X) + Iincident(k’ X)]p()\, X), (2)

where p(\, x) is the reflectance of the object. From this
analysis, it is easy to see that if there is no direct illumina-
tion, that is, Iincigent(A, X) = 0, then the intensity of the
reflected light at a given point will be

Lot X) = Lyspient (N, X)p(A, X), (3)

which represents the intensity of reflected light at a point
that is not directly illuminated, hence a point in a shadow
region. We therefore see that Eq. (2) represents the intensi-
ty at the lit region, while Eq. (3) represents the intensity at
the shadow region.

IDEAL AND NONIDEAL SHADOWS

The common factor contributing to the appearance of both
the shadow and lit regions of objects is the ambient illumina-
tion. This implies that understanding the effects of the
ambient illumination on objects may give us important in-
formation regarding the disambiguation of these regions,
enabling us to distinguish between them. In this section, we
examine two conditions under which the relationships be-
tween shadow and lit regions change. In the first case,
which we call the “ideal” case, we assume that the ambient
illumination has the same spectral characteristics as the
incident illumination. In the second case, which we call
“nonideal,” we assume that the ambient illumination differs
in its spectral characteristics from the incident illumination.
We use the term ‘“chromatic components” to denote the
responses of particular chromatic mechanisms. For exam-
ple, the red component, which is denoted as R, is defined by

o

R(x) = J L0 2SN, (4)

4]
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where I .¢(), X) is the reflected intensity reaching the sensor
(cone) and Sp()) is the spectral sensitivity function of the
red cone. Forsimplicity, we confine our discussion to the red
and green components of the reflected intensities. The ex-
tension of the work to include a third chromatic component
is straightforward.

In order to show how the ambient illumination affects
objects, we first show that conditions hold for the ideal case
and then extend the discussion to the nonideal case. We
make use of Fig. 1 to illustrate the two cases. Suppose the
original setup consists of an illuminant (I) that illuminates
the observed object (0). Some of the light does not reach
the object O because of a blocking object (B), thus creating a
shadow region (S) and a lit region (L) on the observed object
0. Intheideal case, the ambient illumination has the same
spectral characteristics as the incident illumination. In oth-
er words, there is a difference only in the magnitude of the
spectral distribution functions representing the incident
and ambient illuminations, such that for any given wave-
length the ambient illumination will be a fraction of 1 (de-
noted as «) of the incident illumination. Having assumed
that the ambient reflectance is the same as the diffuse reflec-
tance, we find that the ambient reflected intensity has the
same spectral characteristics as the diffuse reflected intensi-
ty up to the same constant «. In such a case, if the total
intensity of the reflected light in the lit regions of object O
were the sum of the ambient and diffuse reflected intensities
[as given by Eq. (2)], then we can represent the red and green
components of this reflected intensity as (aR + R, aG + G).
Under ideal conditions, the red and green components of the
total reflected intensity from the shadow parts of O (which
are illuminated by ambient illumination only) are (aR, aG).

One of the conditions under which an observed object is
exposed to ambient illumination that does not have the same
spectral characteristics as the incident illumination occurs
when there is another object (or objects) casting its color on
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Fig. 1. A case in which the ambient illumination impinging upon

an object does not have the same spectral characteristics as the
incident illumination.
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Table 1. The Response of the Red and Green
Mechanisms to the Reflected Intensities of the Shadow
and Lit Regions Under Ideal and Nonideal Lighting

Conditions
Reflected Intensity
Shadow Lit
Condition Region Region
Ideal (aR, aG) (aR+ R, aG + G)
Nonideal (r+ aR, aG) (r+aR+R,aG+G)

the observed object. Suppose that there is another object
(A) illuminated by I, which casts its color onto O. The
object A need not be physically close to O nor necessarily
exist in the image. It is used merely to illustrate that the
ambient illumination may be biased toward some color other
than the incident illumination. Furthermore, let us assume
that the color object that A adds is red and that this red color
impinges upon both the shadow and the lit regions and is
thus reflected off them, since it acts as an illuminant. We
therefore have to account for a new factor, which we call the
additional ambient illumination. Because the regions be-
long to the same object (O), this additional ambient illumi-
nation affects both the shadow and lit regions the same, thus
resulting in an additional ambient reflected intensity, of
which its red component (the only component in our exam-
ple) is denoted as r. Therefore the red and green compo-
nents of the reflected intensity from O are (r + aR + R, oG +
G) for the lit region and (r + «R, aG) for the shadow region.
A summary of the two cases and their effects on the reflected
intensities of the objects is given in Table 1. Note that it is
assumed in this paper that both the shadow and the lit
regions are influenced by the additional ambient illumina-
tion. If that were not true, and only one of the regions would
have been illuminated by the additional ambient illumina-
tion, then the color of the two regions would have been very
different, making the task of identifying them as part of the
same object complicated.

DETERMINING MATERIAL CHANGES

To this point we have formalized the relationship between
shadow and lit regions under different illumination condi-
tions given a simple model of reflection. In this section we
will examine the techniques suggesed by Rubin and Rich-
ards%10 for determining material changes.

Initially, Rubin and Richards® suggested the spectral
crosspoint condition, which stated that the sign of the
change in amplitude of a spectral component across a shad-
ow boundary must be the same as the sign for any other
spectral component. More formally, this condition states
that given two regions X and Y across a discontinuity and
intensity samples I taken at two wavelengths A, and \, the
following is a test for a material change:

(Ixx1 - Iyxl)(lxxz - IY)\2) <. (®)

This condition was found to be inadequate as a means of
finding material changes since “in a crosspoint, spatial and
spectral information are hopelessly intertwined.”® There-
fore a second and independent condition was introduced,
the opposite slope sign condition.’® The opposite slope sign
condition requires that, given two spectral components mea-
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sured on both sides of a shadow boundary, on each side the
same component must be the maximum. Formally, the
opposite slope sign condition is

Uxx, = Dan ) Uy, = Iyy)) <0, (6)

which again is meant to signal a material change. Indeed,
assuming ideal ambient lighting conditions for the image,
either expression (5) or (6) can be satisfied at an ideal shad-
ow boundary.

The question arises whether the opposite slope sign condi-
tion holds in the nonideal case. As can be observed from
Table 1, the treatment of the nonideal case is complicated by
the term representing the ambient illumination (in our ex-
ample, r) that is added to both shadow and lit regions, which
are considered to be the two sides of the discontinuity. The
complications arise in cases in which the relationship be-
tween the shadow and lit regions is not proportional, thus
suggesting a material change, although they may in fact be
two regions of the same material. To be exact, it may be the
case that (r + R + R) < (G + G) in the lit region and (r +
aR) > aG in the shadow region, or vice versa, therefore
causing a change in the sign of the red versus green compo-
nents, which indicates a material change according to the
opposite slope sign condition. Table 2 illustrates this point
by using a numerical example taken from an image that will
be presented in the section headed Results. Although the
opposite slope sign condition indicates that there is a materi-
al change, the two samples in Table 2 were obtained from the
same object in two different regions: one that was lit direct-
ly and the other in a shadow. Insummary, we would like to
avoid the labeling of such changes as material changes and
would rather identify them as changes caused by shadows.
This is the nature of the problem that we attempt to solve.

MEASUREMENTS OF THE EFFECTS OF
AMBIENT ILLUMINATION

In this section we quantify how the ambient illumination
affects the reflected intensity of the object. Without loss of
generality, we will limit our discussion to two spectral com-
ponents of the reflected intensity of the object, namely, red
and green. The discussion can be similarly applied to the
blue and yellow components without any further assump-
tions.

Let us define the vector describing the red and green
components of the reflected intensity of the observed object
as (R, G). This vector describes the reflected intensity that
is a result of the direct illumination. If the spectral proper-

Table 2. An Example Taken from an Image Taken
Over a Shadow Boundary That Is Classified as a
Material Change by the Opposite Slope Sign Condition

Reflected Intensity of
Lit Region (X)

Reflected Intensity of
Shadow Region (Y)

IX)q =151
IX)‘Z = 176

Iy)\1 =41
Iy)\z = 16

Opposite Slope Sign Condition:
Uxn, — Ixa)Uwny, — Ivyy) = (25)(—25) <0
(Material Change)
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Green 4

®,G)

\ (R.,G)

S (r.9)

Red

Fig.2. Thered and green components of the vectors describing the
diffuse reflected intensity of an object, its normal, and the addition-
al ambient reflected intensity.

ties of the ambient illumination are the same as the direct
illumination, then the red and green components of the
shadow region are proportional to the vector (R, G). In
addition, we define (r, g), the reflected components due to
the ambient illumination, asr = §§ Iambient(}, X)pambient (X, X)
Sr(M)dhandg = f(u)o Tambient(A, X)pambient (X, X)Sg(A)dA. Note
that we assume that the additional ambient reflected inten-
sity is not solely red, as was illustrated in Fig. 1 by r, but
rather has two spectral components, red (r) and green (g).
The vectors are illustrated in Fig. 2.

In the ideal case the spectral components on either side of
a shadow boundary are related by a multiplicative constant
(see Table 1). For a general value of (r, g) this will be the
case only if (r, g) is in the same direction as (R, G). A
measure of the difference from the ideal case is therefore

Amount of pull = (r, g)(R, G)*, (7

where (R, G)+ is orthogonal to (R, G) and therefore (R, G)+ =
(—G,R)/I(R, G)|. Inorderto measure the relative amount of
pull, we divide by the length of the original vector. Since the
sign of the result is not important, but its magnitude is, we
take the absolute value of the result. Thus, when put for-
mally, the pull factor is computed as

(r.8) (=G, R) _lgR =G|,
I(R, G)I? R%+ G?
This quantity is important because the stronger the effect of
the additional ambient illumination, the more the shadow

region differs from the lit region, thus making the associa-
tion of both with the same material more unlikely.

Pull factor = (8)

PRACTICAL ESTIMATION OF THE CHANGE
IN REFLECTED INTENSITY

To this point, we have examined the factors that contribute
to the different behavior of ideal and nonideal shadows. We
have also suggested a measurement that reflects the rela-
tionship between the additional ambient reflected intensity
and the original diffuse reflected intensity. We now turn to
apply this information to the problem of identifying materi-
al changes through the use of a set of operators that respond
differently under the two illumination conditions. In this
section we introduce the operators suggested for this task
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and examine their responses under the different conditions,
along with their correspondence to the theoretical analysis
of the reflection vectors described in the previous section.

Let us first consider a set of operators that have spatial
center-surround antagonistic organization and share the
same spectral intensity functions in both the center and the
surround. Examples of these units, which we will refer to as
monochromatic opponent units, are B + center/R — sur-
round, G + center/G — surround, where R and G represent
the responses of the mechanisms bearing the R- and G-cone
spectral sensitivity functions. A formulation of the re-
sponse of one of these units, say, R + center/R — surround, is
given by

RESP(X; o) = G(x; ,) *x Lg(x) — G(x; ) * Lp(x)

= ] " G(x - 1; 0)Ly(r)dr

— o

- ] " G(x - r; 0)Lp(r)dr, ©)

—o

where * is the convolution operator and Lg(x) is the loga-
rithm of the response of the red-sensitive mechanism to the
input image, that is, Lg(x) = log R(x), and R(x) is defined in
Eq. (4). We chose the logarithm since it provides operators
with a simple behavior to multiplicative scaling of stimuli.
It is also interesting to note that, after adaptation effects
have been taken into account, the logarithm provides a
rough approximation to photoreceptor responses for low-
contrast stimuli.13!4 G(x; o;) is a Gaussian of the form

1 —|x[?
exp . (10)
27rai2 ( 2”;'2 )

It is evident that these operators are difference-of-Gaus-
sians (DOG’s) in space and therefore are bandpass filters
with chromatic sensitivity, each one tuned to a different
band of wavelengths. If these operators were input the
corresponding spectral component of images (e.g., and R +
center/R — surround operator with the red component of an
image), then they are bound to detect any discontinuity in
that component. These discontinuities may be material
changes, ideal shadow boundaries, or nonideal shadow
boundaries. In terms of the analysis presented in the previ-
ous section, the monochromatic opponent units provide in-
formation about the fotal change in a given chromatic com-
ponent. For example, a unit of the type R + center/R —
surround will respond to the total change in both r and g
along a discontinuity, signaling how much the red compo-
nent of the reflected intensity varied from one side of the
discontinuity to the other. Two examples of responses of
such units are given in Figs. 3(a)-3(d).

We now consider double-opponent operators of the same
organization and behavior described by physiologists as ex-
isting in the cortex of primates.!>1¢ These operators, like
the monochromatic opponent units, are spectrally sensitive
DOG’s, although their spectral sensitivity is a combination
of two different spectral sensitivity functions. Examples of
such operators are R + G— center/R — G+ surround, B+ Y—
center /B — Y+ surround. The response of such a unit, say,

G(x;0) =
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Fig. 3. Responses of monochromatic opponent units and double-opponent operators to two sets of test patterns that include a step-edge in
space in which the spectral density changes. The red and green components of the test patterns are (150, 200) followed by (90, 100) for plots (a),
(c), and (e) and (90, 100) followed by (60, 50) for plots (b), (d), and (f). The additional ambient reflected intensity was assumed to be 30 units of
red, and « = 0.5. Plots (a) and (b) are responses of an R+ center/R— surround operator, plots (c) and (d) are of a G+ center/G— surround oper-
ator, and plots (e) and (f) are of an R+G center/R—G+ surround operator. The radius of the center of all operators used is 7 pixels, and ¢ /0, is

2.5.
R + G— center/R — G+ surround, is computed as
RESP(x; 0) = G(x; 0,) * [Lg(x) — L;(x)]
= G(x; 0,) * [Lp(x) ~ Ly(x)]

=[Ly(x) = Ly(x)]DOG(x). (11)

The difference is that double-opponent operators respond to
nonproportional changes in their two spectral components.
It has already been shown!? that if the discontinuity repre-

sents a proportional change, then other operators, such as
achromatic DOG’s, respond to the discontinuity while the
double-opponent operator does not, thus indicating that
although there may have been a discontinuity, it is due to an
ideal shadow. By contrast, if there are changes due to shad-
ows that are not proportional, that is, nonideal, and as a
result, there exists some additional ambient reflected inten-
sity, then the double-opponent operators do respond; this is
illustrated in Figs. 3(e) and 3(f).
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In summary, the two sets of operators, the monochromatic
opponent units and the double-opponent units, signal dif-
ferent aspects of the information needed. The monochro-
matic opponent units provide information about the total
change in each chromatic component, while the double-
opponent units provide information about changes in the
relative amounts. We anticipate that the stronger the addi-
tional ambient reflected intensity becomes (relative to the
diffuse reflected intensity), the stronger the response of the
double-opponent operator will be. This point is illustrated
in Fig. 3, where responses of the units to two test patterns are
plotted. Each test pattern is composed of two chromatic
stimuli juxtaposed in space (we use in this example only one
spatial dimension). In the left-hand test pattern [Figs. 3(a),
3(c), and 3(e)], r is weak relative to R and G, while on the
right-hand test pattern [Figs. 3(b), 3(d), and 3(f)], r is strong
relative to R and G. Therefore the red-opponent unit re-
sponds more strongly to the left-hand test pattern [Figs. 3(a)
and 3(b)], while the double-opponent unit responds more
strongly on the right [Figs. 3(e) and 3(f)]. Since the double-
opponent units are sensitive to two chromatic bands (either
red and green or blue and yellow), when comparing the
response of a double-opponent unit (say, red and green) with
its corresponding monochromatic opponent units, we will
have to consider the responses of two units, the red ones and
the green ones. Thus it is reasonable to compute the ratio
between the peak amplitude (absolute value) of the response
of a double-opponent unit with the square root of the sum of
peak amplitudes of the responses of the corresponding
monochromatic opponent units squared. So, for example,
in the red-green case, we compute the ratio between the
peak response of the R+G— center/R—G+ surround unit
and the square root of the sum of peak responses of the R+
center/R— surround and G+ center/G— surround units
squared. That is,
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" illumination and have computed both the relative amplitude

responses of the operators and the corresponding pull fac-
tors. The relative amplitude responses were computed as
the ratio between the highest peaks of the double-opponent
units and the highest peaks of the corresponding monochro-
matic opponent units, all within an area bounded by the
radius of the center of the operators. For example, for the
red—green case, the ratio was computed as the one between
the highest peak of the R+G center/R—G+ surround unit
and the sum of the highest peaks of the R+ center/R—
surround and G+ center/G— surround units within a round
area of radius 7 pixels. The pull factor was computed by
using Eq. (8). The results of the comparisons are summa-
rized in Fig. 4.

In the tests that we ran, four different diffuse reflected
intensities were picked, and for each one the amount of
ambient reflected intensity was varied. For each test, the
relative amplitude response and the pull factor were com-
puted. As can be observed from the results, there is a pro-
portional relationship between the relative amplitude re-
sponses and the pull factor. This leads us to the conclusion
that the pull factor can be estimated by the practical method
introduced, which makes use of the relative responses of the
monochromatic opponent units and the double-opponent
operators. Therefore, by using a threshold on the accept-
able pull factor, it is possible to hypothesize whether the
discontinuity is a shadow boundary or a material change.
For larger values of this threshold, more discontinuities will
be accepted as shadow boundaries.

We applied this technique to the problem of identifying
material changes, as is shown in Fig. 5. The size of the
original image is 256 X 256 pixels, the radius of the center for
both the monochromatic opponent units and the double-
opponent units is 7 pixels, and the ratio between the stan-

|Peak Response of R+G—/R—G+|

Relative Amplitude Response =

[(Peak Response of R+/R—)2 + (Peak Response of G+/G—)?|'/2 '

(i2)

If the ratio is greater than the anticipated pull factor, a
threshold measurement computed by a higher-level process,
then the discontinuity in the area is not considered a materi-
al change but rather a change caused by shadow effects.

What remains to be defined is the extent of the area in
which we compute this relative amplitude response. This
area has to be small enough so as not to include the responses
resulting from other discontinuities and large enough to
cover both the peaks of the monochromatic opponent units
and the double-opponent ones, which may not occur in the
same spatial location. The area in which we compare the
amplitude responses is the one covered by the center field of
both operators, which are of the same size, since this area
essentially excludes (with high probability) peaks that are a
result of two adjacent discontinuities,'8 yet it is large enough
to guarantee the detection of the peak of the responses.!?
The appropriate size of operators relevant to the image (or
parts of it) remains an open problem.

N

RESULTS

First we verify that the relative amplitude response is mono-
tonically related to the pull factor. We have simulated dif-
ferent cases of object colors and different levels of ambient

dard deviations of the surround to the center (o,/a.) is 2.5.
The original image [Fig. 5(a)] has three peppers, one of
which (1) is red, which casts its reflection on a green pepper
(2). The image was convolved with an R+G— center/R—G+
surround operator to yield possible material changes [Fig.
5(b)—the white boundaries]. It is evident that some of the
shadows in the green pepper (2) are ones that are affected by
the red reflection of the red pepper, and therefore we tested
the image for possible changes of classification in order to
verify it. Figure 5(c) is a result of the reclassification with a
predicted pull factor of 0.2, showing that some of the possi-
ble material changes are probably just shadows (black
boundaries); Fig. 5(d) shows that increasing the pull factor
to 0.3 changes the classification of more of the material
changes to possible shadows. What we see, then, is that if
some global process is able to predict the pull factor, then
there is a way of correcting the classification even under
complex illumination conditions.

SUMMARY

The relationship between shadow and lit regions in images
can be complicated by the existence of spectrally biased
ambient illumination that is reflected off objects in the envi-
ronment. In contrast to previous approaches for inferring
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Comparison Results
Test Diffuse Ambient Pull Relative
Number | Intensity | Intensity | Factor | Amplitude
(R,G) (r.9) Response
1 (110,160) (20,0) 0.08 0.13
110,160 30,0) 0.13 0.17
110,160 40,0) 0.17 0.20
(110,160) | (50,0) o 0.21 0.23
5110,160) (60 0; 0.25 0.26
110,160} (100,0 0.42 0.33
2 (50,60) (10,0) 010 0.12
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Fig. 4. Comparisons between the pull factor and the relative am-
plitude responses of the units (red and green opponent units and
R+G— center/R—G+ surround operator).

material changes, which assumed that the ambient illumina-
tion has the same spectral characteristics as the incident
illumination, we have presented a technique that takes into
account ambient illumination that is different in its distri-
bution. A measurement that is based on a biologically moti-
vated set of operators has been introduced and found to be
related directly to the relative strength of the ambient illu-
mination. It is important to remember that this is an early
visual process and as such will not determine perfectly, nor
decisively, whether the discontinuities are indeed material
changes. Some other process, a higher-level one that in-
volves knowledge about the scene and its structure, may
perform the final decision making regarding this classifica-
tion. Furthermore, it is clear that the threshold that we
introduced has to be provided to our technique, since it may
vary from one image to another or even from one region to
another in the same image. Therefore an additional com-
putation must be carried out by higher-level spatiochroma-
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Fig. 5. An application of the algorithm to a chromatic image. (a)
Is the original image, with a red pepper (1) casting its color on a

- green pepper (2). (b) Is the result of the algorithm run with predict-

ed pull factor of zero; the bright lines are the discontinuities hypoth-
esized as material changes. (c) Is the result of the algorithm with
predicted pull factor of 0.2, and (d) with a pull factor of 0.3; the
darker lines are discontinuities that were reclassified as shadow
boundaries. The images in (b), (¢), and (d) are shown with reduced
contrast so that the discontinuities will be easier to see.

tic mechanisms, ones that should take into account informa-
tion such as spatial organization and reflectance properties
of objects. Nevertheless, the technique that we presented is
definitely more flexible, accurate, and robust in its perfor-
mance.
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