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Abstract

Here, this author attempts to tie the concept of active perception to attentive processing in general and to the com-
plexity level analysis of visual search described previously; the aspects of active vision as they have been currently
described form a subset of the full spectrum of attentional capabilities. Our approach is motivated by the search
requirements of vision tasks and thus we cast the problem as one of search preceding the application of methods
for shape-from-X, optical flow, etc., and recognition in general. This perspective permits a dimension of analysis
not found in current formulations of the active perception problem, that of computational complexity. This article
describes where the active perception paradigm does and does not provide computational benefits along this dimen-
sion. A formalization of the search component of active perception is presented in order to accomplish this. The
link to attentional mechanisms is through the control of data acquisition and processing by the active process.
It should be noted that the analysis performed here applies to the general hypothesize-and-test search strategy,
to time-varying scenes as well as to the general problem of integration of successive fixations. Finally, an argument

is presented as to why this framework is an extension of the behaviorist approaches to active vision.

1 Introduction

In 19835, Bajcsy presented a view of perception that she
termed active perception [Bajcsy 1985]. She proposed
that a passive sensor be used in an active fashion, pur-
posefully changing the sensor’s state parameters accord-
ing to sensing strategies. Basically, it is a problem of
intelligent control applied to the data-acquisition proc-
ess that depends on the current state of data interpreta-
tion including recognition. It is interesting to note that
this use of the term “active” in vision appeared in the
dissertation of Freuder in 1976. He used what he called
“active knowledge” to assist in determining where to
look next in an image based on the current state of in-
terpretation [Freuder 1976]. He did not include consid-
erations of camera movements, but the general idea is
the same. Bajcsy detailed a proposal for an experimental
environment for conducting research on this topic.
Cameras should have focus, zoom, and aperture con-
trol: the camera mounts should permit vergence angle
control, pan/tilt, up/down, and right/left motions. The
observer should know the camera’s position, orienta-
tion, focus, zoom, and in general all the external param-

eters of the system. Internal parameter adjustment was
not involved in the proposal (but was in Freuder’s
system).

Since then, many elaborations of the idea have ap-
peared [Bandyopadhyay et al. 1986; Krotkov 1987;
Clark & Ferrier 1988; Ballard 1987, 1989; Ballard &
Ozcandarli 1988; Aliomonos et al. 1987, Abbott &
Ahuja 1988; Paul et al. 1987; and others]. A particularly
good example of the application of active perception
is given by Aloimonos et al. [1987]. They assume that
the observer is active and the observer’s purpose is to
control the geometric parameters of the sensory appa-
ratus. The idea is applied to the computations of shape-
from shading, contour, texture, motion, and optical
flow. They show how the additional data provided by
several views in time can convert an ill-posed problem
into one that is well posed. Moreover, this often allows
one to use more general assumptions and increases
robustness to noise. However, in general, the system
needs accurate knowledge of the viewing transforma-
tion up to second derivatives.

It is important to note that although the concept of
active perception is relatively new to computer vision,
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it is not new in the psychology of perception. In 1874,
Franz Brentano introduced the concept of act psychol-
ogy. He raised the possibility that a subject’s actions
play a role in perception and that perception and indeed
all conscious acts must be grounded by real objects.
G.E. Muller defined his Komplextheorie of collective
attention in 1904 where perception was based on actions.
See Metzger [1974] for an overview of these and other
early ideas. To add further perspective to the current
work on active vision, we should note that the approach
seems to represent a marriage between two historically
important points of view. Helmholtz believed in percep-
tual hypotheses, in the derivation of the best interpreta-
tion given the evidence and in attentional mechanisms
that guide processing even without eye movements
[Helmholtz 1910].! Gibson, on the other hand, aban-
doned the usual experimental paradigms that used 2D
tmages and argued for an eye that moves freely in a
natural 3D world [Gibson 1979]. Of course, both scien-
tists included much more in their theories; these two
particular viewpoints however characterize each of them
and, together, form a reasonable view of active percep-
tion as currently popular.

Active perception necessarily must address the prob-
lem of the integration of successive fixations of a scene
into a coherent whole. This has been a subject of study
within a psychology community, and is closely tied in
with eye-movement research? Computational proposals
for the general problem have not previously appeared,;
this article makes a preliminary step in that direction.

The particular formalization that will be presented
in successive sections addresses not only the problem
of active perception; with no changes whatsoever, the
same formalism and results apply to long sequences
of time-varying scenes, whether the sensor is moving
or not. The results will therefore be undistinguished
along this line.

2 Attention and Search

The concept of attention can be found in even the
earliest writings on perception (for a good collection
of recent papers, see Parasuraman & Davies {1984]; a
short review appears in LaBerge [1990]). Helmholtz
believed that a conscious or voluntary effort may focus
attention on a particular spot in the visual field
[Helmbholtz 1910], and this led to the attentional spot-
light idea that is widespread in models of perception.
It is well known that human perceptual systems do not

completely analyze all incoming stimuli to the same
degree, and that certain elements are attended to and
others are not. This is how the psychology community
has recognized, in an informal way, that the task of
visual perception is computationally intractable from
a search perspective, and attention represents their
mechanism for achieving a solution. The immediate
computational counterpart is simply to include in any
theory the ability to select which stimuli are to be proc-
essed and to what degree.

Visual search is a common if not ubiquitous subtask
of vision, in both man and machine. A basic visual
search task is defined as follows: given a target and test
image, is there an instance of the target in the test
image? [Rabbitt 1978]. Typically, experiments measure
the time taken to reach a correct response. Region
growing, shape matching, structure from motion, the
general alignment problem, and connectionist recogni-
tion procedures are specialized versions of visual search
in that the algorithms must determine which subset of
pixels is the correct match to a given prototype or
description. The basic visual search task is precisely
what any model-based computer vision system has as
its goal: given a target or set of targets (models), is there
an instance of a target in the test display? Even basic
vision operations such as edge finding are also in this
category: given a model of an edge, is there an instance
of this edge in the test image? It is difficult to imagine
any vision system that does not involve similar opera-
tions. It is clear that these types of operations appear
from the earliest levels of vision systems to the highest.

In Tsotsos [1989], a computational definition of the
visual search task was presented, and the unbounded
case was distinguished from the bounded case? An
equivalence was drawn between unbounded search and
bottom-up processes, and bounded search and task-
directed visual processes. Then, a proof was given
showing that the unbounded case is NP-Complete in
the size of the image, while the bounded case has linear
time complexity in the same variable. The NP-
Completeness of the unbounded case is due solely to
the inability to predict in a nonexponential manner
which pixels of a test image correspond to objects. It
is claimed without proof that problems such as those
listed above are therefore NP-Complete.

These results provide the strongest possible evidence
for the abandonment of purely bottom-up schemes that
address the full generality of vision. It is thus necessary
to sacrifice generality in order to reshape the vision
problem and to optimize the resources dedicated to
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visual information processing so that a tractable prob-
lem is addressed. Attention is one important ingredient
of the optimization process.

Figure 1 shows the spectrum of attentional mecha-
nisms—it is not complete. The spectrum is organized
by size of the “space” selected by attention, where space
does not refer only to the three-dimensional world. The
largest selection is that of task, then of the world model
within which the task is to be solved, then the selection
of 3D visual space that is relevant, then the selection
of subsets of visual space, then selection of subsets of
computing units to apply, and finally, the selection of
operating parameters of each unit. Adaptation is the
lowest form of attentional manifestation in this catego-
rization, the attentional beam mechanism is next and
actions of the oculomotor system are above that. In
Tsotsos [1990], the concept of an attentional beam was
derived using complexity constraints in visual search
tasks. In visual search, the task, world model, and
visual space are preselected as part of the experimental
conditions. Adaptation may be relevant for the experi-
ment as a whole rather than on a case-by-case basis.
Once the subject has adapted to the experimental con-
ditions, adaptation may play a lesser role. Selection of
subunits however is relevant during the course of the
experiment, and for this reason the beam falls out
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naturally as an important attention mechanism. Of
course the others have impact, but they seem to be
already fixed by the time the experiment is well under-
way. Active perception as commonly formulated seems
to be linked with the third and fourth layers of the
attentional spectrum.

3 Active Vision: Why?

Several reasons for the need for active approaches to
perception have been put forward. Summarizing, active
vision is useful in at least the following ways:

— to see a portion of the visual field otherwise hidden

— to compensate for spatial nonuniformity of a proc-
essing mechanism

— to increase spatial resolution

— to disambiguate aspects of the visual world (through
induced motion, or lighting changes for example)

— to enable better mathematical formulations for a par-
ticular problem.

All of the above (except perhaps the last point) tacitly
assume that some hypothesize-and-test mechanism is
at work. Only if hypotheses are available, can a par-
ticular action due to an active perception mechanism
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Fig. I. The spectrum of attentional mechanisms.
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actually yield benefits. Otherwise the search space is
simply too large; that is, attention is needed. This is
not to say that reasoning and sophisticated knowledge
representation schemes are necessary; quite the con-
trary, as the next section will show. Thus, this article
proposes a much broader view of active vision so that
it encompasses all levels of the attentional spectrum,
that is, all levels of visual information processing that
require hypothesize-and-test.

4 Complexity of Passive vs. Active Visual Search

The issue of computational efficiency for active ap-
proaches is explored here with the goal of showing that,
in some cases, there is another basic computational
reason for active perception, namely, to gain improve-
ments in computation time. This is a consideration
orthogonal to the above list. In the following sections,
comparative complexity functions will be presented for
various types of visual search tasks in both passive and
active formulations. The specific situations described
above are modeled only with the number of views that
they require regardless of the reason for more than one
view of the scene.

In most discussions of active perception, little con-
sideration is given to the additional cost imposed on
a perceptual system if it must manage an active sensor.
The costs fall into at least the following computational
categories:

1. deciding that a change of visual field is needed and
why (why will help determine which change is best)

2. deciding on which change is best (priority sequence:
eye movements, head movements, body movement)

3. execute change

4. adapt system to new viewpoint (focus, light levels,
etc.)

5. correspondence of objects and events between old
and new viewpoints.

These computations and actions may be relatively ex-
pensive in terms of overall time to understand a scene,
or to perform some task. Deployment of an active
strategy versus a passive one must therefore depend on
the associated costs as well as the benefits.

It is important to note that in the remainder of this
article, only an abstract framework suitable for complex-
ity analysis is presented. This discussion does not ad-
dress how the framework may be implemented. As such,
the discussion may be likened to the “in principle” solu-
tions of Marr’s computational level [Marr 1982].

4.1 Setting Up the Framework

Two key definitions are required to begin the specifica-
tion of a computational formalism for visual search:
(1) unbounded visual search in which either the target
is explicitly unknown in advance or it is somehow not
used in the execution of the search; and (2) bounded
visual search, in which the target is explicitly known
in advance in some form that enables explicit bounds
to be determined that can be used to limit the search
process. These bounds may be in the form of spatial
extent of the target, feature dimensions that are involved
or specific feature values.

A test image containing an instance of the target is
created by placing an instance of the target, which may
have undergone translating, rotating, and/or scaling, in
the test image. We assume for the moment that such
spatial transformations are not present. The test image
may also contain confounding information, such as
other items, noise, and occluding objects; or other proc-
esses may distort or corrupt the target.

The typical visual search experiments found in the
literature all deal with 2D images of 2D targets. An
active approach would yield no difference in the image
acquisition or understanding process since all data is
available to the sensors at all times* One must consider
the broader forms of visual search possible in the 3D
world, where the targets:

— may be occluded by another object or may be self-
occluded thus requiring sensor motion or object
manipulation to eliminate the occlusion;

— may be outside the fovea or field of view, thus requir-
ing sensor or observer motion to foveate the target;

— may be far away, thus requiring sensor zoom or
observer motion to bring details into view;

— may be out of focus if it is out of the camera depth
of field (or out of the stereo-vergence plane in a
binocular system), thus requiring focusing actions.

These sensor motions may for some problems be nec-
essary in order to acquire sufficient data to complete
the task. There is a different class of motions as well
that seem to not be required in principle, but rather
can make problem solution simpler. They include:

— induced lighting changes (photometric stereo, for
example)
— induced motion effects (kinetic depth, for example)

In order to permit a more formal analysis of active
vision, a formalization of the visual search problem,
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both passive and active, must first be presented. The
formalization first appeared in Tsotsos [1989], but is
extended here to the active version of the problem.

4.2 The Role of Worst-Case Analysis

Elsewhere [Tsotsos 1990b; 1991], the relevance of a
worst-case analysis was briefly discussed; here this dis-
cussion is expanded. A worst-case analysis provides an
upper bound on the amount of computation that must
be performed as a function of problem size. If one
knows the maximum problem size, then the analysis
places an upper bound on computation for the whole
problem as well. Thus, one may then claim, given an
appropriate implementation of the problem solution,
that processors must run at a speed dependent on this
maximum in order to ensure real-time performance for
all inputs in the world. Worst cases do not occur only
for the largest possibie problem size; rather, the worst-
case time-complexity function for a problem states that
for any problem size the worst-case number of compu-
tations may be required simply because of unfortunate
ordering of computations (for example, a linear search
through a list of items would take a worst-case number
of comparisons if the item sought is the last one). Thus,
worst-case situations in the real world may happen fre-
quently for any given problem size.

Many argue that worst-case analysis is inappropri-
ate for the problem at hand for one of the following
reasons:

1. Relying on worst-case analysis and drawing the link
to biological vision implies that biological vision
handles the worst-case scenarios.

2. Biological vision systems are designed around aver-
age or perhaps best-case assumptions.

3. Expected case analysis more correctly reflects the
world seen by biological vision systems.

4. The definitions used for bounded and unbounded
search are artificial and do not relate to real systems.

Each of these criticisms will be addressed in turn.
1. This kind of inference is quite incorrect. As was
shown in Tsotsos [1990a; 1990b}:

— Bounded search corresponded exactly to the known
target visual search experiments commonly seen in
the psychology literature (Treisman [1988] for exam-
ple). The predicted performance agrees completely
with the observed performance.

— Unbounded search, since it is NP-Complete, points
to the need for major optimizations and abstractions
in vision systems regardless of whether they are bio-
logical or not. It cannot be the case that the brain
is solving problems that have exponential time com-
plexity where the exponentials are large. These opti-
mizations and abstractions included the mechanisms
of parallelism, visual-model hierarchical organiza-
tion, input hierarchical abstraction, visual maps, and
spatio-temporal receptive fields. When used to-
gether, they lead to an architecture with biologically
plausible time- and space-complexity relationships
[Tsotsos, 1988; 1990a]. These mechanisms are com-
mon throughout most early vision proposals.

Thus, there is no implication that human vision
handles all worst-case scenarios at all. The whole argu-
ment exists only to prove that all worst-case scenarios
cannot be handled by human vision in a bottom-up
fashion.

2. It is far from obvious what kind of assumptions
(if any) went into the design of biological vision sys-
tems. Vision systems emerged as a result of a complex
interaction of many factors including a changing envi-
ronment, random genetic mutations and competitive
behavior. It is probably the case that the best we will
ever be able to do under such circumstances is to place
an upper bound on the complexity of the problem, and
this is all worst-case analysis will provide.

3. Analyses performed by other authors (Grimson
[1988], for example) based on expected or average
cases, depend critically on having a well-circumscribed
domain and an algorithm. Thus the complexity meas-
ures derived reflect algorithmic complexity and not
problem complexity as is the goal of the present paper.3
Only under those conditions can average or expected
case analyses be performed. In general, it is not possi-
ble to define what the average or expected input is for
a vision system in the world. Furthermore, the result
of the analysis will be valid only for the average input,
and does not place a bound on the complexity of the
vision process as a whole. This also would not provide
any guidance in the determination of required processor
for real-time performance. See also Uhr [1990].

4. The definitions of the two search types are not in-
tended as a basis for implementing a vision system.
They are abstractions of the problem, descriptions of
“in principle” solutions at what Marr called the “‘com-
putational level” [Marr 1982]. As abstractions, one can
begin to analyze certain (but not all) of the properties
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of such solutions. One of the properties is the required
time complexity as a function of problem size. This
is a very common kind of analysis within computer
science (see Garey & Johnson [1979]). How these defini-
tions are to be used in implementations must involve
further investigation of their robustness to noise, and
other properties; but their time complexity would not
change problem class by such further elaboration (say,
from NP to P).

4.3 Specifying an Instance of Visual Search

An instance of the “bounded visual-search” problem
is specified as follows:

A test image [
A target image T

A difference function diff (a) for a € I, diff (@) € R?,
(R is the set of nonnegative real numbers of fixed
precision p)

A correlation function corr (a) for a € 1, corr (a) € R}
Two thresholds, & and ¢, both positive integers

The unbounded visual-search problem is specified in
the same manner but without the target image. Details
on how this particular collection of data may represent
the visual-search problem follow.

4.3.]. A test image [ is the set of pixel/measurement
quadruples (x, y, j, m;). x, y specify a location in a
Euclidean coordinate system, with a given origin. There
are p unique image locations (or x, y pairs). Note that
the locations are not necessarily spatially contiguous.
M, is the set of measurement types in the image, such
as color, motion, depth, etc., each type coded as a dis-
tinct positive integer. m; is a measurement token of
type j, represents scene parameters, and is a nonnega-
tive real number of fixed precision, that is with positive
error due to possible truncation of at most p. (Only
a finite number of bits may be stored.) I' 2 [is a sub-
image of I, that is, an arbitrary subset of quadruples.
It is not necessary that all pixel locations contain meas-
urements of all types. For ease of notation, a, , ; refers
to a particular test image tuple and has value m;. If
J € M, or if the x, y values are outside the image array,

then ax‘y‘j = 0.

4.3.2. A target image T is a set of pixel/measurement
quadruples defined in the same way as I. The set of
locations is not necessarily spatially contiguous. There
are g unique locations in the target image. My is the
set of measurement types in the target image. The types
correspond between / and 7, that is, type 3 in one image
is the same type in the other. The two sets of measure-
ment types, however, are not necessarily the same. The
coordinate system of the target image is the same as
for the test image and the origin of the target image
coincides with the origin of the test image. ¢,,, ; refers
to a particular target image tuple and has value m;. If
J & My or if the w, z values are outside the image array,
tyej =0

4.3.3. The processing proceeds as follows. A subset
of I, I} is chosen, a coordinate system is identified,
and the functions diff and corr are computed with
respect to that subset and the target. The diff function
will be the sum of the absolute values of the point-wise
differences of the measurements of a subset of the test
image with the target image. It is expressed as follows
for an arbitrary subset [’ of the test image:

D diff (@) =2 Itz = eyl < 0

ael’ ael’

This sum of differences must be less than a given
threshold theta in order for a match to be potentially
acceptable. Note that other specific functions that could
find small enough values of some other property may
be as suitable. The threshold is a positive integer.

4.34 Since a null /' satisfies any threshold in the above
constraint, we must enforce the constraint that as many
figure matches must be included in I’ as possible. 2D
spatial transforms that do not align the target properly
with the test items must also be eliminated because they
would lead to many background-to-background matches.
One way to do this is to find large enough values of the
point-wise product of the target and image. This is also
the cross correlation commonly used in computer vision
to measure similarity between a given signal and a
template. A second threshold, phi, provides a constraint
on the acceptable size of the match. Therefore,

Z corr (a) =Z (twzj X Gryj) Z @

acl’ a€l’

The instance of visual search described here applies
exactly as given for scenes where motion is represented
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by an instantaneous velocity field. If a long sequence
of images is considered, the only change is to redefine
an image element as a quintuple (x, y, 4, j, m;) where
¢ spans the image sequence. In general, an image ele-
ment may be an arbitrary n-tuple and all proofs and
results given below hold.

4.4 Passive Unbounded Visual Search

Given a test image, a difference function, and a corre-
lation function, is there a subset of pixels of the test
image such that the difference between that subset and
the corresponding subset of pixels in the target image
is less than a given threshold and such that the corre-
lation between the two is at least as large as another
specified threshold? In other words, is there a set I’ < i
such that it simultaneously satisfies L, diff (a) < 6
and I, corr (a) = ¢?

One point regarding the above specification of visual
search must be emphasized. The target image is not
permitted to provide direction to any aspect of the com-
putation other than in the computation of the diff and
corr functions$ The constraints given must be satisfied
with subsets of the input image. This definition involves
two constraints to be simultaneously satisfied and that
the two constraints represent error and size satisfaction
criteria. Note that this definition does not force accep-
tance of only the best match, but accepts any sufficiently
good match. This is very similar to many other kinds
of recognition definitions. For example, the standard
definition of region growing involves the maximal con-
tiguous subset of pixels that satisfies a given property.
Moreover, this definition should not be interpreted as a
template-matching operation. Although template match-
ing may be posed in the above manner, there is nothing
inherent in the definition to exclude other matching
forms—the notions of image points, measurements, and
constraints representing large enough cover and low
enough error are ubiquitous in matching definitions.

THEOREM 1. Unbounded visual search is NP-Complete.

Proof: This was proved in Tsotsos [1989] by reduction
to Knapsack.

On the assumption that no prior information nor
assumptions are available for this problem.” the number
of arithmetic operations for the unbounded visual-
search problem is given by

oqi] -2l

where |I| is the number of pixel/value tuples in the
test image.® If all measurements are represented at all
pixel locations in the test image, then the expression
becomes

op - |1 M;]| - 2W1|P)

|1is a product of |M;|, the number of measurement
types in the test image; and p is the number of pixel
locations in the test image.

A concrete example of such kinds of search problems
is provided by the well-known “Dalmatian sniffing at
fallen leaves” image, or the “Horseman’ of Verville
and Cameron [1946], or the incomplete figures of
Leeper [1935]. In each, the observer is not given any
cues as to how to group image blobs, and must try arbi-
trary groupings until one of the grouping “‘clicks’ onto
a form that is known. This has exactly the character
of the grouping operations required for the above com-
putations; the computations involved in the “aha!” ex-
perienced when the correct grouping is found is the
correlate of the diff and corr functions.

4.5 Passive Bounded Visual Search

If we consider the use of the target item, it is easy to
show that the problem has linear-time complexity. The
key is to direct the computation of the difference and
correlation functions using the target rather than the
test image. This kind of search task is common in com-
puter vision and corresponds to any model-based vision
task. However, we still seek the appropriate subset of
the test image. If there is a match that satisfies the con-
straints, then its extent can be predicted in the test
image; all locations are possible. The bounded visual-
search task is stated as follows:

Given a test image, a target image, a difference func-
tion, and a correlation function, is there a subset of
pixels of the test image such that the difference between
that subset and the corresponding subset of pixels in the
target image is less than a given threshold and such that
the correlation between the two is as large as possible?

In other words, is there a set I’ € I such that it
simultaneously satisfies

Z diff (¢) < 0 and Z corr(t) = ¢
1€T €T
where
DL diff () =D |t — ag,,l <0

teT teT
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and

Z corr (1) =Z (twzj X Qryj) Z @

teT teT

Note that the definitions of diff and corr have changed
slightly in that the pixel locations and measurement set
used are those of the target rather than the test image.
In other words, the hypothesizing of target-test subset
correspondence is based on the target.

THEOREM 2. Bounded visual search has time complexity
linear in the number of test-image pixel locations.

Proof. The computation of the diff and corr functions
is driven by the target image and the measurements
present in the target. A simple algorithm is apparent.
Center the target item over each pixel of the test image;
compute the diff and corr measures between the test
and target image at that position; among all the positions
possible, choose the first solution that satisfies the con-
straints. The worst-case number of arithmetic opera-
tions for bounded visual search would be O(| T | p) or

O(q|Mr|p).

4.6 Active Visual Search

A different formulation of the visual search problem
is needed for an active strategy. If an active approach
is to yield efficiency benefits, then it must in some way
reduce the search space required for problem solution
when compared to passive approaches. This implicitly
assumes that for a given problem active and passive
strategies are equally able to solve the problem. Careful
preplanning may eliminate the need for active methods
in some cases. Consider the recognition of a 3D object:
one passive strategy would be to simply take N views
of the object spaced by a fixed amount, and reconstruct
it. After all, this is the basis for 3D computed tomog-
raphy, a very successful technology. The motion of the
camera is not dynamically determined, but is rather
preprogrammed. Contrast this with an active approach
which may decide dynamically which are the best views
to use for recognition depending on the context and
task. Both schemes can yield a correct solution. The
complexity issue is orthogonal. For purposed of com-
parison, it is assumed that both passive and active strat-
egies are on equal footing. It should be pointed out that
the set of problems referred to (i.e., the intersection
of solvable passive and solvable active approaches) is

neither small nor unimportant. This is because the use
of the term ““active” in this paper is very broad. Included
in the comparison are all time-varying vision tasks, as
well as any approach that involves attentional processes,
hypothesize-and-test, adaptive schemes; any process
that fits into one or more of the levels of the spectrum
of attentional mechanisms shown in figure 1 and in-
volves sampling input over time. The use of the term
is not restricted to strategies that move cameras only.

A critical feature of active approaches is that time
is required, that is, a sequence of perceptual signals
must be acquired over time, where the active strategy
controls what signals are to be acquired and how they
are to be processed. Given the efficiency consideration
and the processing control possible using an active ap-
proach, we can reformulate the visual-search problem
as follows:

Given a test image sequence in time /,, is there a se-
quence of sets 9, for t = 1 to 7, where 9, is the union
of all sets I/ € I, such that each element I/ of 9,
satisfies,

Ddiff (@) < 6, and D corr (@) = &,

a€l) a€l]
where
0, =0,= ... =6,
o =P, = ... =9,
and

6,=06 and ¢, = ¢

of the passive definition.

The sequence of thresholds may be trivially set to
0,,1 =0, — 1and ¢,,; = ¢, + 1. 0, and ¢, are posi-
tive integers. Additional analysis is needed to determine
if better settings exist. The thresholds act as hypothesis-
pruning filters tuned more and more tightly as time pro-
gresses. Therefore, this strategy and formalism works
equally well for the general case of hypothesize-and-
test with or without sensor motions, and for static or
time-varying images.

THEOREM 3. Active unbounded visual search is
NP-Complete

Proof: The active problem consists of a sequence of
passive problems. Earlier, it was shown that the passive
problem is NP-Complete. Thus, the active version is
also NP-Complete.
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The complexity of the unbounded version of this
problem is still exponential, because it has the passive
problem described earlier as a subproblem. Its worst-
case complexity would be

o 25 (Ll -2
=1

because all viable hypotheses must be carried over from
one image to the next, and only if all image subsets
are considered will all viable hypotheses be found. If
all measurements are present for all locations then the
expression becomes

0| D) (p - |M]| - 2Mir
t=1

p, is the total number of pixel locations from which to
select candidate hypotheses at time ¢.

THEOREM 4. Active bounded visual search has time
complexity linear in the number of test-image pixel
locations.

Proof: The active bounded problem is a sequence of
bounded passive problems, and therefore, it too has
behavior linear in the number of pixels, and its com-
plexity is given by

ol ATl py
=1

This formulation is guaranteed to work correctly be-
cause the solution subset(s) are not discarded during
the iterations. The thresholds are set up so that the cor-
rect solution, which would satisfy the thresholds defined
in the passive case, will satisfy the thresholds of each
iteration up to the last in the active case.

In essence, this formulation describes a hypothesize-
and-test search framework, where at each time interval
a number of hypotheses are discarded. This active
strategy applies to both unbounded and bounded visual-
search problems. This formulation enables partial solu-
tions to be inspected midstream through an image se-
quence for the active strategy. The passive strategy
would require waiting until all the images are acquired
and then operating on a spatiotemporal block of data.

Note that 9, represents that set of active hypotheses
at each time step. In the unbounded version of the prob-
lem, hypotheses are arbitrary pixel/value groupings,

while in the bounded problem, hypotheses are pixel/
value groups which all have the same size and config-
uration as the target. Although the constraints on the
diff and corr functions can effectively eliminate hypoth-
eses, the elimination of the pixel/value tuples which
make up a hypothesis is a bit more difficult. A given
pixel/value tuple may participate in a large number of
hypotheses. If one of those hypotheses is eliminated,
it does not mean that the pixel/value tuple may also be
eliminated. All of the hypotheses in which a pixel/value
tuple participates must be eliminated before the tuple
is removed from further consideration.

Consider 2D projections in time of a 3D scene. From
image to image, the same location may be present in
the images, but with differing viewpoint. Thus, a given
pixel of information in one image may be foreshortened
in size, and may appear differently due to lighting
changes. Even if its corresponding pixel is found, it
is not necessarily the case that the pixel may be elimi-
nated or saved. The different information may be im-
portant (as in a photometric stereo scheme). Further,
the information may be confounded due to the fore-
shortening and may be sampled by the image sensor
together with neighboring locations, all depending on
the sensor resolution. Locations eliminated in one image
remain eliminated for future images; duplicates are dis-
carded and new measurements at viable locations are
kept as long as the location is viable. So, the best we
can do in characterizing the number of pixel/value
tuples to consider at time ¢ is to simply sum the pixel/
value tuples carried over with those acquired and to
subtract from this sum the number of tuples that can
be eliminated as a result of hypothesis pruning. This
is given by

H=H_—e¢e,+th—e¢, (H

where H, is the number of pixel/value tuples at time
t, h is the number of pixel/value tuples acquired each
time sample, e,_; is the number of pixel/value tuples
eliminated from time sample 1 — 1 and found and
eliminated at time ¢, (¢; = 0), e,_; which represents
the number of pixel/value tuples eliminated from the
image at time ¢ — 1, (¢g = 0). It should be clear that
correspondence in general is difficult; it may be assisted
by accurate knowledge of sensor motions. The value
of H, may grow monotonically as images are acquired
for nontrivial scenes.

In an implemented system, the amount of memory
that may be allocated to the storage of these hypotheses
would be bounded by H,,,, at any time ¢. In effect, the
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storage of hypotheses forms a representation of the
salient aspects of the visual world that are under con-
sideration for solution of the problem currently being
addressed by the system. This bound places an addi-
tional constraint on the selection of thresholds since
the values of ¢,_; and e,_;, depend in part on the val-
ues of the thresholds. 4 is fixed by the imaging-system
parameters. Therefore,

Hyowz H =z H_y — € +h— e,

=D (h — ey — €qy) @)
a=1

For the passive analysis of a spatiotemporal block of
data, the value of H,,,, is necessarily A7, for 7 images
of size h. H,,,, is smaller on average in the active case
since hypotheses may be eliminated from one time in-
stant to the next. If one knows H,,, and A in advance,
then one may be able to select values of the thresholds
6 and ¢ in such a way that

t
ht — Hmax SZ (ea~1 + eaAl) (3)

a=1

is satisfied for all . A greedy algorithm may suffice
for this, choosing thresholds very conservatively to
begin with, and increasing ¢ while decreasing 8 until
the constraint is just satisfied. The greedy algorithm
may be guided by the fact that on average, h — H,,,,/7
tuples must be eliminated for each time sample.

4.7 Worst-Case Time Complexity for Passive vs. Active
Visual Search

Table 1 shows the worst-case time-complexity functions
for passive and active visual search, both bounded and
unbounded. A comparison is made between input rep-
resentations of data as a spatiotemporal block (n-D plus
time) versus a temporal sequence of spatial images. The
derivation of these functions follows those given earlier
in a straightforward manner. The expressions in the
table assume with no loss of generality that the number
of pixel/value tuples at each time ¢ are given by
p.|M;|. The additional variables used in table 1 below
are: 7 is the total number of time samples in data set;
K, is the overhead per time sample for active computa-
tions; and, C, is the cost for correspondence computa-
tions in the active case for each time sample.

Table 1. Worst case time complexity for passive vs. active visual search.

spatio-temporal temporal sequence
block
A 000000000000 000000000000 00000
IMl1p 0000000000000 0000000000000000
unbounded o (tp.lhdﬂ.z ) 0000000000000 0000000000000000
pasgve 6000080000000 0000000000000000
000000000000 00000000000000000
B 0000000000000 00000000 00000000
unbounded I M| 25 0000000000000 00000000000 00000
opgnﬁzed 0 (|Nﬁ|-2 Ml(tp) ) 0000000000000 0000000000000000
6000000000000 0000000000000000
C 0000000000000 0000000000c0000 0
®00ccescc0rsrersccossscsrsese
bounded 0 (q'|h4TLtp) $000000000000000000000000000 0
A Ry
e00cseccssesccrcece < Myl p
unbounded |eeeseescsssscsccece | z (Pthll 2 +Kt + Ctj
®ecesecsescsccrrese t=1
active eesccsvssscsscssovee
B e0cccscscccccrcccee
unbounded ] eeeececccccssoscccee 1 M A
Optimized eesecsscvccccccscee O(z [|MI|2 ! ,p(2.:> +Kt+ Ct)
XY xxxl t=1
C eesccccccssscosvsoe
oo <
bounded se0cccssssecsscscces O(E (qIMT|p|+ K‘+C!))
[ A E N X R NN EERNENNENRNENHEHN] t=1
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4.8 When Does Active Approach Win?

What insights does the comparison in table 1 yield?

A. Active strategies are always more efficient for un-
bounded visual search problems. The sum of smaller
exponentials of the active case will always be less than
the single large exponential of the passive case for
reasonable cost implementations. This also shows the
power of hypothesize-and-test frameworks for un-
bounded perceptual tasks.

B. In Tsotsos [1988, 1990a], it was noted that even
though the brute-force approach to the problem of visual
search is intractable if the target and task are unknown,
human perceptual systems still solve the task. It must
be that the problem is reshaped and the perceptual proc-
essing machinery is optimized in order to do this. These
same approximations and optimizations can be applied
to the brute-force strategy described above for the active
unbounded problem. The mechanisms of parallelism,
visual model hierarchical organization, input hierar-
chical abstraction, visual maps and spatio-temporal
receptive fields when used together, lead to biologically
plausible time and space complexity relationships
[Tsotsos 1988, 1990a] reducing the complexity of un-
bounded search tasks to 0(2|M1 . 15) The bounded
case is still linear and is not qualitatively improved by
these optimizations. The passive unbounded problem
complexity then becomes

o( M| - 21! - (zpy?)

and the comparable expression for the active unbounded
problem is

DM, | 2™ p2S 4 K+ G
=1

If the hypothesis pruning is good ( p, sufficiently less
than p so as to offset the overhead cost), then the active
approach may be more efficient.

C. If enough data is available in one image to solve
the bounded problem, the active approach (over two
or more images) is always less efficient than a passive
single image solution. If the data must be found over
a sequence of images, active strategies may be more
efficient than passive ones for bounded problems only
under certain conditions. In general the following con-
straint must be satisfied for the active approach to be
more efficient (recalling that |T| = q | M7 |):

A(T| =) > B| 2, (T p+ K + C)| @

t=1

where 4 and B are constants. If the 7 images are avail-
able over a period of S seconds, then each side of the
above inequality is constrained by S. This can be re-
stated in order to provide a constraint on the relative
efficiency of the active overhead computations:

A(T| - ) — B| 25 (T| " py)
=1

>BY (K +C)

=1

Assuming A = B, |M;| = 1, and for ease of notation
the number of pixel/value tuples = the number of pix-
els, thus using equations 1, 2, and 3 equating H, with
P:» the relationship is

pT — Z (Pi—1
t=1

—e¢ 1 tp—e_y)

ILZ K, + C) (6

simplifying to

7—1 T
Se, +e) > |—;—| S&+C O
=1

=1

This may be unsatisfiable if the number of pixel/value
tuples eliminated in each consecutive pair of images
is not large enough. This constraint implies that camera
motion must be sufficiently slow to permit lots of over-
lap and further, the thresholds set for the diff and corr
functions must be tight in order for the active approach
to be more efficient than the passive one for bounded
problems. Camera motion must be carefully planned
s0 as to maximize the number of eliminated pixels in
the next image and to minimize the number of carried-
over pixels in the new image. In other words, large
overlap and slow camera motion have a positive effect.
This of course must be balanced with the total number
of images because the down side of large overlap is
more images.
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Note that the left-hand side of equation (7) is the same
as the right-hand side of equation (3). Combining the
two, an overall constraint can be stated as

7—1
ht — Hopa <2, (e, + €)
=1

T

DK+ C) B

=

\ -

>

A greedy algorithm that eliminates hypotheses until the
constraint is satisfied will suffice. Correct solution is
guaranteed provided the strict ordering of thresholds
as outlined in section 4.6 is maintained.

It should be clear that the practical application of the
above constraints is far from obvious; it requires a care-
ful evaluation of the costs of specific computations for
a given active strategy. Worst-case time-complexity esti-
mates must be made for specific algorithms so that the
constraints may be evaluated.

Pﬂ

5 Where Reactive Vision?

The above discussion points to the need for intermediate
representations (the space of hypotheses) in an active
vision paradigm. This may appear to go against the
reactive philosophy currently a major foundation of
active vision approaches (for example, see Ballard
[1989]). Can the two positions be reconciled?

stimulus
transducer

stimulus

the possible
stimulus-action
pairs

It is easy to place the hypothesize-and-test idea into
a reactive framework: assume (as is done in such frame-
works) that the set of choices of stimulus-action pairings
is given. The behavior specification of the device can
easily provide this. The standard hypothesize-and-test
paradigm operates as follows:

— propose a particular explanation as the correct one
for the current input (explanation may involve per-
ceptions, actions, etc.)

— devise a test in order to verify that it is indeed the
correct explanation

— if the hypothesis passes the test, proceed with that
explanation and its consequences

— if the hypothesis fails the test, select another expla-
nation and try again. The selection mechanism may
be quite complex depending on the size of the hy-
pothesis space.

Suppose now that all hypotheses can be tested in
parallel. Connell [1989], for example, defines nodes ex-
actly in the above form. A parallel realization is feasi-
ble only for relatively small stimulus-action pair spaces,
such as the ones currently implemented in various reac-
tive devices (Brooks [1986], for example)? This would
lead to a configuration such as shown in figure 2; this
is not unlike the kinds of circuits derived using the sub-
sumption ideas of Brooks. This circuit is reactive—it
reacts to stimuli as they enter the system, and it ap-
pears to have many behaviors since it has many
stimulus-action pairs to choose from and it resolves

world

resolve
conflicts

Fig. 2. A “reactive” viewpoint on hypothesize-and-test.
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conflicts. But most importantly, it has exactly the same
hypothesize-and-test mechanism that has been common
in Al The key difference is the parallel implementation.

Figure 2 is an abstraction of the several control dia-
grams given in Connell [1989]. The stimulus transducer
passes to each stimulus-action test the subset of input
data that is relevant for that action. All “hypotheses”
are thus represented and tested individually. Actions
are executed that move the sensors or do whatever else
is appropriate depending on the best hypotheses and
the scheme repeats. The maximum number of stimulus-
action (S-A) pairs (or hypotheses) may be bounded by
H,,.., as described earlier. If the hypotheses are filled
by the sensing system dynamically such that the set of
pixel/value tuples is the stimulus and the action is a
vote for a camera motion that improves the values of
the diff and corr functions,'© then the scheme in figure
2 is isomorphic to that proposed in section 4.6. The
“resolve conflicts” stage would look at all of the camera
motion votes and decide which to actually execute.

Now, expand the stimulus input to full-size images
rather than simple signals. If one strictly adheres to the
belief that no intermediate representations are required
then the scheme will be limited because: (1) only very
primitive sensory (internal as well as external) proc-
essing can be permitted (“small images or signals”);
(2) only very primitive degrees of spatial and temporal
context relations are possible; (3) only a small set of
behaviors can be included. Here is the reason why.

The paradigm in figure 2 is strongly related to visual
search as defined earlier. Recall that in the visual search
task, a subject is presented with a target (or targets)
and a test image and asked to determine whether or
not that target is present in a test image. This involves
2 behaviors (or stimulus-action pairs): (1) if target pre-
sent, press button A; (2) if target absent, press button
B. The choices for processing the input in a hard-wired
reactive framework are

i. each S-A processes only one fixed subset of input
in a uniform manner regardless of task or image
characteristics;

ii. each S-A processes the whole image in a uniform
manner regardless of task or image characteristics;

iii. each S-A processes the appropriate subset of the
input any where in the image in a manner appropri-
ate to that subset and the task.

Neither i or ii will exhibit “intelligence” or the
observed human visual search behavior unless the world
is very cooperative and the task is very vague. Choice

iii on the other hand yields a problem with the same
structure as the formal visual-search problem. Visual-
search definitions are not limited to visual images: the
problem and conclusions extend naturally to any type
of signal input.

The implications are far reaching: visual search can
be viewed within the behaviorist paradigm. More im-
portantly, unless the visual world or visual behavior
is trivialized, any behaviorist approach necessarily must
solve the visual-search problem as outlined earlier in
this paper. Behaviorism with embedded bounded visual-
search problems requires no more than linear time for
the signal matching tasks. If a target is known, (target
or goal is explicitly represented and/or realized by the
circuit), the behaviorist paradigm can be very fast even
if targets can be rotated and scaled. On the other hand,
behaviorism with embedded unbounded visual-search
problems may require exponential time for the signal-
matching tasks since the unbounded problem is NP-
Complete regardless of the implementation (both pas-
sive and active problems).

If it is assumed that any vision system must begin
with a set of pixel measurements, and that one of its
first steps is to create an edge representation (actually
any extracted representation will do for this argument—
depth, color, etc.), then the obvious question that must
be answered is: what are the physical structures respon-
sible for the edges? this is an unbounded visual search
problem: there are no constraints on the size, extent,
shape, etc. of the structures sought. It is exactly like
the problem of interpreting the image of the dalmatian
sniffing at leaves mentioned earlier. The model base
of possible objects in the world is of no help since it
would be very large and varied in general and thus not
provide useful constraints. This kind of question is at
the heart of visual processing, and thus it follows that
unbounded visual-search tasks can be found easily in
most vision problems. Thus, if the target is given as
a set of constraints or is known only implicitly in some
way (the spatial extent or configuration, or specific ap-
pearance are not known nor constrained), behaviorism
will fail due to the computational load for realistic non-
trivial images unless optimizations and approximations
of the kind described in Tsotsos [1990a]} are also in-
cluded: intermediate representations, attention, hierar-
chical organization, spatial abstraction, logically segre-
gated visual maps. But such mechanisms are exactly
the kinds of thins that behaviorists typically claim are
not needed: it appears that this claim is unjustified. If
the targets are always specified so that a behaviorist
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approach can dispense with intermediate representa-
tions, then the space of stimujus-action pairs will nec-
essarily become so large that the scheme will collapse
under the weight of the computational demands: each
possible world must be explicitly represented.

It should now be apparent that no reconciliation is
necessary. Any behaviorist approach to vision or robot-
ics must deal with the inherent computational complex-
ity of the perception problem; otherwise the claim that
those approaches scale up to human-like behavior is
easily refuted.

Conclusions

Aspects of attention have been linked to the concept
of active perception. Active vision has been placed into
the same formalism as previous analysis for the purpose
of complexity analysis; thus, they are now compatible
and complementary mechanisms. The formalization of
the active search problem is based on the key principle
suggested by Bajscy in her original paper: “active per-
ception is a problem of intelligent control applied to
the data acquisition process that depends on the current
state of data interpretation.” This leads directly to search
within a hypothesize-and-test framework and thus to
attentional processing in general. Analysis yielded an
efficiency reason for the use of active vision strategies
for some specific situations and those situations where
active strategy is less efficient that passive schemes
were discovered. A constraint on processing time was
developed that could be used to determine the efficiency
of an active strategy and which may guide selection of
camera motions in a real-time system. The conclusion
is that vision systems should be able to dynamically
decide whether to employ an active or passive strategy
based on a number of decision dimensions, one of them
being efficiency. It will not always be the case that an
active strategy is more efficient than a passive one. The
formalism presented for this analysis was linked to
hypothesize-and-test strategies in general, static or time-
varying images, with or without moving sensors; the
same results are applicable directly. Finally, it was
argued that this analysis is an extension of the behavior-
ist paradigm and that it addresses the scaling problem
directly.
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Notes

1. See the passage translated by and appearing in Nakayama and
Mackeben (1981).

2. See Steinman [1986] for a 25-year review of eye movement
research; also see Ballard [1989] for a corresponding computa-
tional viewpoint.

3. The definitions of bounded and unbounded search are presented
in section 4.

4. The experiments typically require that the images be foveated
and subjects maintain fixation at a given point. Trials with eye
movements are discarded. If either of these conditions are
changed, active strategies would have an effect even for 2D images
of 2D targets.

5. Recall that algorithmic complexity is defined as the time complex-
ity of a specific algorithm (a step-by-step procedure for solving
a problem), while problem complexity is given by a function
that is an upper bound on all possible algorithms for a given
problem independent of implementation (a problem is a general
question with parameters and a statement of what properties a
solution must satisfy) [Garey & Johnson 1979].

6. The diff and corr functions need not be specified algebraically;
rather they may also be provided as a table whose values are
fetched via look-up.

7. Tt is well known that Knapsack has a pseudo-polynomial solu-
tion. However, it is argued in Tsotsos [1990b; 1991] that this is
not a biologically plausible solution for vision. Moreover, this
does not prove that the problem is not exponential given no fur-
ther assumptions.

8. There are 2"/ test image tuples and their average size is given by

17
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and there are two arithmetic operations for each element.

9. Tt was shown in Tsotsos [1989, 1990a] that parallelism alone cannot
sufficiently account for human perceptual abilities. The number
of hypotheses possible quickly outstrips the size of the brain or
of any computer.

10. It is not obvious how this may be accomplished efficiently at
this time. In principle, however, it is clear that it can be accom-
plished as follows: associate a centroid with each hypothesis,
i.e., a location in the image that corresponds to the center of
mass of the pixel locations that make up the hypothesis; then
try different values of the thresholds to improve the values of
the diff and corr functions, noting which pixel/value tuples would
be eliminated; compute a new centroid for the proposed modified
hypothesis set; vote for a camera motion toward this new loca-
tion. Verification of this approach is currently under investigation.
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