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Abstract—A knowledge based system for the analysis of imagery clearly requires large amounts of domain
specific knowledge and also requires a recognition control scheme that will manipulate this knowledge in
order to interpret the imagery that represents various scenes of the domain. Many current systems indeed
satisfy this statement. In addition, however, they all contain modules that access the actual image data and
process this data. Typically, the methodologies for the image specific aspects and the domain specific aspects
are separate yet interact, and the representational formalisms and control schemes for these two tasks are not
related.

This paper will attempt, by overviewing a current hypothesis of the kinds of knowledge required for general
purpose vision and the current representational tools available, to reconcile the “low” and “high” levels of
knowledge based vision systems and to propose a set of uniform representational tools. The discussion will be
at the conceptual level and not at the implementational level. Pointers to current computer vision schemes
that are relevant to the discussion will be given. Several good surveys and discussions of requirements of vision

systems can be found in Nevatia,'"! Nagel,'” Hanson and Riseman,® Barrow,® Weszka,® Reddy,® and

Kanade.!”

Artificial intelligence
Biological visual perception

L INTRODUCTION

What does the term “knowledge” mean? Philosophers
have struggled with this concept for ages. A recent
discussion on the meaning of knowledge for computer
systems is presented in Newell.® Newell considers
“the knowledge level” of computer systems and defines
knowledge as “whatever can be ascribed to an agent,
such that its behaviour can be computed according to
the principle of rationality”. The principle of ra-
tionality states that actions are selected to attain goals:
“if an agent has knowledge that one of its actions will
lead to one of its goals then the agent will select that
action”. These are purely functional characterizations,
not structural. A symbol system is required to manip-
ulate knowledge, thus a representation scheme pro-
vides an access mechanism to knowledge. Consider-
ations of knowledge content are distinguished from
knowledge form and knowledge use. For the vision
domain, since an image underconstrains the scene that
it represents, it may be that the principle of rationality
is the reduction of ambiguity and that actions are
taken by the vision system in order to move towards an
unambiguous interpretation of the image. This state-
ment is, however, rather vague and requires much
elaboration. This elaboration will only be briefly
touched upon in this presentation.

If indeed the driving principle behind computer
vision systems is the reduction of ambiguity, the
appropriate actions that could be taken by the system
to satisfy this requirement must be identified, quan-
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tified and represented within the system, and struc-
tures for their manipulation must be formulated. It is
currently ‘not clear what such actions could be. An
expert systems framework with which to experiment
with various methodologies for visual information
processing may be appropriate at the current level of
understanding of the visual process. Expert systems are
characterized by the use of significant amounts of
knowledge to assist in interpretation of the data of
some domain. I will not address some common issues
in expert systems research, such as user community
acceptance of the system, performance, etc., since for
the current state-of-the-art of vision research, these are
not important. [t is important, however, to emphasize
that research in expert systems is not at all complete
and that there are many open issues remaining.

The expert systems approach has led to many
interesting and useful computer systems in a variety of
domains. Examples of vision systems that have such a
flavour are VISIONS,® IGS,? Levine,! ) ARGOS!!2
and others. The success of these systems has not,
however, been as remarkable as that of medical
diagnosis systems for example.''¥ I attribute this to
several factors: explicit representations of knowledge
have been reserved mainly for application domain
knowledge, while general visual knowledge has been
buried away in procedures, i.e. there is no uniform
formalism within which to define, code and manip-
ulate all of the knowledge of the system; there is no
representational formalism for combining concept
definition with the process for extracting instances of
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that concept ; there exists no well-defined mechanism
for the generation and use of a focus of attention, or
expectations, in vision systems, even though its impor-
tance has been emphasized by Mackworth’s “cycle of
perception”,** and Kanade’s model.!” At this point of
research, tools are required that are flexible enough for
experimentation with possible mechanisms for in-
teraction, communication, integration, etc., of sub-
processes, and expressive enough so that both domain
and general knowledge is easily included and used
within the same structures. [n addition, the tools must
be semantically well-founded so that analysis of system
performance can be accomplished and so that the
underlying foundations are reliable and sound—it is
hard enough to debug the knowledge without worry-
ing about debugging the representational formalism at
the same time.

A variety of representational and control tools have
been employed in expert or knowledge-based systems.
This presentation will not deal with all of them. Rather,
I will try to motivate the need for some of the more
common and well-understood ones for computer
vision systems. A relatively complete list of the kinds of
tools can be found in Brachman and Smith.!'®

When confronted with a large, complex task, in this
case vision, “divide and conquer”, or at least try to
conquer, 1S an obvious tactic. Arbitrary task sub-
division will yield structures that are unwieldy, un-
necessarily complex or inappropriately simple, have
poorly defined semantics, lead to inefficient processing
and lack clarity and perspicuity. Within the existing
representational repertoire, there exist two common
tools for domain sub-division and organization, name-
ly the is-a relationship (or generalization/specializ-
ation axis), and the part-of relationship (or the part/
whole axis). Brachman,'® Levesque and Mylop-
oulos"'” and Brachman"'® provide discussions on
their properties, semantics and use. A third, but less
well understood and used relationship is that of
projection.!” This is a relationship between domains,
such as those between two levels of processing, and
usually connects more abstract notions to more de-
tailed ones.

The IS-A axis provides for economy of repre-
sentation by representing constraints only once, in-
heritance of constraints along the IS-A relationship, a
natural concept organizational scheme, and a partial
ordering of knowledge concepts that is convenient for
top-down search strategies. The PART-OF axis allows
control of the level of detail or resolution represented
in knowledge packages and thus the knowledge granu-
larity of the knowledge base, ie. the size of the
knowledge packages. It provides for the implemen-
tation of a divide-and-conquer representational st-
rategy and it forms a partial ordering of knowledge
concepts that is useful for bottom-up search strategies.
In addition, grouping processes which are so impor-
tant in vision can be represented via this axis. Finally,
the PROJECTION dimension allows for the re-

alization of expectation biases and the enforcement of
top-down grouping constraints.

These three representational tools described above
are organizational axes that connect pieces of know-
ledge. Frames, classes and prototypes are common
names for knowledge packages that include both
assertional and procedural knowledge. In this pre-
sentation, prototypes will be considered as active
computing units that are organized along the is-a and
part-of axes. Packaging up knowledge leads to a
modular representation, with all the advantages of
modularity, particularly the enhancement of clarity
and flexibility. Package size is referred to as the
knowledge granularity of the representation. Most
knowledge package representation schemes borrow
strongly from Minsky.!'?

In the many vision systems that employ domain
knowledge, there seems to be agreement that at the
“high level”, many of the usual representational tools
are useful. For example, generalized cylinder repre-
sentations, such as presented in Nishihara?® and the
ACRONYM system,?!) make heavy use of specializ-
ation in defining classes of cylinders and also of
aggregation in combining several into an object (for
example, a human body or an airplane). Land and
water mass concepts are organized in this way in the
MAPSEE 2 system of Mackworth & Havens'?? and
this organization is exploited for recognition purposes.
Finally, motion concepts are organized along the is-a
hierarchy in the ALVEN system,'?® where recognition
proceeds from the more general to the more specific
concépts in this hierarchy in a constrained manner.
However, the image specific portions of the system
remain distinct. Why? Perhaps there are many
reasons, and [ will suggest three. Representation of
knowledge research has concentrated on the problem
of common sense reasoning or natural language
understanding. In the latter case, for example, in a
sentence there are a small number of possible com-
binations of words when compared to the number of
combinations of pixels in an image. The extraction of a
word is a trivial matter, the extraction of meaningful
picture elements is not. Thus, for vision, much more so
than for natural language, the representation for
concepts that are extracted from an image must be
intimately tied to the process that actually does the
extraction. This process will be referred to as the
aggregation or grouping process and more will be said
about this later on’ Secondly, throughout processing,
there is a need for optimization or enhancement of the
output and this plays a crucial role in the reduction of
local ambiguity. In natural vision this is the process of
lateral inhibition (see Zucker>* for an introduction to
this). This has led to the cooperative algorithms
common in vision systems, perhaps the best under-
stood being relaxation labelling processes.>-29) A
prerequisite for such processes is parallel communi-
cation among concepts and processes. Finally, the
notion of processing hierarchies isuseful and also has a
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counterpart in natural vision. Bottom-up and top-down
communication is required. These are three repre-
sentational issues that have received little attention
from the representation-of-knowledge community, yet
are crucial for computer vision systems.

Il. KNOWLEDGE OF THE VISUAL PROCESS

The approach that I will take is the following. The
definition of a concept and the process that extracts
instances of that concept from an image will be
packaged together. These knowledge packages, as
active computing units, must accept input, must
produce an output and have side-effects. Rather than
introducing any new mechanisms, [ will attempt to
show, using current knowledge of biological visual
systems as an example, that most of the concept
communication can be accomplished by exploiting the
is-a, part-of and projection organizational axes to the
fullest. Note that the discussion is at Newell's “know-
ledge level” and is not a statement about the implemen-
tation of this knowledge.

At this point several distinctions must be drawn. The
first is that between the information thatisin an image
and the information about the scene that is represented
by the image. In psychology, this is the distinction
between sensation and perception. From James,?”
“Sensation, then, ... differs from perception only in
the extreme simplicity of its object or content. Its
function is that of mere acquaintance with a fact.
Perception’s function, on the other hand, is knowledge
about a fact. ... In perception, there are voluminous
associative processes in the cortex, while in sensation
alone, there are a minimum of processes. Pure sensation
without some accompanying perception in an adult is
impossible. Perception, thus, differs from sensation by
the consciousness of further facts associated with the
object of sensation. ... Sensational and associative
brain processes combined, then, are what give us the
content of our perceptions”. This distinction will be
maintained throughout the discussion below. The use
of common vision terms such as “edge” when in the
context of sensations will mean simply some pattern of
intensities in an image and will not have a physical
correlate, while in the context of perceptions it will
refer to the internal representation of a portion of a
physical entity.

The second distinction to be made is that although
during the discussion examples of visual processing
will be taken from the current understanding of
biological vision, it should be clear that the intent is to
uncover basic principles and basic kinds of infor-
mation. It should also be clear that there are several
competing theories of biological visual information
processing, although I will only be describing portions
of some of them. The main concern is with the
“knowledge content” of visual processing. The pre-
sentation at this level is not concerned with any form of
implementation of these principles. The principles will

be developed by example, using the only complete
vision systems that are available to us for
study-—namely, biological ones. General references for
further reading on the characteristics of biological
visual systems are Kandel and Schwartz,?® Dav-
son,* Cornsweet,*® Caelli*" and Wickelgren.3?

[1.1. Grouping and response optimization processes

Perhaps the most important and common phenom-
enon in visual information processing is that of the
grouping of features into more abstract features and
the enhancement of the result of this process. Psychol-
ogists have described grouping principles for many
years, yet they have not been adequatly defined and
quantified for use in computer vision systems. These
principles play a role in the grouping of features into
higher order ones, whether of form, motion, colour or
depth information. It should be noted that no one of
these alone can be guaranteed to solve a given task and
that an interaction among several of them should be
considered. The mechanism of interaction is an area
that requires further research.

In addition, because of ambiguities in the image
data, an optimization process is required to enforce the
grouping principles in a local context. This is the
process of lateral inhibition in the visual system.
Lateral inhibition processes motivated much of the
relaxation labelling process research (see Zucker et
al.*® Bridgeman®®® and Zucker®* for discussions on
this topie). Lateral inhibition requires parallel comput-
ing unit communication over a local neighbourhood of
units, with each unit sending signals of inhibition to
other units as appropriate. Groupings and lateral
inhibition always are co-operating mechanisms. Fol-
lowing Wertheimer'®*> and others, the grouping prin-
ciples are:

Proximity. The closer the features are, the stronger
their tendency to be grouped together.

Similarity. The more similar features are, the stronger
their tendency to be grouped together. This would
include form components such as slopes of lines,
colour and texture.

Continuity. Features that are enclosed within a single
contour tend to be grouped together.

Smooth continuation. Features are grouped together so
that they form contours that have as few abrupt
changes of direction as possible.

Symmetry. Features tend to be grouped so that they
form symmetrical shapes.

Familiarity. Familiar objects or concepts are favoured.
Common fate. Objects that move with similar motion
parameters (velocity, trajectory) tend to be grouped
together.

Examples of schemes that integrate some of these
(proximity, smooth continuation, similarity) are, for
the motion correspondence problem, the work of
Ullman,® and for spatio-temporal aggregation em-
ploying the common fate principle, the work of
Flinchbaugh and Chandrasekaran.®” Prazdny®%) in-
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vestigated the creation of subjective contours from
random dot stereograms in which all elements in an
enclosed area are displaced together as a whole, using
discontinuity in image displacement vector field.
Smooth edge continuity is the basic principle behind
applications of relaxation processes to edge enhance-
ment,?> while smooth temporal continuity was the
driving force behind the relaxation process for motion
recognition of Tsotsos et al.** Finally, Zucker*®
describes a scheme based on quantifications of several
of the above grouping principles for the grouping of
dot patterns to form subjective contours.

11.2. The visual sensations

There seem to be, according to current understand-
ing, at least four separate groups of sensations: form,
change, colour and depth. A parallel is drawn to the
intrinsic image scheme of Barrow and Tenenbaum,'*V
as well as to the multiple pyramid approach of
Levine.!' V) It will be seen that the scheme that biologi-
cal systems seem to employ is a combination of these
two approaches. The sensations provide input for a
perception mechanism and perceptual computing units
monitor the different sensations and may guide their
processing. The sensations will be briefly described,
with computing units being characterized by their
sensitivity to their inputs, their specificity for input and
their dependencies on other information.

11.2.1. The abstraction of simple forms: feature
aggregation. It has been proposed by Hubel and
Wiesel®?) that certain portions of the visual system can
be viewed as representing a hierarchy of abstraction.
The type of abstraction is really a combination of
aggregation (along the part-of axis) and generalization
(along the is-a axis). At each level, each cell sees a
greater perspective than at an earlier level and its
ability to abstract is increased.

The first major level of visual information processing
is in the concentric center-surround receptive fields of
the retinal ganglion cells. These spot contrast units are
sensitive to the contrast and size of the stimulus and are
specific for location of the stimulus. These can be of
two types: cells that respond with the onset of
stimulation (on-center); those that respond to the
cessation of stimulation (off-center). An implemen-
tation of the on-center variety is described in Marr and
Hildreth**® and the information computed here forms
the basis for the raw Primal Sketch of Marr.“®
However, the temporal aspects were not considered. It
is probably true that the off-center cells play a
significant role as well, and thus temporal information
should be included in the computation of a primal
sketch-like representation of information at this level.
Some cells have an output that is steady over a relatively
long period of time (X -cells) and some have a transient
output (Y -cells). Models for these are found in Richter
and Ullman.“® An important characteristic of retinal
processing is the spatial organization and extent of the
receptive fields. In the fovea, the small central region of
the retina, there is a one-to-one correspondence be-

tween photoreceptors and ganglion cells. This is the
region with the highest visual acuity. This relationship
changes as one moves towards the periphery of the
visual field. Visual information processing is ne-
cessarily less precise the farther away the object of
interest is from the fovea, since increasingly larger
numbers of photoreceptors form the receptive fields of
ganglions in the periphery. This distorted image
mapping is preserved throughout the visual system, in
that there is proportionately much more neural ma-
chinery devoted to processing the small central areas
than the much larger peripheral areas.

Of note is the “channel hypothesis”, that states that
there exist several different spatio-temporal frequency
channels (or band-pass filter mechanisms) that operate
over the retina. Wilson and Bergen*® contend that
there are four channels, corresponding to four re-
ceptive field types at each retinal position—two sus-
tained and two transient—and that this is not homo-
geneous across the visual field. That is, the same field
types are not present for each retinal position, but vary
in extent, magnitude of response or other properties.
Four separate channels were modelled in Marr and
Hildreth,"*» however, the non-homogeneity and the
temporal aspects of the response were not included.
Evidence for a possible fifth channel was presented in
Marr et al*” There may indeed be a continuum of
sizes of channels—the integration of information from
these different sized operators is an open problem.

The next processing station is the lateral geniculate

nucleus (LGN). 1t is composed of 6 layers that are
inter-posed between each other in specific ways. This

laminated structure allows for the later processing of
disparity, crucial to depth perception. The cells here are
also of the center-surround variety, but have larger

* receptive fields than those in the retina. This body not

only receives input from the retina, but also from
higher levels of the visual cortex. It is believed that this
input acts as a negative feedback influence, much the
same as can be found in the LINES system in
Zucker.“4®)

Moving up the hierarchy to the simple and complex
cells of the primary visual cortex, cells begin to respond
to line segments and boundaries. Simple cells receive
input from the LGN. In some cases they provide input
for the complex cells, but it is also true that simple and
complex cells process information in parallel. This area
projects onto one or more higher order areas. Simple
cells, or linear contrast units, aggregate the LGN
output into edges or lines of varying sizes and orien-
tations. The receptive fields of these cells are composed
of appropriately shaped inhibitory and excitatory
zones. They are sensitive to the size and contrast of
stimulus and are specific for the location and orien-
tation of the stimulus. The directional derivative
operator of Zucker® models such linear contrast
units. Complex cells, on the other hand, are larger, are
orientation critical, but are not position critical, i.e.
they generalize position information.
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Simple and complex cells provide input for the
hypercomplex cells of the visual association areas.
Hypercomplex cells respond to changes in contrast
boundaries. One end of a bar, or both ends of a bar,
must be within the excitatory zone of those cells. These
units are sensitive to the size and contrast of a stimulus
and are specific for stimulus orientation and the
existence of a boundary perpendicular to the
orientation of the stimulus.

Connections are not quite so simple as the above
may imply and the story is far from over. An overview
of competing theories can be found in Stone et al'*?
However, from the above, several conclusions can be
drawn. The level of complexity of form processing may
be accounted for by a hierarchical aggregation of
lower level inputs, occurring in parallel for each
location of the visual field, with appropriate contrast
enhancement via lateral inhibition at each level. It is
not only aggregation and lateral inhibition that come
into play here. The stimuli that are important at each
processing level also vary. At the retina and LGN,
position is important. In the simple cells, position and
orientation are used. In the complex cells, the axis of
orientation is important but the position has been
generalized. In hypercomplex cells, edges and corners
are important. It may be true that other properties are
generalized farther along in processing. Thus, the
concept of specialization of information plays a role.

The representation implied by these several levels of
abstraction, just for form information, leads to a richer
description than even the representations put forward
by Nishihara.?® The work by Marr and his colleagues
is in the right direction, and requires further
elaboration.

11.2.2. The abstraction of change : temporal feature
aggregation. In very much the same fashion as the form
abstraction hierarchy, there exists a change abstrac-
tion hierarchy, although it appears as if this has not
been as extensively studied. Change abstraction begins
with the amacrine cells of the retina that detect changes
in incident illumination. Their response tends to be
transient and many cells respond both to the beginning
and end of a stimulus. They have large receptive fields,
resulting in a certain amount of spatial blurring, and
some are of the center-surround variety and are
sensitive to moving spots of light. Note that the spatial
blurring effect necessitates the need for integration of
form information with change information for precise
motion-position computation. Ganglion cells of the
retina that are change sensitive receive input from the
amacrine cells preferentially, and are sensitive to spots
of light or dark that move into or out of the center.
Amacrine cells are chained together, thus implementing
a directionally selective mechanism that provides input
to the ganglion cells. These spot change units are
sensitive to velocity and amount of contrast change,
and are specific for direction of change.

At higher processing levels, other constraints are
added in order to make the responses more and more

specific. In the first layer of cortical motion processing,
spot or bar change detectors are found that are specific
for both velocity and direction. The next layer presents
spot or bar correspondence units adding displacement
to the specificity list. At this layer, therefore, the units
are specific for velocity, direction and displacement.
Compare this with the correspondence process of
Ullman,®® where only displacement is considered as
the key factor in correspondence. In fact, it seems that
in biological vision systems, a great deal of processing
must be done before displacement is even considered.
The hierarchy of change detecting units and their
characteristics are described in Orban®! and is more
involved than the simplified view presented here.

A model of directionally selective motion cells is
presented in Marr and Ullman.®? Their model pro-
poses the measurement of the time derivative of their
Laplacian operator output at the zero-crossings. This
constrains the local motion direction to within 180
degrees. The true velocity is then measured by combin-
ing these local constraints. Optic flow schemes on the
other hand,®® do not capture the totality of change
information that the hierarchy just described does.
Changes in brightness due to light source motion,
moving shadows or motion of features produced by
occlusion are not within the optic flow definition.
Optic flow computations depend on image projections
of objects in motion. On the other hand, since the
visual system does not distinguish these different forms
of change, it is reasonable to wonder where and how
the distinction comes about.

There is much less known about higher order
motion abstraction. It seems that the abstraction of
motion concepts takes place in much the same fashion
as for form concepts, with more complex information
being-coded the higher the processing level. Generaliz-
ation of such abstracting structures into higher order
units may prove useful for computer vision experimen-
tation. For example, the motion frames of the ALVEN
system,*?-39) are defined in this way, creating motion
concept frames by specializing along motion semantic
components, such as direction, velocity, etc., as well as
aggregating more and more motion concepts into the
specialized concepts. This scheme provides an in-
teraction between form (object description) and mo-
tion systems.

11.2.3. The abstraction of colour information. Human
colour vision theory was first proposed by Thomas
Young in 1802. He suggested a trichromatic theory of
colour vision based on the perception of three colour
sensations: blue, green and red. His hypothesis was
confirmed when the colour absorption characteristics
of the cones of the retina were measured. Individual
cones detect only one of three colours : blue, maximally
absorbing at a wavelength of 445 nm, green, at 535 nm,
or red at 570 nm. Note that the absorption spectra for
these colours overlap. Colour vision requires that
neurons compare these 3 inputs.

Colour experience depends on three semi-
independent impressions: hue, saturation and bright-
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ness. Hue is the strongest effect and is a measure of the
proportion of the three cone mechanisms activated.
About 200 varieties can be defined. Saturation reflects
how much a hue has been diluted by gray and is
determined by the degree to which all three cone
mechanisms are stimulated by object and background.
There are 20 steps for each hue. Brightness, finally, is a
measure of the total effect on the cones of an object
relative to its background. About 500 gradations are
possible for each hue-saturation combination.

Neural mechanisms are hierarchical for colour
vision and are separate from the other abstraction
hierarchies. The cells described for form aggregation
used a spatially opponent mechanisms. Two sets of
cones (or rods) containing the same visual pigment are
connected to a single cell in a spatially separate center-
surround manner, so that contrast between the regions
is the determinant of cell response. Colour cells have a
similar opponent mechanism. However, colour cells
receive information from two types of cones; one
wavelength excites the cell, the other inhibits it.
Ganglion cells of the retina and of the LGN have a
concentric center-surround structure, with the center
being connected to one type of cone and the surround
to the other. Work by Rubin and Richards®®* presents
a similarly structured operator for detecting spectral
crosspoints across edges as material changes. There
are red-green cells (red exciting, green inhibiting),
green—red cells and blue-yellow cells (inhibition by
both red and green leads to optimum inhibition by
yellow).

Higher order processing in the primary visual cortex
involves a different sort of concentric receptive field.
These are colour contrast cells. The center has as input
a red-green system while the surround has an op-
ponent colour system, for example. The.best stimu-
lation for such a cell would be red in the center and
green in the surround. In further processing, simple
cells respond to bars and rectangles of one colour
opponent system with flanking regions of reverse
opponent colour system, providing input to complex
and hypercomplex cells in which orientation is impor-
tant but exact position is less critical. Rather little has
been done on computational models of such
processing.

11.2.4. The abstraction of depth information. Ste-
reopsis allows us to perceive objects in spatial depth
and occurs when the same object stimulates approp-
riate retinal regions in each eye. There are at least two
separate aspects to stereopsis: the information avail-
able from binocular parallax ; the information avail-
able from the fusion of two images into one. This is the
vergence effect or the degree of accommodation that
must be achieved in order to bring an object into focus
when shifting the eyes to objects at different depths.
Different single cells receive input from both right and
left retinal areas that are exactly in register or from
those that are disparate or contain binocular parallax
information. The layered construction of the LGN

allows such a mixing of left and right signals. This s the
level of processing that the theory of steropsis of Marr
and Poggio'®®-°® addresses. When fixation shifts to a
different depth in space, all the corresponding retinal
and cortical points must be re-arranged. The same
retinal ganglion cells are used to detect all form
patterns, but different groups of cortical cells are used
to detect the same form pattern at different depths in
space. As an object moves away, the eyes diverge to
maintain binocular fixation, new disparity cells are
activated and the amount of divergence, which is
controlled by higher processes, is used for interpre-
tation of displacement in depth. Disparity detecting
units are therefore sensitive to the form of the stimulus,
contrast and size, are specific for stimulus orientation
and disparity and are dependent on the point of
fixation.

In addition to the binocular form units, there are
also stereoscopic motion detecting units, described by
Regan et al.®” These units are based on the change
abstraction hierarchy described earlier in that their
input consists of corresponded spots and bars from left
and right registered images. Because of this, they can
not be used for the representation of the exact position
in space of the moving object and, thus, somewhere in
further processing there must be interaction with the
form hierarchy and disparity output. These stereo
motion detectors are specific for velocity ratio and for
direction of change. They are independent of actual
velocity and actual depth.

The computation of three dimensional models has
received much attention from a computer vision point
of view. Examples of such models include the scheme of
Nagel and Neumann>®' that incorporates a version of
photometric stereo, while Grimson®® incorporates
the stereopsis theory of Marr and Poggio.*®¥
I1.3. The visual percepts

Perception is characterized in this discussion by the
requirement that several sensations must interact in
the creation of a percept. I hypothesize (and do not
develop further herein) that the computing units
involved in perception are organized in a network,
connected to computing units of the sensations, at
varying levels of abstraction, and that the information
is integrated via an aggregation mechanism. Per-
ceptual units can be organized using the is-a re-
lationship as well. These units monitor the output of
units in the sensation hierarchies and may guide their
processing when appropriate. Connections between
perceptual and sensation units implicitly require a
translation mechanism between image-specific infor-
mation and object-specific information. The
“projection” representational axis is relevant here. The
interactions between sensations and percepts form the
focus of the following discussion.

11.3.1. Monocular depth cues. In addition to ste-
reopsis, a set of different properties of the visual system
also contribute to three-dimensional perception. Ac-
cording to Wyburn et al,'®” these are:
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Apparent relative size. A comparison of the relative
sizes of various objects in the visual field with our
knowledge of their actual sizes.

Occlusion. 1f an object of known distance occludes
another, then it provides a strong constraint on that
object’s distance from the observer. Also. much infor-
mation can be gained from the form of shadows due to
occlusion and from the shape of an object’s contour
that occludes the remainder of the scene behind it. The
interaction of shape from shading and occluding
contours has been examined in Ikeuchi, " and
Marr(®? defines methods for extracting axes of genera-
lized cone representations of smooth surface objects
given their occluding contours.
Relative appearance. Objects that are close tend to
have sharper outlines and more clearly defined detail
than objects that are farther away.
Colour. In natural imagery, objects that have cold, less
saturated colours (blue, green) seem to be farther away
than those with warmer colours (red, orange, brown).
Shadowing cues and intensity graduation. This includes
self-shadowing, considerations of surface reflectance
and highlights, as considered by Horn'®® and Wood-
ham,®* and shadows cast on other objects.
Linear perspective. Parallel lines receding into the
distance appear to converge.
Motion parallax. If an observer moves, near objects
appear to move in the opposite direction while those in
the background move in the same direction. Two
objects moving at the same speed but at different
depths appear to be moving at different speeds, the
farther one seeming to move slower.

It is not clear how the interactions of each of these
principles contribute to three-dimensional perception.

11.3.2. Form, colour and change interactions. There
have been many good surveys of motion analysis
systems—see Nagel'® for a complete account of this
topic, as well as Snyder,'®> Aggarwal and Badler(¢®
and Ullman.?®® This section will concentrate on the
interactions of the motion perceptual system with the
other sensation systems.

An important factor in motion interpretation by
humans is that in the face of ambiguity, the visual
system prefers to achieve as high a degree of object
constancy or rigidity as possible, according to Johan-
sson.!®” The rigidity assumption was key in the
structure from motion work described in Uliman.*%
Two examples of such ambiguity are : uniform change
in size vs motion in depth, and change in size in one
dimension vs rotation in depth.

The change aggregation hierarchy described earlier
simply cannot handle such interpretations. It was
noted earlier that even at the first level of change
information detection, a certain amount of spatial
blurring had occurred, thus implying that in order to
compute accurate motion—position information there
must be some interaction between the change and form
abstraction mechanisms. In addition, interaction be-
tween form and motion information is necessitated

because of the motion aperture problem (Marr and
Ullman®®?). If the motion of an oriented element is
detected by a unit that is small compared to the size of
the moving element, the only information that can be
obtained is the component of motion perpendicular to
the local orientation of the element. This means that
for higher order interpretations, there is a need for a
motion combination stage, perhaps guided by short
range motion correspondence information Ullman.3®

This motion combination stage is the component
that interacts with the depth, form and colour systems.
The experiments described by Kolers and his col-
leagues reveal some of these interactions. Their main
result is that the coding of form, depth, colour and
motion information cannot be completed in all cases
independently of each other. These four systems
constantly monitor each others results and compute a
consistent interpretation in parallel.

The interactions between form changes and rigid
rotation in depth were investigated in Kolers and
Pomerantz.®® They discovered that if the visual
system is given enough time, a rigid interpretation is
the preferred interpretation. In contrast, if the amount
of time allotted to interpretation is decreased below a
certain point, the interpretation will involve a form
change, thus implying that computations involving
rotations are more demanding computationally. If
more than one kind of change is presented, there is no
difference in processing efficiency, implying that com-
putations.are performed in parallel between these two
systems. Also, in apparent motion with collision, the
preferred interpretation is motion in depth to avoid
collision. This implies that the spatial characteristics of
the traversed path are being monitored and have an
effect on the interpretation. In Kolers and von Gru-
nau,'®® results were obtained providing evidence for
the interactions between form and motion and form
and colour systems.

On the other hand, work in Hay"® relates image
characteristics to object motions in 3D. This includes
image-specific changes, such as translation, stretch,
shear, foreshortening and magnification, related to
object-specific changes, such as motion in depth,
rotations and translations in all directions. These
results provide a starting point for an important aspect
of expert vision systems, that of translating between
image specific and object specific characteristics—the
projection between the two domains. It is a crucial
component of the model proposed by Kanade'” for
vision system design.

The interactions between form and motion fields are
explored in the work of Hoffman!"!) and those between
depth and optical flow for rigid body motion de-
rivation in Ballard and Kimball.”? Finally, the posi-
tive influence on interpretation of motion by expec-
tations is discussed in Sekuler and Levinson.!”®

I1.3.3. Generation and use of expectations. The use of
expectations or predictions as aids in the processing of
visual information, as mentioned previously, is not a
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new idea. In this discussion, the purpose of expec-
tations will be to direct the attention of the system to
particular sets of concepts and events. Expectations
were used in the SEER system of Freuder!”* to guide
region growing and identification of specific portions
of a hammer. A thorough understanding of human
body motions and a model of the allowed joint
configurations enabled the design of a constraint
propagation network that integrated current motions
and known body positions with hypothesized ones,
producing expected locations in 3D for given body
joints (O'Rourke and Badler'”). The work presented
in Browse!’® addressed the problem of how a com-
puter system can use the non-uniformity of retinal
processing detail in conjunction with a knowledge
base of the domain in order to generate new fixation
points. Finally, Down”” explored the generation of
expectations from a knowledge base of motion con-
cepts in a manner relating work described earlier'’® to
motion understanding. However, much research is still
needed.

Evidence from psychophysical experimentation for
both the use of generalization as a concept organi-
zational tool and for the use of expectations and their
relationship to the generalization relationship comes
from the following. The experiments described in
Cooper and Shepard”® show the strong positive effect
of a priori expectations on time for interpretation,
while those of Bugelski and Alampay”® and
Palmer®® show the effects of generalization of
expectation classes. Cooper and Shepard reported that
in the identification of letters presented at varying
orientations, the time taken to identify the letter varied
with the amount of rotation (to a maximum value at
180 degrees), implying that mental rotation and
matching was being performed by the visual system
and thatifidentity and orientation were given previous
to the stimulus, the response time was flat across all
orientations, as long as sufficient time was allowed
before the stimulus was presented for expectation
formation.

Bugelski and Alampay showed that if a subject is
conditioned to expect a given category (or generali-
zation) of stimulus, then the identification time of the
stimulus is reduced. They presented stimuli all belong-
ing to the same class of concept (animals) and when
non-animal stimuli were presented, the response time
increased. This was further examined by Palmer, who
also noted the impairment of identification if the
context is mis-leading. It should be pointed out here
that the mechanisms that produce such behaviour are
not understood.

At this point two separate notions must be dis-
tinguished, namely those of image-specific focus of
attention and semantic focus of attention. Following
James,'?®) attention is defined as: ‘It is the taking
possession by the mind, in clear and vivid form, of one
out of what seem several simultaneously possible
objects or trains of thought. Focalization, concen-

tration of consciousness are of its essence. It implies
withdrawal from some things in order to deal effec-
tively with others”. The process of visual attention, the
selection of important objects in the visual world, has a
response, that can take many forms—reaching for it or
visual fixation are but two. The response of changes of
image attention is specific eye movement, while the
response of changes of semantic attention does not
necessarily involve eye movement. Considerations as
to external goals or motion of the head, etc., are
beyond the scope of this discussion.

Changing system attention and determining the
focus of attention are important components of expert
systems, as mechanisms for reducing computational
load and allowing the system to behave in a more
“intelligent” manner. In medical diagnosis expert
systems, such as those described in Szolovits and
Pauker,''® hypotheses are generated from the data.
Signs and symptoms are input to the system and the
appropriate hypotheses are activated. Data is con-
tinually being added as a result of questions asked by
the system, so that new hypotheses are introduced
throughout the diagnostic process. The eye move-
ments that must be performed in order to “see” all of
the scene can be likened to the need for a medical
diagnosis system to ask questions, because it is only
given a subset of all the data it requires. The system
then directs the information gathering so that a
diagnosis or interpretation of the data can be achieved.
This should likewise be an important component of
vision systems—however, there has been very little
work on the topic.

With respect to semantic attention, Cornsweet
defines semantic attentional sets as biases on nodes in
semantic memory that are activated by appropriate
input regardless of position. That is, position in space
is generalized. This definition seems to apply to
“higher order” concepts only, and in order for atten-
tion to be useful in practical systems, a definition
encompassing biases at all levels of processing must be
formulated.

A generalized definition of attentional sets is: the
attentional set for a given computing unit of the visual
information processing system is the set of all other
active input signals from computing units that provide
efferent or top-down (stimuli that travel away from a
processing center and towards a sensory unit) input to
that computing unit. This input is viewed as a bias
placed on the response of that unit to afferent or
bottom-up stimuli (stimuli that travel towards a
processing center and away {rom sensory units) and
may take the form of excitatory or inhibitory biases of
varying degrees. These may also be termed priming
signals. Thus, each computing unit at any level of
processing that has top-down connections has its own
attentional set. Note the distinction between expec-
tations and attentional sets. Expectations exist only at
the perceptual level amongst concepts at similar levels
of detail, while attentional sets identify those comput-
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ing units at either the sensation or perceptual levels
that prime less abstract units.

Although the use of expectations and attentional
sets within computer vision has been discussed pre-
viously, no clear mechanism exists. It is clear, however,
that a sufficiently rich, hierarchical form of sensation
information is required for the expectations to be
useful. In the systems that employ processing cones,
VISIONS® for example, vertical communication is
crucial, yet its mechanism is unclear. It may be true
that too much is abstracted in the early levels for the
effective use of a focus of attention.

11.4. Discussion

It should be clear, even from this abbreviated
presentation, that no existing vision system can cope
with all of the visual knowledge presented above.
Moreover, not all topics that are relevant have been
touched upon. The effect of language on perception,
object identification and the forms of visual memory
are but examples of topics that have been omitted.
Those who believe that representation schemes are not
necessary in vision, because they only have relevance
for application domains, would be hard pressed to
include all of the above in an integrated, uniform
manner in a single system without a representation
scheme. I submit that it is crucial that representation of
knowledge research be influenced by vision research in
that current formalisms are lacking in their ability to
handle many of the concepts presented above. Briefly
summarizing the important aspects of visual know-
ledge that were discussed, the visual system incor-
porates at least the following:
concept aggregation or grouping for form, change,
colour and depth information
concept generalization and specialization for organi-
zation of different types of concepts;
lateral inhibition for enhancement of contrast or
difference among concepts in a given processing layer
that are obtained via grouping processes;
attentional sets and expectations that
processing ;
perception as an integration of and interaction among
sensations.

guide

III. REPRESENTATIONAL ISSUES

A large amount of information has been compiled as
a result of a survey of research groups involved in
representation of knowledge.' Many of the concepts
discussed in that survey are also applicable to visual
information representation. However, 1 will also point
out directions for further research motivated by some
unsolved problems in visual information processing. [
will begin with a brief excursion into some common
representational schemes.

IIL1. Common representational schemes

There are three major types of representational
schemes according to Mylopoulos®": logical, net-

work and procedural. Logical schemes define a know-
ledge base as a collection of logical formulae (first
order predicate calculus, for example), which repre-
sent a partial description of the state of the world.
Modifications to the knowledge base are accom-
plished via the addition or deletion of formulae, so that
the formula is the atomic unit of KB manipulation.
An example of such a scheme is that of Kowalski.®?
Of interest here is also the work on incompleteness in
knowledge bases (Levesque®®). These formalisms
provide well understood semantics, simplicity of no-
tation, theorem proving as the only inference mech-
anism and conceptual economy. On the other hand,
they lack any sort of organizational principles and it is
difficult to represent procedural or heuristic know-
ledge in such a notation.

Network schemes model the world using objects
and relations for constructing a knowledge base.
Changes are done with addition and deletion oper-
ations on objects and by manipulating relationships,
as described in Quillian.®4 Historically, semantic
networks have favoured binary relationships. They
have obvious graphical representations using labelled
nodes for objects and labelled arcs for relationships
among objects. The proliferation of relation types,
however, has been criticized by Woods®> and
Schubert.®® Organizational principles such as class-
token (instance-of), aggregation (part-of) and generali-
zation (is-a), are in wide use, in addition to contexts
and partitions (Hendrix®?). Retrieval issues are ad-
dressed’ directly. Many semantic network schemes,
however, lack a formal semantics and the area suffers
from a.lack of standard terminology.

Procedural schemes allow specification of direct
interactions between entities at the expense of ease of
understanding and modification. Examples of these
are production systems, characterized by rule-action
units,®® the actor systems of Hewitt et al.®® and the
theorems or demons of Hewitt.®®? It should be noted
that the ACRONYM vision system‘?! utilizes a rule-
based reasoning component.

Knowledge representation formalisms, such as
FRL,®VKRL,°? OWL,*® KLONE"® and PSN,* 7
are examples of frame-based schemes—represent-
ations that combine ideas from semantic networks,
procedural schemes and other sources. Accord-
ing to Minsky’s original proposal,'® a frame is a
complex data structure that represents some proto-
typical situation or object. A frame has slots that play
a role in the definition of the prototype as well as
relations between slots. These relations are constraints
on possible slot values and their relationships to other
slot values. In addition, each frame has attached to it
information on how it is to be used, default values for
its slots, and what to do if something unexpected
happens. Exceptions and exception-handling schemes
have been proposed to handle such occurrances and
are described in Lesperance.'® The idea of similarity
between frames is of importance as a form of organi-
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zation over frames. The information associated with a
frame on its use is usually represented procedurally,
namely via procedural attachment, and at least speci-
fies how to add instances of frames to the knowledge
base, how to testif a given object is an instance, how to
retrieve all the instances of a given frame and how to
delete an instance."'” Frames can be organized using
the is-a and part-of relationships, providing that the
semantics of these relationships are carefully defined
and enforced by the representational system.!®

IT1.2. Representing a concept

Following Brachman and Smith,!> a brief overview
of representational issues is presented. A formalism for
representing concepts must be expressive enough to
handle in a semantically well defined way at least the
following.
Prototypical concepts and instances. A prototype pro-
vides a generalized definition of the components,
attributes and relationships that must be confirmed of
a particular concept under consideration in order to be
able to make the deduction that the particular concept
is an instance of the prototypical concept. The pro-
totype for a car, for example, would be a complex
structure spanning many levels of description in order
to adequately capture the structuring of discrete
objects into more complex ones, define spatial and
functional relationships for each object and assert
constraints that must be satisfied in order for a
particular object in a scene to be identified as a car, It
also involves the differentiation between sensation and
perceptual concepts and their relationship.
Discrete and structured concepts. Concept structure
can be represented using slots in a prototype defi-
nition. The slots form an implicit part-of relationship
with the concept. The ALVEN system'®® uses frames
with this characteristic for the definition of motion
concepts. The leaves of the part-of hierarchy are
discrete concepts. Structured concepts representing
physical objects were represented in the human body
models of O'Rourke and Badler'’® using generalized
spheres, while Marr and Vaina®®> used generalized
cylinders for the same purpose.
Ordinality and measure. In the prototype of a car above,
one must include the facts that there are 4 wheels, 2 in
the front, 2 in the back, and what the sizes of the wheels
are in relation to the remainder of the car. Prototypical
car motions must include constraints on velocity,
acceleration and direction of travel. Ordinality refers
to quantities of parts, while measure refers to concepts
that require units for proper representation.
Properties, qualities, attributes. All physical objects
have some physical attributes such as colour, size,
shape, surface texture, etc., and more generally, all
concepts are defined partially in terms of their proper-
ties. These are assertions about the nature of the
concept and may be considered as constraints that aid
in the discrimination of one concept from another.
Quantification and its scope. 1t is often valuable to be
able to represent existential and universal quantifiers.

For example, the creation of a prototype is a universal
statement that all instances of the prototype have the
attributes defined in the definition of the prototype. A
definition of the structure of some concept is an
existential statement for the concept being considered,
stating that each component must exist for that
concept.

Causality. Causal relationships are rather difficult to
deal with, yet in many cases it is causality which can
disambiguate between two interpretations. A causal
relationship has both existential and temporal impli-
cations. It implies that some future condition must be
present given the current state. Currently, causal
relationships are not used in vision systems. Causal
relationships were studied in Reiger and Grinsberg®®
and an application of those relationships, as well as

others, for signal analysis is described in Shibahara et
al®?

Spatial knowledge. This is perhaps the main type of
knowledge that most vision systems employ. This
includes spatial relationships (above, between, to the
left of), shape information (curvature, shape type such
as cone-like), location in space, and continuity con-
straints, again with the sensation/perception distinc-
tion. Comparison of object location and the repre-
sentation of the corresponding relations is considered
in Freeman.®® K uipers!®® describes his TOUR model
for route solving problems and discusses the spatial
knowledge relevant to that task. The VISIONS system
employs a representation of 3D complex surfaces and
2D curves based on B-splines and surface patches and
also makes use of the part-of and instance-of re-
lationships in building complex structures.(1°®
Temporal knowledge. Information about temporal
constraints. Time provides a context in which events
can be interpreted. Allen'*® describes an interval
based representation along with an inferencing scheme
for a wide variety of temporal constraints. Tsotsos!! %%
employs a point based representation that is used for
representing the temporal constraints in a motion-
understanding system, where recognition is driven by
the inertia of good temporal continuity of motion
concepts.

States, events, actions, change. Motions of all types
require representation for a vision system that deals
with motion. A representation formalism for motion
and event concepts is presented in Tsotsos."" °* Repre-
sentation of states is an important aspect of the
representation of causality and was considered in
Reiger and Grinsberg.®®® A framework for research in
action perception was presented in Sridharan et al.!*
Procedural knowledge. The “how-to” knowledge of a
system. The PSN‘'7 representation scheme handles
such knowledge in two ways. Programs can be in-
cluded in class definitions, as well as four standard
programs that define the semantics of the test, in-
stantiate, delete and generate instance operations on
classes. Procedural attachment is also important in
the representation of knowledge in the system of
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Ballard er al,'® as well as many other repre-
sentational schemes, such as KRL."*? The packaging
of definitional knowledge and procedural knowledge
together allows for the construction of computing
units that contain both the knowledge that describes a
given concept as well as the process that extracts that
concept from the data.

Situations and contexts. Hypotheses that are used
during an interpretation exist only in a given context.
They are constructed from prototypes that are an-
chored in some way to the data currently being
considered. The contexts and partitions of Hendrix®”
are relevant here.

Description by comparison and differentiation. Simi-
larity measures that can be used to assist in the
determination of other relevant hypotheses on hy-
pothesis matching failure are useful in the control of
growth of the hypothesis space. These measures usual-
ly relate mutually exclusive categories. Similarity links
are components of the frame scheme of Minsky''® and
a realization of similarity links as an exception-
handling mechanism is presented by Tsotsos,!'??
based on a representation of the common and differing
portions between two frames.

Conjunction, disjunction, negation. Most systems repre-
sent constraints as Boolean conditions and clearly
these three concepts are required. In addition, co-
existence of components, the fact that existence of one
component implies non-existence of another, etc.,
must be handled.

Inheritance, instantiation and reasoning with defaults.
Inheritance along the is-a and instance-of axes is not at
all straightforward. Discussions of the topic are pre-
sented by Brachman'® and Woods, % while the
definition of the PSN language!” provides a set of
rules for inheritance along these two different axes.
Default reasoning is discussed by Reiter.!! %%

Certainty, strength of belief. One mechanism for rank-
ing hypotheses is to attach certainty measures to each.
Many schemes exist for this, ranging from Bayesian
techniques as described by Duda et al1°9 to re-
laxation schemes,"'°” to more domain dependent
approaches such as for medical diagnosis.'®® In
vision, the lateral inhibition process is a major com-
ponent and can be viewed as a process that decreases
the certainty of concepts that are inconsistent in local
neighbourhoods. This can be modelled using re-
laxation processes.

Expectations. These are beliefs that are held as to what
exists in the context of the scene, beliefs in time of
future events, beliefs in space of related objects. The
concept of plan-directed vision appeared in the work of
Kelly°® and has appeared in many other systems
since then. Line-finding using a hypothesize-and-test
scheme that utilized expectations derived from pre-
vious results is described by Shirai.''® Temporal
expectations were employed by O’Rourke and Bad-
ler'™ as well as by Tsotsos et al.3® The issue of
sensation to perception translation and vice versa and
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the use of expectations at the perceptual levels, creating
priming signals to sensation computing units, has not
been adequately studied.

II1.3. Concept organization

Several means of concept organization were dis-
cussed earlier. These organizational schemes really
define a great deal of the control structure of the vision
system, for they provide axes along which inferencing
takes place and along which concept activation occurs.
Common organizational methods, from Brachman
and Smith,*3 are as follows.

Plurality (sets, sequences, membership, partial orders ).
Common definitions of regions are constructed by
referring to a set of pixels that is maximal and that
satisfies some predicate and for which all elements of
the set are connected. A “walking” motion, for ex-
ample, can be defined as a sequence of simpler mo-
tions.”® The is-a and part-of hierarchies form partial
orderings of concepts, while the instance-of relation-
ship implies membership.

Projection. This relationship forms one of the impor-
tant links in the model of Kanade.” It is a transfor-
mational link relating representations of the same
concept in differing domains. It is, for example, the
relationship between a prototypical object and its
actual appearance in an image, given lighting con-
ditions and viewpoint. Thus, a mechanism is required
that takes lighting, observer motion, temporal con-
tinuity and viewpoint into account to create an
internal representation of an object’s appearance in an
image. Some work on this has been done by Hay"®
and is further explored by Down.””” In Down’s work
informatidn contained in an is-a hierarchy of motion
concepts is exploited for the generation, verification
and modification of expectations of actual object
appearance in a sequence of images.

Abstraction. Two kinds of abstraction. were discussed
previously, namely, feature aggregation and concept
specialization. The part-of hierarchy can be traversed
bottom-up in aggregation mode or top-down in
decomposition mode. Top-down traversal implies
existence of components and thus constrains the lower
level computing units. Bottom-up traversal implies a
form of hypothesize-and-test, where computing units
activate other computing units that may have them as
components. Top-down traversal of an is-a hierarchy,
moving downward when concepts are verified, implies
a constrained form of hypothesize-and-test for more
specialized concepts. In this case the constraints differ
from the part-of traversal—an is-a parent implies that
perhaps one of its is-a siblings applies, while the
confirmation of an is-a sibling implies that its parents
must also be true. Issues of inheritance and exceptions,
as mentioned earlier, must also be addressed. Both is-a
and part-of are used in the MAPSEE2 system of
Mackworth and Havens,'?? as well as in the ALVEN
system''®? and in the VISIONS system.®)

Multiple viewpoints. In vision, the concept of multiple
views has an obvious relevance. The problem, however,
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is how is the information obtained from each view
correlated with the information from all the other
views in order to derive a consistent interpretation.
Nagel and Neumann®® construct 3D models from
two perspective views. The structure from motion
theorem of Ullman®® required three orthographic
views. However, physical viewpoint is only one of the
aspects that are relevant here. Different views can result
from employing differing beliefs about the context of
the scene. Belief is treated from an Al joint of view by
Moore. 111

Meta-knowledge. Self-knowledge, so that the system
can examine itself, know its limitations, can chose from
amongst different strategies. The MYCIN system!!%®
employed a set of rules that implemented meta-
knowledge and guided the system by specifying what
rules to try given the problem at hand or the context, as
well as other forms of guidance. The system of Ballard
et al.** employed a scheme for choosing from among
a set of procedures to determine which would prove
most useful. Explicit representation of meta-
knowledge can be accomplished using the PSN version
of meta-classes.! ” Classes are related to meta-classes
by the instance-of relationship and the meta-classes
contain information that is derived by considering all
its instance classes as a whole. Another important
aspect is the handling of knowledge gaps or incom-
pleteness (Levesque®?),

Control issues are difficult to deal with and no
representation scheme exists that can explicitly repre-
sent a variety of control schemes. An overview of a
variety of control schemes can be found in Weszka.*®
The inclusion of is-a, part-of and similarity relation-
ships allows a great deal of flexibility for top-down,
bottom-up and lateral search, hypothesize-and-test
and ranking of hypotheses via relaxation processes.
Connections between sensations and perceptions are
“projections” and mechanisms for the translation from
one to the other are unclear. It should be noted that
there does not currently exist an appropriate well-
founded representation that makes the distinction
between parallel and sequential processing, although
steps in that direction are being explored by Fahl-
man,'*? Sabbah,'!¥ Hinton!'* and Feldman and
Ballard."'* Also, communication among concepts
has not been examined extensively.

CONCLUSIONS

An abbreviated overview of visual knowledge was
presented, with the distinctions drawn among content,
form and use. Content was determined using biologi-
cal visual systems as examples and several basic
principles were shown to play a role in the many
aspects of vision. A strong correspondence between
knowledge organization and knowledge use was dem-
onstrated. The key principles are those of prototypes
as the basic representational building block, generali-
zation and aggregation as interacting abstraction
mechanisms, lateral inhibition as an optimization

scheme (particularly useful for local disambiguation),
generation and use of expectations at the perceptual
level, the use of attentional sets and priming as a form
of communication of expectations from perceptual to
sensation levels, and the existence of at least four
separate sensation processing hierarchies (form, mo-
tion, colour and depth). These four processing hierar-
chies must interact and several examples of interac-
tions were described. Finally, the need for both parallel
and sequential processing was demonstrated. Current
representational research can provide well-defined
tools for only some of these concepts.
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