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Toward a Computational
Model of Visual Attention

John K. Tsotsos

The Need for Attentional Processing in Vision

In principle, it seems possible to model visual perception
computationally (Tsotsos, 1993a). If a vision system
knows which subset of an image corresponds to an object
and the object type is known, the task of matching image
subset to object model is straightforward. In fact, this is a
subarea of computational vision in which successful algo-
rithms exist (e.g., Dickinson et al., 1992). The trick is to
quickly determine which is the image subset of interest
and the corresponding object model. However, far too
much computation is required to solve this problem in its
general form, guaranteeing that the optimal solution is
found in all cases. There is an exponential number of
possible image subsets against which to match each po-
tential object model. This conclusion can be proved for-
mally using the methods from theoretical computational
complexity. Optimal solutions seem computationally in-
tractable in any implementation, machine or neural (see
Tsotsos, 1988, 1989, 1990, 1992, 1993a).

The prevailing argument for why the brain needs vi-
sual attention is that there is insufficient neural machinery
to deal with all stimuli equally. Broadbent (1971, p. 147),
for example, points out “The obvious utility of a selection
system is to produce an economy in mechanism. If a com-
plete analysis were performed even on neglected mes-
sages, there seems no reason for selection at all.” Given
the mismatch between brain capacity and complete analy-
sis of all input stimuli, the task facing perceptual theorists
is to discover the balance that Nature has achieved
among at least three competing requirements: how much
information to process and to what degree, how much
brain capacity can be devoted to the task, and how quickly
must an organism respond to perceptual stimuli.

The remainder of this chapter is devoted to presenting
a theoretical foundation for modeling visual attention,
followed by descriptions of three current computational
hypotheses for modeling attention. For additional back-
ground, the reader is referred to Allport (1989) and Colby
(1991).



A “First Principles” Argument

The first principles required are straightforward: images, a
model base of known objects and events, and an objective
function to be optimized that reflects how well an image
subset matches a particular member of the model base.
One common experimental paradigm, visual search, has
been cast into a formal framework using these primitive
elements. In Tsotsos (1989), it was proven that visual
search, in the case where explicit targets are given in
advance, has time complexity which is linear in the size
of the image (and this linear response time vs display size
is verified experimentally in a large body of work). If, on
the other hand, no explicit target is provided, the task is
NP-Complete; it is currently believed that such problems
are computationally intractable regardless of the imple-
mentation, whether it be neural or machine. The intracta-
bility is due solely to the combinatorial nature of selecting
which parts of the input image are to be processed; there
are an exponential number of such image subsets. Since
those proofs are based on more abstract yet equally diffi-
cult computational problems, it is instructive to consider
how the computer science community deals with such
combinatorial problems.

For such problems, algorithms have been developed
that are not guaranteed to always find the best solution,
but can find solutions quickly given some error tolerance.
The goal is to find the subset of the input that maximizes
an objective function. Strategies for developing partial
solutions are exploited to guide search through the space
of possibilities so that as few solutions are generated as
possible before the best one is located. The intractability
of these problems is not due to the computation of the
objective function; rather the problem is so difficult only
because there is an exponential number of possible solu-
tions to explore. The best of the algorithms are ones that
exploit parallel processing; even so, all of them require
some serial search through a set of possible solutions
(Tsotsos, 1992).

What could the objective function for vision be?
Whether a given neuron computes a response that repre-
sents a specific object, a specific scene, or a portion of a
code as part of a distributed representation is not relevant
to this discussion. What is important is that for any partic-
ular natural scene a potentially large number of neurons
will initially respond with some degree of strength simply
because the receptive fields of neurons in higher level
areas are so large they will contain elements that might be
part of the selectivity profiles of many cells. This large
initial set of responding neurons may be considered as a
“first guess” as to the contents of a scene. The mapping
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from image subset to responding neurons is one-to-many;
similarly, there are 2® image subsets within any neuron’s
receptive field where R is the number of receptors in the
receptive field, and thus the mapping from neuron to im-
age subset is also one-to-many. Thus, there is no unique
one-to-one mapping between image subsets and neurons.
How can this ambiguity be corrected? An objective func-
tion is required that reflects this ambiguity and provides a
measure for its reduction.

In the formulation of the visual search problem such an
objective function was proposed (Tsotsos, 1989). There is
one objective function for each known object or image
event. The best match is the image subset and model that
exhibits the smallest matching error and the model must
explain (or cover) as much of the image subset as possible.
The brute-force search strategy then is to match each
objective function against all possible image subsets.
Given formally, the best fit of model to data is sought
such that the following is satisfied:

Y  Jxr—jJd <08 and Y

xeM,j el xeM,j.el’

i, > ¢ (20.1)

The first term is the error measure while the second is the
cover measure. The input is the set I, I' is a subset of I, and
M is a set of values corresponding to a particular object
or event in the model base. 6 and ¢ are two thresholds. I
is not necessarily the image itself but may be a collection
of all features computed from a given image. A corre-
spondence between elements of M and elements of I' can
be hypothesized where element j, in I' is the element
corresponding to x in M. Each possible combination
of correspondences may be considered as a separate
hypothesis.

Suppose a test image is made up of 256 pixels and a
target image has 64 pixels. The correspondence required
above is for each element of the target image (each pixel)
to be mapped onto a unique pixel of the test image. This
forms a hypothesis about where exactly in the test image
the target image is believed to be represented. The spatial
organization of the mapping need not preserve the struc-
ture of the target stimulus, that is, pixels chosen for the
mapping may be arbitrarily distributed throughout the
image. In the Marr view of the vision, this is necessarily
the case since he did not believe there was a role for
task (target) directed computations (Marr, 1982). So for
this example, there are (%) such possible, bottom-up
mappings (256!/64!192! is approximately 10°°; in gen-
eral if « is the size of the test image and § is the size of
the target image both in pixels, then the number of com-
binations can be given by a polynomial function of the
image size whose highest order term is of). If spatial
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structure is preserved and there is no rotation or scaling
of the target in the test image, then there are only 64
possibilities such that the target image is entirely within
the test image. Attentional selection may determine
which mapping to attempt to verify first; if the first such
mapping selected is a good one, a great deal of search can
be avoided, otherwise there is the potential for a very
inefficient search process. For sufficiently small images
and/or massive computational power, this brute force
concept will work perfectly well without attention. For
the brain, this approach fails.

It is easily shown that equation (20.1), is optimized,
that is,

0=1 and ¢=<Z x2>—1
xeM

if and only if the set I is identical to the set M. That is,
the set of features or computations that is represented by
I' is of the same type and value as those represented by
M. I' is a set of features at the same level of abstraction
as M and spatially organized in the same manner as M.
The role of attention in the image domain is to localize
this set I in a way such that any interfering or corrupting
signals are minimized. In doing so, attention also seeks
to increase the discriminability over other such objective
functions as quickly as possible. Note that any error and
cover functions may be used; they would all behave in the
above fashion. The only constraint on these functions is
that they lead to convex solution landscapes.

Thus, the central thesis of this chapter is that attention
acts to optimize the search procedure inherent in the
above “in principle” solution to vision. The main effect of
attention is to reduce the number of candidates that is
considered in matching, both of image subsets as well as
object or event models. Attention operates continuously
and automatically: without attention, vision in general is
not possible. The models described in this chapter deal
only with the localization of the image subset and not
with model selection.

Pyramid Processes

Analysis at the complexity level (Tsotsos, 1988) confirms
what several have suggested (Uhr, 1972; Burt, 1988; An-
derson and Van Essen, 1987; Nakayama, 1991): the com-
putational complexity of vision necessitates pyramidal
processing. Although pyramids solve the complexity
problem by reducing the size of the representations to
be processed, they introduce others. Consider the simple
three-level pyramid shown in figure 20.1 where each
node computes some possibly non-linear weighted sum
of its inputs as its output value in a feedforward manner.
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Figure 20.1
A simple pyramidal processing architecture.

Suppose that the input stimulates only one of the cen-
trally located input layer units. That single unit will cause
a response in all the units of the output layer simply due
to its connectivity. This causes the input to be blurred
across the output layer. Similarly, a given unit in the out-
put layer is activated by several units of the input layer,
thus responses exhibit a dependence on spatial context. If
there are two separate units active in the input layer, they
will both activate large parts of the output layer and will
overlap for a large portion of the pyramid. This can lead
to serious interpretation ambiguities. The examples de-
scribed all assume that information flow is from input to
output layer (data driven). However, information flow in
the visual cortex appears to be bidirectional. It is easy to
see that the same kinds of problems arise if information
flows from top to bottom (task driven). Although pyra-
mid structures help reduce the computational complexity
of information processes via convergence of information,
they corrupt the signals flowing through them unless
some additional mechanisms are included. Each of the fol-
lowing proposals for modeling visual attention provides
different solutions to these problems of information flow
as well as to the problem of attentional selection.

The Major Computational Hypotheses

There are several major classes of hypotheses for the
computational modeling of visual attention, described by
the terms selective routing, temporal tagging, and selective
tuning.

The Selective Routing Hypothesis

Several models fall into the selective routing hypothesis cate-
gory. The first is that of Koch and Ullman (1985). The
idea has found wide acceptance and is used as part of a
number of models. The model includes the following ele-
ments: (1) an early representation, computed in parallel,
permitting separate representations of several stimulus
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characteristics; (2) a selective mapping from these repre-
sentations into a central nontopographic representation
such that this central representation at any instant con-
tains only the properties of a single location of the visual
scene; (3) a winner-take-all (WTA) network implementing
the selection process based on one major rule: conspicuity
of location (minor rules of proximity or similarity prefer-
ence are also suggested); and (4) inhibition of this selected
location causes an automatic shift to the next most con-
spicuous location. The other models in the selective
routing category and the models in the temporal tagging
category share these basic elements. The selective tuning
model includes elements 1, 3, albeit with an entirely new
formulation, and 4.

Feature maps code conspicuity within a particular fea-
ture dimension. The saliency map combines information
from each of the feature maps into a global measure
where points corresponding to one location in a feature
map project to single units in the saliency map. Saliency
at a given location is determined by the degree of differ-
ence between that location and its surround (as suggested
by Julesz and Bergen, 1983, with their texton difference
idea and further explored by Nothdurft, 1993, who
showed that feature contrast is the major determinant
in speed of visual search and not feature values per se).
Different features may be weighted differently or their
contribution may be modulated by higher-order computa-
tions. Details on the construction of this representation
are not given. The WTA network implements a parallel
computation based on the values in the saliency map lo-
calizing the most conspicuous location. Due to biological
constraints on connectivity as well as theoretical conver-
gence difficulties, the WTA takes a particular form; it
requires a tree of intermediate nodes breaking up the
computation into smaller subtasks and permitting better
convergence properties. If the size of the saliency map is
n units, and the branching factor of the intermediate tree
is m, then the network requires log,n comparisons to
determine the globally most salient item. Then, a second
pyramid marks the location of the most salient item and
through another log,,n steps the most salient item reaches
the output of the system. The WTA will not converge if
there are two equally strong items. A shift of attention
thus requires at most 2 log,n time steps. Faster conver-
gence can be achieved if locations are physically closer to
each other.

The WTA algorithm may no longer be considered bio-
logically plausible because its time course does not agree
with current observations. Krose and Julesz (1989) show
that shifts of attention do not take time proportional to
the distance between items but rather are accomplished in
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constant time; also Remington and Pierce (1984) report
no topographic relationship on time to shift attention.
The intermediate tree of computations has yet to find an
anatomical correlate, but perhaps most importantly, the
mechanism does not immediately yield the kinds of atten-
tion-related receptive field changes observed in areas such
as V4 (Moran and Desimone, 1985).

The shifter circuit model, the second in this category,
presented a strategy for information flow in stereopsis,
visual attention, and motion perception (Anderson and
Van Essen, 1987). The model enables the realignment of
successive representations in the processing stream start-
ing in the lateral geniculate nucleus and the input layers
of area V1. The realignment is based on the preservation
of spatial relationships, thus the name “shifter” circuits.
The shift is accomplished by a succession of stages linked
by diverging excitatory inputs. Control of the direction of
shift is accomplished at each stage by inhibitory neurons
that selectively suppress sets of ascending inputs. For vi-
sual attention, the routing stages are grouped into small
and large scale shifts. Control signals are generated exter-
nally to the main processing stream. If shifts are assumed
to be contiguous it is straightforward to show that this
strategy requires many thousands more connections per
neuron than the accepted average figure of 1000 for each
of fan-in and fan-out.

The Olshausen, Anderson, and Van Essen (1994)
model is an elaboration of the shifter circuit idea; a partial
implementation with simulation results is also included.
The problem described above with the original shifter
circuits model is remedied via a clever restructuring of
the connectivity patterns between layers. By allowing the
spacing between neighboring connections to increase in
successively higher layers, the routing network has early
layers that are well suited for small-scale shifts while the
higher layers can implement larger-scale shifts. The key
goal of the Olshausen et al. mechanism is to form position-
and scale-invariant representations of objects in the visual
field. This is accomplished via a set of control neurons,
originating in the pulvinar, that dynamically modifies
synaptic weights of intracortical connections so that in-
formation from a selected region of primary visual cortex
is routed to higher areas. The topography of the selected
portion of the visual field is preserved by the resulting
transformations.

The dynamics of the control neurons are defined using
simple differential equations and control neurons receive
their input from a saliency map representation. They sug-
gest that the posterior parietal areas act as the saliency
map representation. Each node in the processing hierar-
chy performs a simple linear weighted sum operation.
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Selected objects in the visual field are found by the Koch
and Ullman mechanism, then routed to the top layer of
the processing pyramid (inferotemporal cortex, IT). The
selected object is transformed by the routing so that it
spans the top-level representation. There, a Hopfield asso-
ciative memory is used for recognition (Hopfield, 1982).

This model is presented in detail and the results of
the computer simulations show performance as expected.
Rotations are not handled and it does not seem that
the shifter kinds of connectivities are sufficient to ensure
rotation-invariant representations. Finally, there is no evi-
dence yet that area IT is an image-centered representation
of only a subset of the retinal image.

The Temporal Tagging Hypothesis

The temporal tagging hypothesis proposes that selected
items are distinguished as they flow through the pro-
cessing system because they are tagged by superimpos-
ing a frequency modulation of 40 Hz on the signal. Crick
and Koch (1990) suggest that an attentional mechanism
binds together all those neurons whose activity relates to
the relevant features of a single visual object. This is done
by generating coherent semisynchronous oscillations in
the 40-70 Hz range. These oscillations then activate a
transient short-term memory. These suggestions are not
fully developed computationally in that paper. However,
in a subsequent effort, Niebur, Koch, and Rosin (1993)
detail a model based on those suggestions.

Niebur et al. (1993) assume that salient objects have
been selected in the visual field by the Koch and Ullman
mechanism. The saliency map is claimed to be found in
subcortical areas (superior colliculus or the dorsomedial
region of the pulvinar). That is where the attentional
modulation is added and this modulation occurs only at
the level of primary visual cortex V1. The modulation
affects only the temporal structure of the spike trains of
V1 neurons but not their mean firing rate. The existence
of frequency-selective inhibitory interneurons is assumed
in V4. These are required to act as bandpass filters selec-
tive to spikes arriving every 25 msec or so. Thus, they
would pass temporally tagged spike trains and block
other non-frequency-modulated signals. Both Crick and
Koch (1990) and Niebur et al. (1993) assume that selective
attention activates competition within a stack or micro-
column of neurons in V4. In the presence of multiple
stimuli, neurons will compete with each other. Since the
outputs of V1 neurons are tagged, their postsynaptic tar-
gets in V4 will win in the V4 level competition. They go
on to say that there are no attentional effects on firing
rates in V1, only in V4 or higher areas.
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The model is quite detailed and provides for quantita-
tive single-cell performance predictions; results of their
simulations are in terms of firing rates. The agreement
with the relevant experimental data is good. Several ma-
jor issues arise from this model. First, because the model
assumes the selection mechanism of Koch and Ullman, it
inherits the timing problems described above. Second, if
attentional modulation originates in the subcortical areas,
then it is difficult to see how the effects of targets or
memory items can be accounted for (Haenny, and Schiller,
1988; Chelazzi et al, 1993). In those studies, single V4
and IT neurons were found that seemed to code the tar-
get stimulus and effect the execution of the task. Within
both the routing and tagging models, the path lengths
required for communication with external gating control
in order to affect this influence seem to be wasteful; a
closer locus of attentional control seems more likely on
this basis.

The Selective Tuning Hypothesis

The selective tuning hypothesis claims attention is used to
tune the visual processing architecture in order to over-
come the problems with pyramid computation and to
permit task-directed processing. Selective tuning takes
two forms: spatial selection is realized by inhibition of
irrelevant connections and feature selection is realized by
inhibition of the units that compute nonselected features.
The limited space allows only a brief summary in this
review article. The interested reader can refer to more
detailed accounts (Tsotsos, 1990, 1993b; Culhane and
Tsotsos, 1992a,b). The starting point for the model has
been described. The search process that localizes the im-
age subset I is as follows. A winner-take-all process oper-
ates across the entire visual field at the top layer: it
computes the global winner. The search process then pro-
ceeds to the lower levels. The WTA can accept guidance
for areas or stimulus qualities to favor if that guidance
were available but operates independently otherwise. To
localize the global winner in the visual field, a hierarchy of
WTA processes is activated. The global winner activates
a WTA that operates only over its direct inputs. This
localizes the winner within the top-level winning recep-
tive field. In this way, all of the branches of the hierarchy
that do not contribute to the winner are pruned. This
pruning idea is then applied recursively to successively
lower layers. The end result is that from a globally
strongest response, the cause of that largest response is
localized in the sensory field at the earliest levels. The
paths remaining may be considered the pass zone while
the pruned paths form the inhibitory zone of an atten-
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selected unit in top representaion
of pyramid

pass zone for
selected item = ™= -~ -
inhibitory zone for items
to be ignored

Figure 20.2

An illustration of the inhibitory beam of the selective tuning model.
The black solid nodes and connections are those selected; the gray
open nodes and gray connections are those that are “don’t cares,” and

tional beam (see figure 20.2). The WTA does not violate
biological connectivity constraints. A formal relationship
exists between this model and the adaptive beamforming
concept of adaptive filter theory used for antenna arrays
(Haykin, 1991).

Due to the localizing action of top-down pruning de-
scribed above, if one were to “record” the output of a unit
at the top of the processing pyramid, the time course of
the response would show an initial high value, then grad-
ually decrease over time as successively lower layers are
pruned away. The decrease would not be due to any
suppressive effects acting on this unit; rather, the pruning
action of removing parts of its supporting subpyramid
leads to a reduction in response over time (qualitatively
agreeing with the time course of IT neuron responses as
observed by Chelazzi et al, 1993; Gochin et al, 1991;
Oram and Perrett, 1992).

The process of selection requires two traversals of the
pyramid; the overall time course is consistent with that
observed in Chelazzi et al. (1993) (more on this later).
These traversals involve

1. Computing pyramid representation in a bottom-up
fashion, modified by the biases if available

2. Detecting and localizing the most salient item in a top-
down manner, pruning parts of the pyramid that do not
contribute to the most salient item, and continuously
propagating changes upward

The remainder of this section provides some detail on
how this may be accomplished.
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input layer

the dashed connections between the striped nodes are the connections
that are inhibited.

The model requires several different types of comput-
ing units. Interpretive units compute the visual features.
Gating units compute the WTA result across the inputs
of a particular interpretive unit and gate winning input
through to the next higher interpretive units. Gating con-
trol units control the downward flow of selection through
the pyramid and are responsible for the signals, which
either activate or shut down the WTA processes. Bias
units provide top-down, task-related selection via multi-
plicative inhibition. Figure 20.3 gives the overall architec-
ture that ties these basic units types together. A grouping
consisting of one interpretive unit, its associated gating
control and bias unit, the set of WTA gating units on the
inputs of the interpretive unit, and associated connections
will be termed an assembly.

The notation to be used below is now introduced; the
figure should be used as a supplement to this description.
Physical units are distinguished from their value by the
use of a “hat” (“*”) where the hatted variable represents
the unit, and the same variable without the hat represents
the value of the unit. The first subscript gives the layer of
the hierarchy in which the unit is found; the second sub-
script gives the assembly in which the unit is found; the
third subscript represents an identifier used to distinguish
units within a set. Superscripts always refer to time, in
particular, time within the iterations of a given WTA pro-
cess. Further,

I is the interpretive unit in assembly k in layer [;
I, is its positive real value representing its
response;
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layer ¢+1

D unit and connection

in the interpretive network @ """

unit and connection

L X
in the gating network

Figure 20.3

Three layers of the processing pyramid showing the details of the unit
and connection types for the selective tuning model. Refer to the text
for further description.

Gir; represents the jth WTA gating unit, in assembly
k in layer ! linking [, , with A

S is the gating control unit for the WTA over the
inputs to I, ;;

l;,,k is the bias unit for [, ,;

M,  is the set of gating units for unit [, ;;

U i, s the set of gating units in layer / + I making
efferent connections to ¢, ,;

Bix is the set of bias units in layer / + 1 making
efferent connections to b, .

The standard iterative formulation for a WTA process
is (having its roots in Feldman and Ballard, 1982):
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_unit and connection
in the top-down bias network

G=GT1—=)Y w,C! (20.2)
i
where the values of the units in the WTA process CeV
for all defined j) at time t are given by C}, all units are
connected to all others, and the relative amount of influ-
ence of unit i on unit k is reflected by the weight w; . All
units decay in value with time; the process terminates
when all units but one have value of 0.0. In the new
formulation of the WTA for the selective tuning model,
winning units (there may be more than one) maintain
their actual response strength while other units decay. In
this way the instantaneous representation of winners in
the hierarchy always reflects the actual input. This is ac-
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complished using a simple observation: if the inhibitory
signal is based on the response differences, then an
implicit but global ordering of response strengths is
imposed on the network. The largest item will thus not
be inhibited, but will participate in inhibiting all other
units. The smallest unit will not inhibit any other units but
will be inhibited by all. A, ; represents this contribution
based on response differences. The contribution in the
WTA from unit i to unit j is set such that

ifo<0<Ghh— G then

— t—1 t—1
Ai.j = MuLki T G,k,f’

else A, ;=0 (20.3)

G}, is the positive real-valued response of gating unit
Gy at time £, such that 0 < Gf, ;. 0 is a threshold set to

4

==
27+ 1

(20.4)
assuming that at least one of the values in the competition
has value greater than @ and that Z is their maximum
possible value. This setting guarantees convergence with-
in at most 7 iterations (Tsotsos, 1993b). The WTA stops
once the gating units in the competition are partitioned
into two classes: those with value zero, and those with
value greater than 6 but within 6 of each other (the
winners). Thus, the term w, ,C/™! is equation (20.2) is
replaced by A, ;.

The second component of the new WTA rule is the
signal for providing top-down bias. by  is the bias unit for
[, with real-value b, , > 0 defined by

b, = min {a}. (20.5)
aeByy

B,,1 i is the set of bias units in layer / + 1 making efferent
connections to l;,, . The nature of the bias computation
is to inhibit any nonselected units allowing the selected
ones to pass through the pyramid without interference.
The default value of bias units is 1.0; this value changes
only if some other value is inserted at the top of the
pyramid due to task information. Since it is assumed that
the inhibitory effect is multiplicative, the simplest policy
is for bias units to compute the minimum over all top-
down bias signals received. Those interpretive units that
compute quantities that are not selected are inhibited al-
lowing the selected ones to pass. So, for example, if red
items are being sought, the interpretive units that are
selective for red stimuli would be unaffected while all
other color-selective units would be biased against to
some degree.

The WTA is initialized at time f, by setting the values
of each gating unit to the output of the biased interpre-
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tive unit to which it is connected in the layer below
G = bl—l,jIl—l,j (20.6)

These values are computed on the first traversal of the
pyramid (the bottom-up traversal).

The next important component of the new WTA rule
is the control signal, which turns the selection process on
and off. §, , is the gating control unit for the WTA over
the inputs to [, , and has value defined by

Y

delUpvy

{a} >0 then =1

else 2x=0 (20.7)

where the sum is computed after the networks involved
have converged. ¢, provides top-down control of the
WTA processes by selecting the path of the beam’s pass
zone depending on the winning WTA units in the next
higher layer. If the gating control unit has value one, then
the WTA process is turned on; otherwise it is turned off.
This is implemented by multiplicatively modifying the
iterative rule so that if the WTA is off, all updated values
are zero. Using this signal at the top of the pyramid, the
entire process is controlled. In this way, the gating units
are affected but not the interpretive units; only a pathway
is closed down. The value of §,, is zero for all units
during the first phase of the process (points 1 and 2 of
the three-stage algorithm given earlier). During this first
phase, the gating units (all the G, ;) are open and the
WTAEs are all disabled so that the responses computed by
the interpretive units based on the stimulus in a bottom-
up fashion can pass through the pyramid. Then the value
of ¢,, becomes one for all the units at the top layer
turning on the top-most WTA process. The results of this
WTA process then determine the values of §,, for the
successively lower layers through the application of equa-
tion (20.7) for each lower layer in order.

To enforce stability and so that no oscillations occur,
the overall result is rectified (negative new unit values are
set to zero) by passing the entire right side of equation
(20.2) through a rectifying function R such that

Rlx]=xifx > 0, elseR[x] =0 (20.8)

Each of the preceding functionalities, including the con-
trol signals and the WTA action, are incorporated into a
new updating rule so that after the stimulus is presented
to the input layer and top-down biases are presented to
the top layer, no further actions are required. The rule is

given by
- A. .
Glvj= &R |:Glt,k,1j - <ie;,,,‘ "’>:| (20.9)
i#]
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The most important consequence of this new rule
is that convergence properties are guaranteed. It was
proved in Tsotsos (1993b) that this WTA is guaranteed
to converge and to not oscillate. This is possible only
because the iterative update is based on differences of
units and thus only the largest and second largest values
need be considered; a two-unit network is thus easy to
characterize. There is no logarithmic dependence on ei-
ther topographic distance or numbers of competitors, thus
providing a much better match to experiments (Krése and
Julesz, 1989; Remington and Pierce, 1984). The actual
convergence time is dependent only on differences be-
tween strengths of signals in the same sense as that ob-
served by Duncan and Humphreys (1989).

output layer

pass zone
of beam

~@§—___ inhibitzone

of beam

selected image
region

ignored image

region
first
fixation
input layer

Figure 20.4

A hypothetical pyramid of three layers and a representation of shapes
(letters) each with a different luminance. In other words, each letter is
made up of pixels all of which are a uniform level of brightness and
each letter is of a unique brightness. The selective tuning algorithm
finds each in luminance order using the strategy described in the text.
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Because of the time course of the gating control sig-
nals, they, and in turn the units of the pyramid as well,
exhibit an oscillatory pattern in time. If attention can shift
every 20—50 msec or so [the time between shifts varies
with experiment: Sagi and Julesz (1985) found some in-
spection times to be as short as 17 msec; Saarinen and
Julesz (1991) found good performance at 33 msec; Bergen
and Julesz (1983) noted 50 msec], then this is the cycle
time of the gating control signal as well. Since gating
control is set to 0.0 for part of each selection and to 1.0
for the remainder, the signal is periodic in nature with a
frequency of 20—-50 Hz. This may be considered as an
alternative explanation for the oscillations that motivate
the temporal tagging model. This gating signal may be

second
fixation

The inhibitory and pass zones of the inhibitory beam are clearly seen
in the first two attentional fixations shown (first fixation is on the left).
The computations of each of the two layers above the input layer is a
simple average luminance.
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considered as a sort of system clock to use a computa-
tional metaphor.

Finally, it is important to note that this algorithm, un-
der biological connectivity constraints, very closely ap-
proximates the provably optimal parallel time complexity
for finding the maximum value of a given set (Karp and
Ramachandran, 1990).

The computer implementations have successfully
tested many components of this mechanism (Culhane and
Tsotsos, 1992a,b). An example is shown in figure 20.4
where a hypothetical test network of three layers shows
the structure and successive shifts of attention for the
inhibitory beam for a representation of saliency that
incudes only luminance.

Conclusions

This chapter reviews the major computational hypotheses
for the modeling of visual attention. They are all based on
similar principles: there is insufficient brain capacity to
process all visual stimuli to the same degree of detail;
early representations of the scene are computed in parallel
and these representations are further inspected by a serial
process; selection of items to process is implemented
by a winner-take-all mechanism using a representation of
saliency based on the early representations; the problem
of information flow through a processing pyramid must
be solved. Yet, the models accomplish these tasks in very
different ways. The main conclusion that can be drawn is
that although there seems to be broad agreement regard-
ing the basic foundations of modeling, insufficient biolog-
ical experimentation has been done at this point that might
distinguish one model from another in terms of biological
realism. In addition, the functionality of all of the models
is limited.

The models have much in common in terms of their
performance. For example, each of the models offers a
believable explanation for the observations of Moran and
Desimone (1985). Each can provide accounts of a variety
of human visual search experiments in that serial search
processes can be simulated. However, a number of impor-
tant open questions remain that may help to differentiate
the models from one another.

The selective routing and temporal tagging models all
assume that control of the process that distinguishes se-
lected signals from the others has a source external to the
main processing stream (VI — V2 — V4 — [T, for exam-
ple). Although the pulvinar has been implicated as play-
ing a role in visual attention, it is by no means clear that
its role is that of producing control signals (see Desimone
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et al, 1990). In contrast, the selective tuning model has
control originating within the processing stream itself. An
argument may be made supporting the latter scheme on
the basis of length of connections; computationally, an
argument may be made that minimization of overall con-
nection length is important (Tsotsos, 1990).

Further distinguishing characteristics include the
following:

1. The Olshausen et al. model assumes that spatial rela-
tionships must be preserved (in the topographic sense)
while the temporal tagging and selective tuning models
do not. These latter models permit spatial abstraction
while the former does not, i.e., single units in IT seem to
represent complex objects (as observed by Tanaka et al,,
1991) as opposed to pixel-like retinal image copies. Spa-
tial abstraction is a major contributor to the reduction of
computational complexity (Tsotsos, 1990).

2. Only the selective tuning model explicitly includes
top-down bias.

3. Each model comments on the location of saliency rep-
resentations. Olshausen et al. suggest that the posterior
parietal areas act as the saliency map. Niebur at al. claim
it is found in superior colliculus or the dorsomedial region
of the pulvinar. The selective tuning model assumes each
processing layer is its own representation of what is
salient.

4. Miller et al. (1993) observed suppression of response
in IT neurons in a matching task that occurs within 10
msec of response onset. They conclude that the source of
this suppression must be within or before IT. Chelazzi et
al. (1993), in a different matching task for IT neurons,
observed a first spike after 60—80 msec; 100—120 msec
for full strength; 130—200 msec for full inhibitory atten-
tional effect. Both of these works support a top-down
version of attention and recognition. The routing and
tagging models are bottom-up: only the attended signals
ever reach the top. The tuning model relies on the initial
signals to reach the top where they are used to guide
further processing.

5. Although until very recently it was generally thought
that attentional effects were not seen earlier than in V4
neurons (but see Haenny and Schiller, 1988), Motter
(1993) has provided evidence to the contrary. This was
predicted in the initial description of the selecting tuning
model in Tsotsos (1990). Using an experimental paradigm
that involved competing stimuli and directed attention,
Motter showed that attentional effects are observed in
V1, V2, as well as V4 neurons when targets were pre-
sented outside the receptive field of the neuron being
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recorded. Distance was an important variable; this is the
reason for the apparent difference between these results
and those of Moran and Desimone (1985). The effect
varies depending on the number of competing stimuli and
usually manifested itself as a reduction in response if at-
tention is directed away from the recorded neuron. There
was no effect for single stimulus displays. These experi-
ments point to a context-dependent view of attentional
processing. The selective tuning model is a top-down
model, and such effects arise naturally. The routing and
tagging models are bottom-up models and it is not obvi-
ous how they may account for these results. The Niebur
et al. model exhibits no attentional effects before area V4.

6. Schiller (this volume) presents neurophysiological evi-
dence (which is supported by psychophysical evidence in
Braun, 1994) that shows that V4 plays a significant role in
the selection of less prominent stimuli from the visual
scene and that this role is distinctly different than that of
area MT. If V4 is lesioned, this function is destroyed for
images where the target is a small item in a field of large
ones in an odd-man-out task, but only little impairment is
observed when the target is large in a field of small items.
An MT lesion does not lead to the same effect. Such an
observation is a natural one within the selective tuning
model. For the large target-small distractors image the
large item dominates responses at the top of the pyramid.
It is the winner of the top-level WTA. If the target is
small in a field of large distractors, however, the large
units are the first winners; the small items would never be
found unless the selective tuning is operational due to the
characteristics of pyramid computation described previ-
ously. If V4 is on the path of the inhibitory beam, and it
is lesioned, then the beam cannot operate correctly. In the
other models, selection of the winner is made from early
representations, and the difference between large and
small targets would not be seen in this experiment.

The Olshausen et al. version of selective routing re-
quires spacing of connections between layers to double
with each layer; otherwise the model violates connec-
tivity constraints. The Niebur et al. temporal tagging
model requires the existence of inhibitory frequency-
selective interneurons in V4. The selective tuning model
requires the existence of local gating networks in each
processing layer. It seems that the experimental verifica-
tion of each of these points is critical for each of the
models.

The models collectively form an interesting account of
progress in the development of computational models of
visual attention; it is clear that much research, both theo-
retical and experimental, remains.
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