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Abstract

This paper describes the ALVEN and CAA projects. These projects share many
basic concepts particularly with respect to the representation of knowledge and
to the hypothesize and test nature of the control strategy. They both deal with
temporally rich data interpretation tasks. However, they focus on very
different aspects of interpretation. ALVEN processes images of a time-varying
sequence in a rteal-time fashion (although not in real time), while CAA
considers an entire signal, as if time were a second spatial dimension. ALVEN
deals with the assessment of the performance of the human left ventricle from
an X-ray image sequence, while CAA considers the causa! relationships of the
electrophysiology of the human heart and the resulting electrocardiogram signal,
and tries to detect and classify anomalies of rhythm. The contributions of
these works lie in the elucidation of a representation and control structure for
the knowledge-based interpretation of time-varving sighals.

Based on the paper, Building Knowledge-Based Systems,
J. Mylopoulos, T. Shibahara, and J. Tsotsos, appearing in COMPUTER,
Volume 16, Number 10, October, 1983.
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10.1. Introduction

The development of the ALVEN and CAA systemsg
represents a long-term research effort over the past ten years,
The  basic approach involves exploiting  frame-based
representations for interpretation. Frames are organized into 3
semantic network, and a control strategy has been developed
that is driven by those organizational axes. ALVEN uses the
generalization/specialization, aggregation/decomposition, similarity
and temporal axes, while CAA adds a causal dimension to thig
set. The remainder of this paper will discuss several aspects
of the two systems, with the bulk of the discussion devoted 1o
the CAA system. Details on ALVEN have appeared in several
previous publications (Tsotsos, 1984), (Tsotsos. 1985). All of
the examples presented in section 10.2 are from the ALVEN
system, and examples from the CAA system all appear in
section 10.5. The discussions in sections 10.2 and 10.3
summarize features that the two systems have in common.

10.2. The representational scheme

10.2.1. Knowledge packages: classes

Packaging up knowledge leads to a modular representation,
with all the advantages of modularity, particularly the
enhancement of clarity and flexibility. Most knowledge
package representation schemes borrow strongly from (Minsky,
1975). Our frames are called classes and borrow much from
the Procedural Semantic Networks formalism (PSN) of
(Levesque and Mylopoulos, 1979). A class provides a
generalized definition of the components, attributes and
relationships that must be confirmed of a particular concept
under consideration in order to be able to make the deduction
that the particular concept is an instance of the prototypical
concept. Classes also have embedded, declarative control
information, namely exceptions and similarity links. These
features will be described shortly. Note that there is a
distinction between the "prerequisites” of the class (those
components that must be observed in order to instantiate the
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class) and the "dependents” of a class (those components that
must be derived on instantiation). Dependent slots carry their
. own computation information. Classes exhibit large grain size,
. and translating their contents to rules would require many
rules. An obvious advantage over the rule scheme is that
f elements that conceptually belong together are packaged together
E. into a class, with some control information included. Other
i frame-based schemes for medical consultation systems include
the MDX system (Chandrasekaran et al, 1979) and CADUCEUS
(Pople. 1982).

- 10.2.2. Knowledge organization

When confronted with a large. complex task, "divide and
conquer' is an obvious tactic.  Task partitioning is crucial;
~ however, arbitrary task sub-division will yield structures that
are unwieldy, unnecessarily complex or inappropriately simple.
Furthermore they have poorly defined semantics, lead to
inefficient processing, and lack clarity and perspicuity. Within
the existing representational repertoire, there exist two common
tools for domain sub-division and organization, namely the IS-A
relationship (or generalization/ specialization axis), and the
PART-OF  relationship  (or  the  part/whole axis or
aggregation/decomposition). (Brachman, 1979)., (Levesque and
Mylopoulos, 1979). (Brachman, 1982) provide discussions of
their properties, semantics and use. The IS-A, or generalization/
specialization relationship, is included in order to control the
level of specificity of concepts represented. IS-A provides for
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economy of representation by representing constraints only once,
enforcing strict inheritance of constraints and structural
components. It is a natural organizational scheme, and provides
a partial ordering of knowledge concepts that is convenient for
lop-down search strategies. In conjunction with another
representational construct, SIMILARITY, IS-A siblings may be
implicitly partitioned into discriminatory sets. The PART-OF
Or aggregation relationship allows control of the level of
resolution represented in knowledge packages and thus the
knowledge granularity of the knowledge base. It provides for
the implementation of a divide-and-conquer representational
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strategy, and it forms a partial ordering of knowledge concepts
that is useful for both top-down and Dbottom-up search
strategies. Concept structure can be represented using slots in
a class definition. The slots form an implicit PART-OF

relationship with the concept. Representational prototypes
(classes) are distinguished from and related to tokens by the
INSTANCE-OF relationship. Instances must reflect the

structure of the class they are related to, however, partial
instances are permitted in association with a set of exception
instances, or the exception record, for that class. In addition, a
third type of incomplete instance is permitted, namely the
potential instance or hypothesis. This is basically a structure
that conforms to the "skeleton" of the generic class, but that
may have only a subset of slots filled, and has not achieved a
certainty high enough to cause it to be an instance or partial
instance. Details on the precise semantics of IS-A. PART-OF
and INSTANCE-OF may be found in (Levesque and
Mylopoulos, 1979).

10.2.3. Multi-dimensional levels of detail

The term "level of detail” seems to denote different things
to different people. In most schemes, it is used to express
problem decomposition only (Nilsson, 1971). We present two
separate views of abstraction "level". These views are related
to the fact that all concepts have both IS-A and PART-OF
relationships with other concepts. Thus, the level of specificity
of detail can be controlled by, or examined by traversing, the
IS-A  hierarchy, while the level of resolution of detail
(decomposition in other schemes) is reflected in the PART-OF
hierarchy. In (Patil et al, 1982), only the decomposition view
of level is present, while in CADUCEUS, (Pople. 1982), it
seems that the level of specificity is employed and level of
resolution is restricted to causal connections. In (Wallis and
Shortliffe, 1982) rule complexity is used. which may be
likened to our view of level of resolution; however, its use is
restricted to explanation.
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10.2.4. Time

Several interacting mechanisms are available for the
representation of temporal information. This multi-pronged
approach differs from other schemes that embody a single type
of construct for handling temporal information. The complexity
of time necessitates several special mechanisms. Our approach
differs from others (Allen, 1981), (Mead and Conway, 1980),
in that we have been motivated by problems in signal analysis
rather than in representing natural language temporal
descriptions and their inherent ambiguity and vagueness. It is
not clear. for example, what kind of control strategy can be
employed along with Allen’s scheme of temporal representation.
Fagan (Fagan, 1980) is concerned with a temporal interpretation
situation. However, there are a number of issues, primarily in
control, that are not considered by his system, VM:

® using the rule-based approach, only a data-driven
recognition scheme is incorporated, and thus, VM
cannot instigate a search for temporally expected
events;

® the handling of noise is not formalized, but is
rather ad hoc;

® the complexity of temporal relationships among

rules seems limited, and arbitrary groupings of
temporal events and their recognition are not
addressed;

® expectations in time are table-driven, and no
distinction is made between them and default values
or expected ranges. Expectations in ALVEN are
computed from such information, but current
context is taken into account as well, so that
expectations are tailored for the task at hand;

® partial satisfiability of temporal event groupings
cannot be handled.
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In addition, Long and Russ also address the problem of
time-dependent reasoning (Long and Russ, 1983). Their scheme
is closer to Fagan's than to ours. The control is data-driven
exclusively; we have already highlighted the deficiencies of this
approach as a general reasoning scheme. Their representation of
time, however, shares some similarities with ours in that both
points and intervals are used, and special meaning is assigned
to the variable "now".

A brief description of the representation of time used by
ALVEN follows. A TIME_INTERVAL class is defined that
contains three slots, namely, start time, end time and duration.
This class can then be included in the structure of any other
class and would define its temporal boundaries and uncertainty
in those values. Using those slots, the relations before, after,
during, etc.. (similar to (Allen, 1981)) are provided. In
constraint or default definition, sequences of values (or ranges
of values) may be specified using an "at" operator, so that in
effect a piecewise linear approximation to a time-varying
function can be included. In this case. of course. constraint
evaluation must occur at the proper point in time. Tokens of
values such as volume or velocity for which wuse of this
operator is appropriate, have two slots, one for the actual
value and the other for the time instant at which that value is
true. The time instant slot is a dependent slot whose value is
set to the value of the special variable "now" (current time
slice). Note that this kind of mechanism could easily be
expanded if required to multi-dimensional functions.

Finally, arbitrary groupings of events can be represented.
The set construct (which may be used for any type of class
grouping, not only for events), specifies elements of a group,
names the group as a slot, and has element selection criteria
represented as constraints on the slot (Patil et al
1982) describe a version of temporal aggregation similar to
ours, but do not seem to have a time-line along which
selection of values can occur. nor do they distinguish between
aggregations of events and sequences of measurements.

Since knowledge classes are organized using the IS-A and
PART-OF relations. their temporality is as well. By
constructing a PART-OF hierarchy of events, one implicitly
changes the temporal resolution of knowledge classes (as long
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as simultaneous events are not the only ones considered). For
example, suppose that the most primitive events occur with
durations on the order of seconds. Then groupings of those
may define events that occur with durations in the minute
range. and then groupings of those again on the order of hours,
and so on. Events whose durations are measured using months
can be so built up. Yet, many Kkinds of events cannot be so
decomposed, and there is no requirement that all events have
such a complete decomposition. Those events however, are not
left hanging, since they will also be related to others in the
knowledge base via the IS-A relationship. The control scheme
makes use of the temporal resolution with respect to sampling
rates and convergence of certainties.

In the following examples, first the TIME_INTERVAL
class is shown, followed by the class for the concept of
SEQUENCE, followed by a constraint on volume of the left
ventricle from the normal left ventricle class, showing the use
of the "at" mechanism for both default and constraint
definition.

example 1

class TIME_INTERVAL with
prerequisites

st : TIME_V such that [st >= @];

et : TIME_V such that [et >= st];
dependents

dur : TIME_V with dur « et - st;
end $

example 2

claoss SEQUENCE is—a MOTION with
prerequisites
motion_set : set of MOTION such that [
for ail m : (MOTION such that
[m element—of motion_set])
verify [

m.subj = self.subj,
~find m1 : MOTION where [
ml eiement—of motion_set,
(m1.time_int.st during m.time_int or
m.time_int.st during m1.time_int) ],
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find m2 : MOTION where [

m2 element—of motion_set,

(m.time_int.st = m2.time_int.et or

m2.time_int.st = m.time_int.et ) ] ] .
card(motion_set) > 1,
strict_order_set(motion_set,time_int.st) ] :

dependents

first_mot : MOTION with
first_mot < earliest_st(motion_set) ;

fast_mot : MOTION with
last_mot ¢« latest_st(motion_set ;

time_int : with time_int ¢+
( st of TIME_INTERVAL with st ¢

first_mot.time_int.st ,

et of TIME_INTERVAL with et ¢ last_mot.time_et };

end $

example 3

volume : VOLUME_V with
volume ¢ (vol of VOLUME_V with
vol < (minaxis.length now ) »* 3
default(117 m.systole.time_int.st,

22 m.systole.time_int.et,

83 m.diastole.rapid_fill.time_int.et,

100 m.diastole.diastasis.time_int.et,

117 m.diastole.atrial_fill.time_int.et)
such that [

volume m.diastole.time_int.et >= 97

exception [TOO_LOW_EDV with volume < volume ],
volume m.diastole.time_int.et <= 140

exception [TOO_HIGH_EDV with votume < volume ],
voiume m.systole.time_int.et >= 20

exception [TOO_LOW_ESV with volume ¢« volume],
volume m.systole.time_int.et <= 27

exception [TOO_HIGH_ESV with volume ¢ volume] ] ,

time_inst of VOLUME_V with time_inst < now ) ;

10.2.5. Exceptions and similarity relations

The recording of exceptions to slot filling and constraint
matching has proven to be valuable. Exceptions are classes in
their own right, with slots to be filled on instantiation, that is.
when raised. Each slot constraint (or group of constraints) of
a class may have an associated exception clause. This clause
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names the type of exception that would be raised on matching
failure, and provides a definition for filling the exception's
slots, since these slot fillers identify the context within which
. the exception occurred and play an important role in the
‘ determination of the action to take on the exception. Each slot
| has an implicit exception associated with it for cases where a
~slot filler cannot be found. Exceptions are used in two ways:
1) to record the matching failures of current hypotheses,
recording the failures of the reasoning process; and 2) to assist
in directing system attention to other., perhaps more viable,
hypotheses.  The prototypical exception class is shown below
along with one of its specializations, followed by an example
from a stroke volume slot. Other examples have already
.~ appeared.

example 1

class EXCEPTION with
dependents
subj : PHYS_OBJ ;
time_int : TIME_INTERVAL :
source_type : CLASS ;
source_id : INTEGER ;
end $

example 2

class TOO_MUCH_MOTION is~o EXCEPTION with
dependents
seg : STRING ;
disp : LENGTH_VAL with disp «
(len of LENGTH_VAL with
ten < dist(subj.centroid @ source_id.time_int.st,
subj.centroid source_id.time_int.et ) ,
time_inst of LENGTH_VAL with time_inst « now) ;
end $

example 3

stroke_vol : VOLUME_V with
stroke_vol < (vol of VOLUME_V with
voel ¢ self.volume m.diastole.time_int.et -
self.volume
0 m.systole.time_int.et
default(95) such that [
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vol >= 70
exception [LOW_STROKE_VOLUME with
volume < wvol ],
vol <= 120
exception [HIGH_STROKE_VOLUME with
volume < wvol ] 1.

time_inst of VOLUME_V with time_inst ¢« now)

Similarity measures that can be used 1o assist in the
selection of other relevant hypotheses on hypothesis matching
failure are useful in the control of growth of the hypothesis
space. These measures usually relate classes that together
comprise a 'discriminatory set, that is, only one of them can be
instantiated at any one time. As such, they relate classes that
are at the same level of specificity of the IS-A hierarchy, and
that have the same IS-A parent classes. Similarity links are
components of the frame scheme of (Minsky, 1975). and a
realization of SIMILARITY links as an exception-handling
mechanism is presented in (Tsotsos et al. 1980) based on a
representation of the common and differing portions between
two classes. This view is contrasted with the sets of
competitors described for the ABEL system (Patil et al, 1982).
In that formulation, the level of specificity of the competing
set is not represented. Similarity links enable explicit
discussion of class comparisons, not only between the connected
classes, but also by traversals of several links (Gershon, 1982).
Thus, they are an element of embedded declarative control, and
add a different view of class representation, thereby enhancing
redundancy of the representation. The three major components
of a SIMILARITY link are the list of target classes (given
first), the ‘“similarities" expression,”’ and finally the
"differences” expression, the time-course of exceptions that
would be raised through inter-slot constraints of the source

29A similarities expression indicates the important common portions between
the source and target classes - during interpretation, the target classes are not
active when the SIMILARITY link is being evaluated. Thus, in time-dependent
reasoning situations, the components of the target class that are the same as in
the source class before activation of the SIMILARITY link, or that the source
class may not care about that have already ’passed in time’, can be verified
using the similarities expression.
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class or in parts of the source class. There is an implicit
conjunction of the differences in the exception record, while the
similarities form a disjunction. Many SIMILARITY links will
be shown in subsequent examples.

10.2.6. Partial results and levels of description

Partial instances are permitted with an accompanying
exception record. More importantly, since instance tokens are
produced for each verified hypothesis, and since hypotheses
maintain the organization exhibited by the classes that they are
formed from, interpretation results also exhibit the same
structure.  That is, there are levels of description that may

. examined as appropriate by a user.

It is important to realize that the instantiation of a

- hypothesis is achieved only when its certainty has reached a

threshold value. (The thresholds are not set in an ad hoc
fashion, but rather depend on a number of factors relating to
the context of interpretation and knowledge structure - see
(Tsotsos. 1984) for details). Thus, even though not all
components of a hypothesis have been verified, instantiation
may still take place if that hypothesis has significantly more
successes than its competitors over the same time period. This
would then create a partial instance, including the verified
components, the final certainty, and a set of exception records
specifying what was not observed.

10.3. The interpretation control structure

ALVEN and CAA employ hypothesize-and-test as the

 basic recognition paradigm. The activation of a hypothesis sets

up an internal goal that the class from which the hypothesis
was formed tries to verify itself. However, activation of

- hypotheses proceeds along each of five dimensions concurrently,
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and  hypotheses are considered in parallel rather than
Sequentially. These dimensions are the same class organization
axes that are described above. Specifically, we define:
. goal-directed search to be movement from general to

- Specialized classes along the IS-A dimension, the goal being to
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find the appropriate sub-class definition for the data 1n
question; model-directed search to be movement from aggregate
to component classes along the PART-OF dimension; temporal
search to be a specific form of model-directed search in that a
temporal ordering among components controls the time of
activation; failure-directed search to be movement along the
SIMILARITY dimension; and data-directed search 10 be
movement from components to aggregates of components
upwards along the PART-OF dimension. For a given set of
input data, in a single time slice, activation is terminated when
none of the activation mechanisms can identify an un-activated
viable hypothesis. Termination is guaranteed by virtue of the
finite size of the knowledge and the explicit prevention of re-
activation of already active hypotheses. The activation of one
hypothesis has implications for other hypotheses as well, as
will be described below. Because of the multi-dimensional
nature of hypothesis activation, the "focus” of the system also
exhibits levels of attention. That is, in its examination, the
focus can be stated according to desired level of specificity or
resolution (the two are related), discrimination set, or temporal
slice. The control structure is illustrated in Figure 10-1.

Each newly activated hypothesis is recorded in a structure
that is similar to the class whose instance it has hypothesized.
This structure includes the class slots awaiting fillers, the
relationships that the hypothesis has with other hypotheses, and
an initial certainty value determined by sharing the certainty
with the hypothesis that activates the new hypothesis.

In other aspects, the systems differ and these differences
are highlighted in upcoming sections of this paper.

10.4. The ALVEN project

10.4.1. Overview

The ALVEN project was an experiment in the design of a
framework for the integration of time into high level
(attentive) vision. The key elements are an organization of
knowledge along several axes, including time; several search
modes facilitated by the knowledge organization; a hypothesize-
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Figure 10-1:  The Interpretation Control Structure.

and-test reasoning framework; and

a temporal cooperative
~ process, driven by the knowledge organization, for hypothesis
ranking. The major aspects of the cooperative process, namely,
the definition of consistency, process neighbourhoods, initial

certainties, compatibility factors, are all defined in terms of the
- knowledge organization.

measurements, and this
discussed quantitatively.

Iterations are tied

to temporal
allows temporal

sampling to be
A qualitative analysis that includes
hypothesis response rise and fall times is presented in addition
éto guidelines for setting compatibilities such that performance is
. appropriate.

3

The scheme subsumes previous relaxation methods
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in that iterations are performed in time for either dynamic or
static situations, and because the structure over which the
cooperative process operates is allowed to change with time. It
is further shown that the dimensions of knowledge
organization, I1S-A, PART-OF, SIMILARITY and Temporal
Precedence, have uses far beyond their desirable structuring and
access properties, and that they play important other roles in a
knowledge based interpretation scheme. The application domain
was chosen because of its rich temporal nature.

The evaluation of left ventricular (LV) performance by
computer from cine representations of LV dynamics is a
difficult and long-studied problem. A large number of
heuristics have been proposed for measuring shape changes
(Brower and Meester, 1981), following anatomical landmarks
(Slager, 1979), computing segmental volume contributions (for a
comparison, see (Gerbrands et al. 1979)), etc.. all performing
with  varying degrees of success, but being applied
independently of each other. Although such heuristics are
indeed valuable quantitative measures, we propose that their
limited performance is due to two key considerations: 1) it is
unlikely, given the complexity of the domain of LV dynamics
and the amount of training that a clinical specialist in this area
receives, that any single heuristic can capture all the important
facets of the evaluation and be successful in all applications; 2)
the heuristics are purely quantitative in nature, contrasting
with the fact that clinicians, and for that matter humans in
general, deal in qualitative or descriptive terms combined with

numerical quantities. That is. relational quantities are
necessary components of the interpretation process, while
numerical ones are secondary. The key here is that a

computer system that is to solve the difficult problems present
in the domain of LV dynamics interpretation must integrate the
above mentioned numerical heuristics as well as consider the
symbolic processing aspects of the interpretation. We
distinguish our approach from those whose goal is to provide
some intermediate visual representation that must still be
subjectively interpreted by a clinician (the work described in
(Hoehne et al, 1980) is a particularly good example of such a
representation). Our goal is to perform this interpretation in
much the same way as the clinician does, and to do it in an
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objective and consistent manner.

In (Aiello, 1983), three incarnations of the PUFF system
were compared, each with the same knowledge, but different
control schemes. The result of the comparison was that for
PUFF's specific problem domain, expectation-driven (what is
called model-driven below) was the best Strategy, yet it too
had drawbacks. Its analysis was strongly influenced by the
initial hypothesis, was not able to recover from bad initial
states. and moreover could not respond to all input data, only
that which was required bv the model. The control scheme of
ALVEN does not rely on a single mechanism. We recognize
that a single scheme may not be adequate for all situations,
and thus several interacting dimensions are included.
Specifically. our control scheme does not suffer from the
above-mentioned drawback, because of its incorporation of
model-driven, data-driven and lateral failure-driven search,
reflecting traversals of the knowledge base along the IS-A,
PART-OF or SIMILARITY dimensions.

Matching is defined as successful if all slots that should
be considered for filling are filled and no matching exceptions

- are raised. Otherwise, the match is unsuccessful. Using this

binary categorization of matching, and the relationships amongst
hypotheses, a certainty updating scheme based on relaxation
processes (Zucker, 1978) is used. Details of this scheme appear
in  (Tsotsos, 1984), and the definition of temporal relaxation is
considered as one of the major contributions of the ALVEN
project. Basically, hypotheses that are connected by knowledge
organizational relationships that imply consistency support one
another, and those linked by relationships that imply
inconsistency compete with one another by removing support.
The IS-A relationship is in the former group, while the

- SIMILARITY relationship is in the latter group. The focus of
~ the system is defined as the set of best hypotheses, at each

~level of specificity, for each set of structural components being
- considered in the given time slice. The focus, due to the slow

change of certainties inherent in relaxation schemes, exhibits
inertia, or procrastination, that is, it does not alter dramatically
between certainty updates. Both global and local consistency is

~enforced through the contributions of hypotheses to one another

Via their organizational relationships.
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Examples of the ALVEN system have appeared previously
and thus will not be repeated here (Tsotsos. 1985).  The
results were very satisfactory. Each analysis produced by
ALVEN was completely consistent with the reports that
radiologists produce for those films. The major difference is in
detail. ALVEN produces very detailed descriptions at a
number of levels of abstraction. The information that is
produced is beyond the capability of analysis by human
observation. Moreover, it seems that most of the quantities
computed are beyond the capability of the science of cardiology
to incorporate into routine patient care. It is encouraging that
we can make predictions for quantities and analyses that may
also advance the state-of-the-art of heart patient care.

10.4.2. LV dynamics knowledge and its representation

Although there is still much work to be done in the
determination of the knowledge of LV dynamics, much can be
found in current literature which can be incorporated into our
formalism. Two examples will be given. This knowledge is used
as a starting point for knowledge base construction only.
Moreover, although the exact numerical quantities may differ
between imaging techniques, the qualitative descriptions do not.

In the series of papers by Gibson and his colleagues, (for
example (Doran et al, 1978), (Gibson et al, 1976)), several
investigations were carried out that determined quantitative
aspects of specific LV motions. In the second paper quoted,
the segmental motions of the LV during isovolumic relaxation
were examined in normal and ischemic LVs using
echocardiography in order to determine dynamic differences
between these two cases. Without describing technical details
of their method, we will briefly summarize their findings.
They discovered that in normal LVs an outward wall motion
of 1.5 - 3.0 mm. could be present in any region during
isovolumic relaxation. In abnormal cases, that is, patients with
coronary artery disease, affected areas show inward motion,
2mm. or more for posterior or apical segments, and any at all
for anterior regions, and non-affected areas, due to a
compensatory mechanism, may exhibit an increased outward



10 Knowledge Organization and Its Role 237

motion of up to 6mm. over normal. The key feature to note
here is that the description given does not have a mathematical
form at all - it is a combination of quantitative and
qualitative measures. The term "outwards" does not specify any
precise direction as long as the motion of the segment is away
from the inside of the LV. It is not impossible to set up a
mathematical model of this; however, the model will be both
cumbersome and will bury the pertinent facts in its equations,
so that inspection by a non-sophisticated user becomes
impossible.  The knowledge class for this information (and
more) follows:

class N_ISORELAX is—a NO_VOLUME_CHANGE with
prerequisites
subj : N_LV such that [

(find ant_mot : NO_TRANSLATION where [
ant_mot.subj = seif.subj.onterior ,
ant_mot.time_int = self.time_int
]

or
find ant_mot : OUTWARD where [
ant_mot.subj = self.subj ,
ant_mot.time_int = self.time_int ,
dist(ont_mot.subj.centroid
© ant_mot.time_int.st,
ant_mot.subj.centroid
© ant_mot.time_int.et) < 3
exception [TOO_MUCH_MOTION with seq
< "anterior" ,
direction < ‘"outward",
disp < dist(ant_mot.subj.centroid
© ant_mot.time_int.st,
ant_mot.subj.centroid
@ ont_mot.time_int.et) ]

) exception [TOO_MUCH_MOTION with seg “
"anterior”, © direction < “inward"] ,

(find post_mot : NO_TRANSLATION where [
post_mot.subj = self.subj.posterior ,
post_mot.time_int = self.time_int
]

or

find post_mot : INWARD where [
post_mot.subj = self.subj ,
post_mot.time_int = self.time_int ,
dist(post_mot.subj.centroid
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0 post_mot.time_int.st,
post_mot.subj.centroid
© post_mot.time_int.et) < 2
exception [TOO_MUCH_MOTION with seg
« ‘"“posterior",
direction < "inward",

disp < dist(post_mot.subj.centroid
0 post_mot.time_int.st,
post_mot .subj.centroid
0 post_mot.time_int.et) ]
]
or
find post_mot : OUTWARD where [
post_mot.subj = self.subj ,
post_mot.time_int = self.time_int ,
dist(post_mot.subj.centroid
© post_mot.time_int.st,
post_mot.subj.centroid
0 post_mot.time_int.et) < 3
exception [TOO_MUCH_MOTION with seg
— ‘“posterior",
direction < "outward",
dist(post_mot.subj.centroid
0 post_mot.time_int.et,
post_mot.subj.centroid ]
© post_mot.time_int.et) ] ]

) .

(find ap_mot : NO_TRANSLATION where [
ap_mot.subj = self.subj.apical ,
op_mot.time_int = self.time_int
]

or
find ap_mot : INWARD where [
ap_mot.subj = self.subj ,
ap_mot.time_int = self.time_int ,
dist(ap_mot.subj.centroid
@ aop_mot.time_int.st,
ap_mot.subj.centroid
© ap_mot.time_int.et) < 2
exception [TOO_MUCH_MOTION with seg
— ‘ogpical",
direction < "inward",
disp < dist(op_mot.subj.centroid
© ap_mot.time_int.st,
ap_mot.subj.centroid
© op_mot.time_int.et) ]

]
or
find ap_mot : OUTWARD where [
ap_mot.subj = self.subj ,
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ap_mot.time_int = self.time_int
dist(ap_mot.subj.centroid
© op_mot.time_int.st,
ap_mot.subj.centroid
© ap_mot.time_int.et) < 3
exception [TOO_MUCH_MOTION with seg
< "apical"
direction < ‘“outward",
disp < dist(ap_mot.subj.centroid
0 ap_mot.time_int.st,
ap_mot.subj.centroid
@ ap_mot.time_int.et) ] ]
)
1

dependents
time_int : with time_int + (dur of TIME_INTERVAL with
dur < default(0.093+(30/(0.8+HR))) )
such that [
time_int.st \(>= 0.24+(30/(0.8+HR)) ,
tim_int.et \(<= ©.43+(30/(0.8¢HR)) ,
time_int.dur \(>= ©.088+(30/(2.8+HR)) ,
time_int.dur \(<= ©.12+(30/(0.8+HR))
exception [TOO_LONG_ISORELAX]

’

similarity links

sim_linkt : ISCH_AP_ISOVOL_RELAX
for differences
d1 : TOO_MUCH_MOTION where [
seg = "apical"
direction = "“inwards" ,
time_int = ap_mot.time_int ];

d2 : TOO_MUCH_MOTION where [

seg = "anterior" ,
direction = "outwards"
disp< 9 ,

time_int = ant_mot.time_int ];

d3 : TOO_MUCH_MOTION where [

seq = "“posterior" ,
direction = "outwards"
disp < 9 ,

time_int = post_mot.time_int }; ;

sim_Iink2 : ISCH_ANT_ISOVOL_RELAX
for differences
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d1 : TOO_MUCH_MOTION where [
seg = "anterior"
direction = "inwards" ,
time_int = ant_mot.time_int ];

d2 : TOO_MUCH_MOTION where [

seg = "apical" ,

direction = "outwards" ,

disp < 9 ,

time_int = ap_mot.time_int ];
d3 : TOO_MUCH_MOTION where [

seg = "posterior" ,
direction = "outwards" ,
disp < 9 ,

time_int = post_mot.time_int ]; ;

sim_link3 : ISCH_POST_ISOVOL_RELAX
for differences
dt : TOO_MUCH_MOTION where [
seg = "posterior" ,
direction = "“inwards"
time_int = post_mot.time_int ];
d2 : TOO_MUCH_MOTION where [

seg = “"anterior" ,
direction = "outwards"
disp < 9 ,

time_int = ant_mot.time_int ];
d3 : TOO_MUCH_MOTION where [

seg = "apical”

direction = "outwards" ,

disp < 9 ,

time_int = ap_mot.time_int J; ;

The definition states that for a normal isovolumic
relaxation phase to be recognized. normal motions for each
segment must be present. There are three main clauses in the
definition. The first defines the expected normal motion of the
anterior segment, the second for the posterior segment and third
for the remaining segment, the apical one. So for example, in
the first clause. the definition reflects Gibson's characterization:
the anterior segment during this phase, must either not display
any translational movement, or could display an outward
motion of displacement less than 3 mm. A larger displacement
than this in the outwards direction would be recorded as the
exception TOO_MUCH_MOTION, with specific additional
contextual information recorded as well. In the matching of
class definitions to actual observed motions, matching failures
are recorded as exceptions. If the anterior segment were
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displaying motion and it were not outwards, then it must be
inwards and this fact, too, would be recorded as an exception.
The dependent portion specifies relevant timing information for
the temporal placement of the phase within the left ventricular
cycle. HR is in units of beats/sec. so that the right hand side
of the timing expressions is in units of number of images.
Also, using the information derived from (Gibson et al, 1976),
the similarity links provide definitions of the constraints that
must be found if a possible ischemic segment is to be
recognized. Note that only the connections to possible ischemic
states detectable by considering only the characteristics of the
isovolumic relaxation phase, are included above: a set of
similarly formed constraints would have to be present for
other disease states as well, for those cases where the
isovolumic relaxation phase plays a role in their definition.
"sim_1link2" relates the normal phase 1o the motion of an
abnormal apical segment exhibiting the effects of ischemia.
This, according to Gibson's definition, is shown by either the
apical region itself having too much inward motion during this
phase, and/or one of the other regions (posterior or anterior)
exhibiting too much outward motion during the phase. Note
that the set of differences does not define a necessary set; any
one of the conditions is sufficient.

It should be clear that the above is not complete; it
requires the remainder of the definitions for the other phases
and motions since the entire definition of each class of LV
motion is defined as a hierarchy of abstraction, each level
adding more detail to the previous one. Some of the types of
information that are represented are volume changes where
known for normal phases, ejection fractions, for example;
measures of degrees of abnormalities, derived heuristically; and
others.

A second body of knowledge of the form necessary for
interpretation can be found in (Fujii et al, 1979). In this
research eight different clinical cardiac disease states have been
investigated with the intent of discovering posterior wall

- motion differences and similarities among the diseases, as well

as global LV characteristics.  The diseases are pericarditis,

~ Congestive cardiomyopathy, hypertrophic cardiomyopathy,
- valvular aortic stenosis, aortic insufficiency, mitral stenosis,
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mitral insufficiency, and systemic hypertension. Normal LV's
were also studied. The measurements made for each of the
above LV states are stroke volume, rapid filling volume, slow
filling volume, atrial filling volume, the percent filling for each
of the previous three phases with respect to the stroke volume,
posterior wall excursion in total, and for each of the three
phases of diastole, as well as the percentage excursion in each
phase, diastolic posterior wall velocity, rapid filling rate, LV
end diastolic dimension, and ejection fraction. It is, of course,
difficult 1o verify their results. However, they are important
- they provide at least a starting point for the further
elaboration and verification of such detailed dynamic
information. In addition to the large amount of numerical
information that has been derived, the significant findings have
had attached to them qualitative descriptors - such as whether
or not this quantity should be higher or lower than in the
normal case. This is rather fortunate from our point of view:
the representational formalism that we have designed can
handle description via common components and differences very
well, and uses such information to advantage during the
decision phases of the interpretation. It should be clear from
the previous example how such information would be included
into the representation, and this fact alone raises another
important advantage of this scheme. The addition of
information into a mathematical model may require a complete
re-definition of the model. In our case, information is easily
inserted, as long as one understands the semantics of the
representation.

10.5. The CAA project

10.5.1. Overview

The objective of the CAA (Causal Arrhythmia Analysis)
system is to establish a framework for the recognition of time-
varying vital signals of a complex repetetive nature, such as
electrocardiograms (ECGs). The CAA system uses a causal
model of the physiological entity so that observed abnormalities
of the temporality or morphology of the signal are explained
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by referring to the corresponding abnormalities of causal events
and relationships in the entity model.

In the domain of electrocardiology. this causal reasoning
process is especially important because the domain involves
causal and temporal knowledge about the cardiac conduction
system with which cardiologists analyze clinical observations
(ECGs) and thereby provide diagnostic interpretations of
abnormal events in the underlying physiological mechanism of
the heart. The recognition problem of ECG rhythm disorders, is
interesting, above all, because the overall performance of
existing ECG programs (for example, IBM Bonner's program) is
at most 80% reliable for abnormal ECGs (Hagan et al,
1979) and we believe a basic reason for this unreliability is
that current systems lack underlying physiological knowledge to
handle the complexity inherent in cardiac rhythms. The ECG
wave identification is much complicated by its "antenna" nature
of receiving only the aggregated electrical activity of the heart;
that is, there is no simple correspondence between signal
features and individual electrical discharges in the heart.

Our approach to the problem of building such a system is
to construct a knowledge base stratified by several distinct
knowledge bases (KBs) from different perspectives of the
domain. Its control structure, therefore, supports a guiding
mechanism between corresponding concepts in different KBs as
well as another guiding mechanism between causally related
concepts in each KB. In our representational terms, the former
mechanism uses projection links and the latter uses causal
links, and these links together contribute to the generation of
hypotheses and the decision of overall interpretations in the
recognition of ECG signals. This approach also integrates several
established Al techniques. The system inherited the basic
control framework from the ALVEN system, and other
techniques such as the attention mechanism for specialization
and aggregation, which is supported by the implementation of
similarity links (Minsky, 1975) and the exception handling
mechanism. The hypothesize-and-test paradigm is used as in
ALVEN and other systems like PIP (Szolovits and Pauker,
1978) and HEARSAY-II (Mostow and Hayes-Roth, 1978). The
knowledge organization method is based on the IS-A, PART-OF,
~and INSTANCE-OF hierarchies as used in the PSN formalism.
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To prove the efficacy of our methods. a prototype sysiem
has been designed and implemented using a frame-input PSN
system on Franz LISP (Shibahara et al. 1983), (Shibahara,
1985). The prototype with a limited size of knowledge base is
being tested and so far has yielded satisfactory results.

10.5.2. Representation of causal connections

Causality may be viewed in various aspects. Rieger and
Grinberg distinguished one-shot causality where the cause
event(s) is required only at the start of the effect event(s)
from continuous causality where the continuous presence of
the cause is required to sustain the effect (Rieger and Grinberg,
1976).

CAA causal links are based on two features of causal
connections:  first, they specify the existential dependency of
an affected event on its causative event(s); second, they impose
temporal constraints between causative and affected events.
Thus, the affected events cannot occur without the occurrence
of the corresponding causative events, with effects temporally
following their causes. Since we are interested in representing
the dependencies of causal connections among events more
precisely, we look at causality from the viewpoint whether a
causal influence is internal to a subject or whether it
influences other distinct subject(s).  One-shot causal links,
therefore, are specialized into the following:

1. Transfer: the subject of the event normally
completes the current event and proceeds to the
following event.

2. Transition: the subject is forced to terminate its
current event and proceed to a new event.

3. Initiation: the causative event, due to a given
subject, triggers a new event of another subject.

4. Interrupt: the causative event, due to a given
subject. interrupts and forces the termination of an
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event by another subject.

5. Causal-block: the causative event of a subject fails
to influence an event of another subject due to a
blockage of the causal flow.

The above CAA causal links include implicit temporal
constraints; thus, causal structures are described more
qualitatively without specifying time coordinate values.

Causal events are aggregated at several levels involving
arbitrary number of causal links. However, causal links
themselves remain atomic lest the semantics of causal
connections should become ambiguous.

10.5.3. Use of causal links

To interpret real ECG signals, the knowledge base must
contain causal knowledge about normal and abnormal
connections among cellular events, which produce particular
ECG tracings in the observable signal domain. We represent
such causal activities using CAA causal links. Figure 10-2
illustrates a typical ECG tracing for a normal cardiac cycle in
(a), its electrical conduction path in an anatomical diagram in
(v). and the corresponding causal conduction model with causal
links in (c).

In this causal model, short symbols like EOQa are used to
denote one of four basic events (phases) in a small portion of
the cardiac  conduction  system. These  phases are
“depolarization” [symbol a], "under-repolarization" [symbol b],
"partial-repolarization” [symbol c¢], and “full-repolarization”
[symbol d]. Such basic phase events are successively aggregated
into "cycle", "activity", "beat", and “beat-pattern" events in the
physiological event component knowledge base to describe more
global and complex causal structures.

Note that causal links across beat events (not shown) are
TRANSITIONs and INTERRUPTs except pace-making parts
(normally, the SA-Node) because the overall oscillation of the
conduction system is controlled (or triggered) by such self-
oscillating cells. Also, since the current model is rather devoted
o supraventricular arrhythmias, the bundle branches are
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Figure 10-2: A Typical ECG Tracing for a
Normal Cardiac Cycle
included in the ventricles.

10.5.4. Recent research related to causality

ABEL and CADUCEUS are recent medical expert systems
that use causal notions. The ABEL system provides multiple
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levels of descriptions of medical hypotheses and hierarchically
organizes disease structure (Patil. 1981). In the CADUCEUS
system, which analyzes differential diagnoses and causal graphs
of diseases, Pople proposes sophisticated control links for
efficient decision making (Pople, 1982). In spite of the
sophistication in expressing causal mechanisms in ABEL and
CADUCEUS, these systems do not seem to provide a means to
construct a recognition system of time-varying signals, due to
the weakness in the representation of precise timing context
among events.

Causality has been recently approached from the
standpoint of “qualitative reasoning" (Forbus, 1984). (Kuipers,
1984). (De Kleer and Brown, 1984). In this regard. Long's
work must be noted (Long, 1983). He introduced qualitative
times to describe the causal relations that might or must have
taken place. He proposed four causal templates that give an
extension of "continuous causality”, while our causal links are

specialized in "one-shot causality". We have taken a different
1% Yy

approach, because original signals are given to the system as
real-valued data, and the use of some quantitative analysis is
inevitable at the measurement level, so that unnecessary
ambiguity is avoided, as Kunz noticed in his Al/MM system
(Kunz, 1983).

Based on the methods of multivariate analysis Blum
approached causality statistically (Blum, 1982). However, our
problem domain includes mostly exact causal relationships.
Therefore, we limit the use of statistical standards to the
estimation of inherently spontaneous variables such as event
durations.

10.5.5. Representation of domain knowledge

Figure 10-3 exemplifies the use of a class frame and
causal links. (The dot "" notation is used to specify the
Component of the referred slot.) This normal activity of the
ventricles is decomposed into three cycle events: bundle-of-his-
¢ycle-event, right-ventricle-cycle-event, and left-ventricle-cycle-
event. Two INITIATE links represent the conductions from the
bundle of His to the left and the right ventricles, respectively.
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Note that the information related to the class itself (in thig
case, the subject part name and the activation type) is given as
the instantiation of a metaclass ACTIVITY-CONCEPT.

class VENT-ALL-MATURE-FORWARD-ACTIVITY
is-a VENT-ACTIVITY;
instance-of ACTIVITY-CONCEPT instantiated-with
subject: VENTRICLE;
activation: FORWARD;;
with components
bundle—of-his—cycle—event: BHIS-MATURE-CELL-CYCLE;
right—ventricte—cycie—event: RV-MATURE-CELL-CYCLE;
left-ventricle—cycle—event: LV-MATURE-CELL—CYCLE;
bhis—rv—delay: NUMBER-WITH-TOLERANCES
calculate := /+ delay set—up expression s/;
bhis—lv—delay: NUMBER-WITH-TOLERANCES
calculate := /+ delay set—up expression /;
causal-links
bhis—rv—propagation: INITIATE
causative-starting-event: bundle-of-his—cycle—
event.depolarization—phase—event;
initiated-event: right-ventricle—cycle—
event.depolarization—-phase—event;
delay: bhis-rv—delay;;
bhis-tv—propagation: INITIATE
causative-starting-event: bundle—of—his-cycle-
event.depolarization-phase—event;
initiated-event: left—ventricle—cycle-
event.depolarization—phase-event;
delay: bhis—Iv—delay;;
end

Figure 10-3: Class Frame for Normal Activity
of the Ventricles

Let us examine how the IS-A and the PART-OF principles
contribute to the organization of the CAA knowledge base. We
take a look at the QRS and QRST waveforms in the ECG
waveform KB as examples.

First, the QRST waveform consists of the QRS complex
and the T wave: thus, the corresponding class QRST-
COMPOSITE-WAVE-SHAPE has the generic PART-OF structure
with major components shown in Figure 10-4(a). This generic
QRST waveform is specialized into several QRST waveforms in
Figure 10-4(b), along its IS-A hierarchy. Let us pick one
component from the STANDARD-QRST-COMPOSITE-SHAPE.
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Figure 10-4: The QRST Waveform.

| Similarly, various IS-A and PART-OF hierarchies
- defined in the physiological KB.
‘Mot only contribute to the clarif
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NORMAL-QRS-COMPLEX is such a component and this class is
itself included in the IS-A hierarchy of the QRS waveforms as
. in Figure 10-4(c). The orthogonality of IS-A and PART-OF
- hierarchies is shown in Figure 10-4(d), since STANDARD-R-
| WAVE-SHAPE is a component of STANDARD-QRS-COMPLEX-
SHAPE, and. at the same time, it is included in a local IS-A
hierarchy of R-WAVE-SHAPE.

are

Such organizational hierarchies
ication of the interdependency
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among domain concepts but also provide guiding knowledge for
the recognition process, as discussed later.

Statistical information, commonly used in medical
reasoning systems, has particular importance when insufficient
information is available about the disease status of a patient
(Szolovits and Pauker, 1978). In our case. the recognition
system uses statistical standards to produce expectations of
unknown attributes of events and to estimate -consistencies
(goodness—of—fit) of hypotheses. Since statistical standards about
a class are not the attributes of any particular instance of the
class but the attributes of the class itself, such standards could
be defined in appropriate metaclasses and instantiated as
properties of the class itself. In other words, event statistics
are good examples of meta-knowledge or "knowledge about
knowledge", and such knowledge is organized along the
INSTANCE-OF axis. In fact, to provide "mean” and "standard-
deviation” values to all the physiological phase events, CAA has
the metaclass CELL-PHASE-CONCEPT shown in Figure 10-5(a):

In Figure 10-5(a), default functions, MEANFUNC and
DEVFUNC, are generic functions that are supposed to generate
the mean and standard deviation about durations of phase
events. Such statistical standards about phases are function
procedures of "subject”. "maturity”, "phase”, and a state variable
HR$ (heart rate). Therefore, such a standard. for example, a
mean value, is given by the expression "(mean subject maturity
phase HR$)" in a particular phase event class (Figure 10-5(b)).
In the evaluation of this expression, the slot-names such as
"mean” and "subject" are replaced by real properties of the
class, such as "MEANFUNC" and "SA-NODE". This is considered
as the tailoring process of the general "mean” expression to the
definitional context of this event; that is, such statistics may
change to fit into each event hypothesis. On the other hand,
HRS$ is a global variable that reflects the current state of the
model, where hypotheses are being instantiated; in other words.
such global variables are used to make statistical standards
sensitive to the current recognition context. Heart rate, blood
pressure and breathing rate are examples of dynamic or time
varying global variables, while age-group, sex, race, and types
of medications are static global variables. Obviously, the default
functions, MEANFUNC and DEVFUNC, may be replaced by
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metaclass CELL~PHASE—CONCEPT
with components
subject: HEART-PORTION;
maturity: DEGREE-OF-MATURITY;
phase: PHASE~NAME ;
mean:  EXPRESSION default MEANFUNC:
deviation: EXPRESSION default DEVFUNC;
end

(a)

class SAN-COMP-DEP—PHASE
instance-of CELL-PHASE-CONCEPT
instantiated-with
subject: SA-NODE;
maturity: COMPLETE;
phase: DEPOLARIZATION;
mean: ;/* default is MEANFUNC =/

deviation: ; /» default is DEVFUNC =/
is-a PROTO—EVENT
with
components
consistency: NUMBER;
start—time: NUMBER-WITH-TOLERANCES; /* inherited =/
end—time: NUMBER-WITH-TOLERANCES: /* inherited */
duration: NUMBER-WITH-TOLERANCES
such-that NON-NEG—CONSTR:

[NOT [GT e VALUES$ .centrai-value)]; /+ inherited 74
constraints

duration—estimation:
(DURATION-ESTIMATE start—time end—time duration
(mean subject maturity phase HR$)

(deviation subject maturity phase HR$));
end

(b)

Figure 10-5: (a) A Metaclass to Describe Phase-Concepts’
Own Properties
(6) A Phase Class as an Instance
of CELL-PHASE-CONCEPT

any ad hoc functions if necessary.

The role of the function DURATION-ESTIMATE is
similar to that of causal links, in that the equation "end-time =
Start-time + duration” is used to estimate any unknown values
among them. In this case, however, the standard mean and
deviation values of the duration must be explicitly supplied for
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the calculation of the consistency (or reasonableness) of the
estimated duration value. based on physiological knowledge.

10.5.6. Knowledge-base stratification and projection links

Due to our causal model approach, we distinguish two
subdomains: the ECG morphological (shape) domain and the
electrophysiological domain. Therefore, the knowledge base of
the whole system is stratified by the ECG waveform KB and
the physiological event KB. Our idea of stratifying a
knowledge base resembles Rich's “overlays', since it provides
different perspectives to the problem (Rich, 1981). In our
method, however, the linking mechanism between different KBs
is biased to recognition purposes.

Projection links have been introduced into the CAA
system to relate corresponding concepts in distinct domain KBs.
In our model based approach, such links are essential, since
they relate temporal and/or morphological abnormalities in
waveforms to corresponding abnormalities in physiological
causal structures.

The diagram in Figure 10-6 illustrates a projection link
that defines the correspondence between the corner point
information of a normal QRST waveform and the timings of a
normal activity event of the ventricles. This projection link
must be defined in the class frame of the normal QRST
waveform.

For recognition, the most important aspect of projection
links is that they provide guiding paths 10 map concepls across
differently organized KBs and support the synchronization of
recognition activities in different domains. In our system,
projections from established waveform hypotheses result in the
basic data set (hypotheses) in the underlying event domain. on
which the recognition of causal events works.

10.5.7. Recognition strategies and control

Signals are processed by three functional modules in the
following order:
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R-wave

Waveform Domain Q-wave S-wave

projection-links
<link name> :PROJECTION
towards: VENT-ALL—MATURE-FORWARD-ACITVITY;
bound-by:
[certainty := consistency],
[left-ventricle-cycle-event
(depolarization-phase-event
(start-time

(central-value := grs-complex. onset-time))

(end-time
(central-value := qrs-complex. offset-time)))

(partial-repolarization-phase-event
(end-time

(central-value := t-wave.off-time))) | ;

Event Domain

VENTRICLE activity

I B
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Figure 10-6: A Projection Link

1. The peak-detection module extracts wave segments
and slopes from sampled ECG input signals and
emits peak tokens with the measured parameters.
This module uses the syntactic method given by
Horowitz (Horowitz, 1975) based on piecewise

linearization and parsing techniques using a context-
free grammar.

. The waveform analysis module, for each cardiac
cycle, forms waveform hypotheses on the peak
tokens and refines the hypotheses to describe the
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given set of tokens best. Once established, such
hypotheses are projected into the physiological event
domain to form  their corresponding event
hypotheses.

3. The event analysis module accepts projected events
as a starting data set and generates rhythm event
hypotheses in a more global context of time to
elucidate rhyvthm abnormalities in the underlying
cardiac conduction system. Since most physiological
events do not have observable counterparts
(waveforms), the event analysis module produces
expectations of unknown events, using the causal
knowledge of the conduction system and statistical
standards of events. If the system encounters a
lack of information because of missing waves, it
may request the peak-detection module to search for
such missing tokens based on the expectation of
such waves.

Our recognition strategy is based on the hypothesize-and-
test paradigm, in particular, the attention mechanisms of
ALVEN. The focus-of-attention mechanism makes recognition
(hypothesis formation) proceed from the generic to the specific
along IS-A class hierarchies downward. When a class hypothesis
succeeds, a focusing action is taken by choosing and
hypothesizing an arbitrary specialized class of the successful
class. When a current hypothesis fails, the change-of-attention
mechanism chooses alternative hypotheses through similarity
links, examining the similarity and the difference between
classes.

Let us examine how the above specialization-and-
aggregation process works for QRST waveforms (see Figure
10-6). After all peaks are detected and measured, the
waveform analysis module chooses groups of consecutive
prominent peaks with high amplitude and steep slope as
anchoring shapes. These anchoring shapes are candidates for
QRST-COMPOSITE-SHAPE. The wave analysis for an anchoring
shape starts with hypothesizing the class QRST-COMPOSITE-
SHAPE on the prepared set of basic peak tokens. This class is
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the most generic for all the shapes composed of Q. R, S, and T
waves and only requires the existence of any QRS complex
wave as the sole component; thus, this component class, which
is again the most generic class for QRS complex waves, is
hypothesized, and its instantiation follows, using the prepared
Q. R, and/or S wave tokens. If there are no Q. R, or S wave
tokens, the hypothesis of QRS-COMPLEX-SHAPE fails, and so
does QRST-COMPOSITE-SHAPE. As the second step, one of the
specialized QRST  composite wave classes under QRST-
COMPOSITE-SHAPE is hypothesized, and all its attributes are
tested; that is. an attempt is made to instantiate the slot
tokens. Since all the specialized classes are connected by
similarity links, the system may choose the next appropriate

hypothesis using exceptions raised by test results and finally
. reach the valid hypothesis for the given anchoring shape. The

test procedure for each attribute slot, however, triggers an
independent process for recognizing the token of the slot. For
example, class STANDARD-QRST-COMPOSITE-SHAPE has a slot
named grs-complex and this slot is defined by class NORMAL-
QRS-COMPLEX which is an IS-A parent class to classes
STANDARD-QRS-COMPLEX-SHAPE, STANDARD-QR-
COMPLEX-SHAPE, STANDARD-RS-COMPLEX-SHAPE, and
STANDARD-R-ONLY-COMPLEX-SHAPE. Thus, the previous
QRS wave slot token of the generic QRST-COMPOSITE-SHAPE
must be specialized along the IS-A hierarchy of QRS-
COMPLEX-SHAPE, and this process also uses the same
procedure in order to reach the most refined QRS complex
shape hypothesis. With such a specialized QRS wave token and
a separately specialized T wave token, the second step decides
the most appropriate hypothesis among QRST composite shapes
for the given set of wave tokens.

Similarly, but independently, in the physiological event
domain, the specialization-and-aggregation process starts with the
most generic beat pattern and eventually provides several
specialized patterns as probable overall interpretations.

The recognition starts with establishing hypotheses in the

. waveform domain. The projection mechanism maps such
-~ established hypotheses into the event domain, preparing a set of
. basic event hypotheses. which are treated like data in the event
= Tecognition process.
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A beat pattern (rhythm) is a complex time-varying event
aggregated from more local events such as beats, activities,
cycles, and phases. Causal links in such an aggregated event
imply connections among its component events. Thus, once
projections are made to some of these components, the system
can produce expectations of unknown components from the
known components. Therefore, when the system hypothesizes
such an aggregated event, it looks ahead or looks back for its
component events, which are causally linked to ‘“already-
established" component events. Most frequently, causal links
are used to locate the temporal positions of "“to-be-expected"
events by their inherent temporal constraints. This expectation
is made by the following basic equality implicitly imposed over
starting or ending times of participating events:

<effect-time> = <cause-time> + <delay-period>.

Let us look at the above mechanisms in a small but clear
case where a QRST composite wave is seen but the P wave has
not been recognized for the current wave group.

Area #2 Area #3

Figure 10-7: The Case and the Interval "Area #1"

Figure 10-7 illustrates the case. The interval "Area #1" is
the probable area where a P wave would appear if the beat is
a normal sinus-pacing beat. To estimate such an area under 2
particular beat hypothesis is important, since the peak-detection
module may search for a P wave intensively in this area,
again.

The area is estimated using the projection and the
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expectation mechanisms in the following fashion:

1. A hypothesis  of NORMAL-QRST-COMPOSITE-
SHAPE is established.

2. A projection to a normal ventricle activity event
(Figure 10-6) is undertaken. as follows:

a. The onset and offset times of the QRS
complex are bound to the starting and ending
times of the depolarization phase of the left
ventricle. The off-time of the T wave is
bound to the ending time of the partial-
repolarization phase. These phase events are
generated immediately, and two other phase
evenls are expected by three TRANSFER
causal links and event statistics. Thus. the
left ventricle (LV) cycle event is generated.

b. By the INITIATE causal link to the Bundle of
His (BHIS) and subsequent TRANSFER links,
the BHIS cycle event is generated. Also, by
the INITIATE link from the BHIS to the right
ventricle (RV), the RV cycle event is
generated.

c. With the above three cycle events, the
projection to the normal ventricle activity
event is completed.

Expectation of AV-Node activity, Atrium activity,
and SA-Node activity under a hypothesis of the
normal sinus-pacing beat (Figure 10-2(c)) is carried
out as follows:

a. The INITIATE link C7 is invoked to expect
phase E6a; then E6b, E6c, and E6d phases are
expected by three TRANSFER links® and,
finally, the lower AV-Node cycle event is

257
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generated. Similarly, using C6 and C5
INITIATE links, the middle and upper AV-
Node activity events are generated. Thus, the
AV-Node activity event is formed with these
component cycle events.

b. Starting with the INITIATE link C4, the
atrium activity event is expected in the same
way as above, and. next, the SA-Node cycle
event is expected.

¢. A hypothesis of the normal sinus-pacing beat
is completed.

Under this hypothesis, the on-time and the off-time of
the P wave correspond to the starting time of the upper-atrium
cycle and the ending time of the lower-atrium cycle,
respectively. Therefore, the search area for a probable P wave
is given as the interval between these times (for example, from
110 +/- 16ms to 40 +/- 15ms before the QRS complex). The
request of the search for the P wave is fed back to the peak-
detection module to repeat the detection with different
sensitivity parameters.

The above CAA expectation mechanism is characterized by
the following features:

(1) The expectation is made from the known to the
unknown, forward or backward in time, and upward or
downward in a PART-OF class structure.

(2) The expectation proliferates to make a closure of
temporal and/or structural dependencies and complete the
PART-OF structure of the hypothesis.

Projections are made in the following fashion:

(1) Projections may be made between differently
structured classes, as seen in Figure 10-6.

(2) To eliminate unnecessary instantiations of projections.
any projected class is instantiated only when a current global
hypothesis requests the class as a component.

To recognize a periodic or successive arrhythmia, its
repetitive behavior is defined by the recursive definition of
beat-pattern frames. By such a frame, recognition may proceed
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one beal to the next along the time axis instantiating successive
beats to form the beat-pattern.

In the process of forming beat-patterns, causal links
between adjacent beats allow the system to verify the causal
relationship that governs the pace-making mechanism on a beat-
to-beat basis. The overall consistency of a beat-pattern is
calculated based on the consistencies of these causal links and
beat components.

As well as the causal consistency among beats, overall
characteristics and tendencies are observed and used to recognize
individual arrhythmias. For this purpose, most beat-pattern
classes include a component that monitors the changes of
variables from one beat to another. A typical example is to
monitor the change of the R-R interval or the P-R interval.

In arrhythmia beat-patterns, similarity links must also be
defined to relate beat-patterns that have some features in
common and handle situations where one or more matching
exceptions have been raised. Figure 10-8 shows ECG wave
configurations that correspond to three different AV-Block
arrhythmia patterns and the matching exceptions used by
similarity links. Such similarity links between repetitive beat-
patterns enable the system to switch beat-pattern hypotheses
from one pattern to its alternatives [according to the exceptions
raised during the instantiation of the pattern hypothesis.]

The recognition of particular arrhythmia patterns such as
the above AV-Block beat-patterns must be initiated by more
general classes in the IS-A hierarchy they belong to. The most
generic class for repetitive arrhythmias is REPETITIVE-
RHYTHM-PATTERN, and this class is immediately specialized
according to the heart rate into one of three rate-specific
classes: FAST-RHYTHM-PATTERN, MODERATE-RHYTHM-
PATTERN, and SLOW-RHYTHM-PATTERN. If we assume a
normal heart rate between 60 and 100 beats per minute,
MODERATE-RHYTHM-PATTERN is selected And one of its
more specialized classes must again be chosen. Normally, the
first choice is NORMAL-SINUS-RHYTHM-PATTERN, because it
Tepresents the most generic rhythm that has only NORMAL-
SINUS-PACING-BEATs. If any abnormality is found in the
recognition of such normal beats, other rhythm pattern(s) are
triggered through a similarity link, which detects the
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Figure 10-8: ECG Wave Configurations

abnormality. For the cases of AV-Blocks, an exception must
be raised by the prolongation of the atrium-ventricle-interval in
the recognition of one of component beats. Then the similarity
link which contains this exception condition triggers a rhythm
pattern  AV-PROLONGED-RHYTHM-PATTERN, which is the
immediate IS-A class of the above three AV-Block beat pattern
classes.

To  recognize  particular arrhythmia  patterns, the
specialization-and-aggregation process must be initiated with the
most generic class for repetitive arrhythmias. The final
interpretation, therefore, is given by a set of all survived beat-
patterns with overall consistency factors. The consistency is
calculated using event statistics and a test-score function, which
is similar to a fuzzy constraint in (Zadeh, 1983a).
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10.6. Conclusions

Our basic conclusions lie in the claim that frame-based
representations are appropriate for complex time-varying signal
interpretation  tasks. We have presented aspects of
representation, knowledge organization and control, that have
led to successful implementations of two systems, ALVEN and
CAA. that deal with temporally rich medical signal domains.
In the case of CAA, a further contribution was described,
namely the deep model of the heart's electrophysiology. and a
mechanism, projection, was presented that allows for relating
signal characteristics to conceptual entities responsible for
generating those signals. A final basic claim is that it is not
the frame nature of the knowledge representation per se that
has been responsible for the success of these systems, but
rather the relationships of the frame organization, that is, the
IS-A. PART-OF, INSTANCE-OF, SIMILARITY. and Temporal
Precedence relations. that drive the control. These relationships
drive the control structure as well as provide desirable
knowledge structure.
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