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The so-called “first generation” expert systems were rule-based and offered a successful framework for building applications
systems for certain kinds of tasks. Spatial, temporal, and causal reasoning, knowledge abstractions, and structuring are among
topics of research for “second generation” expert systems. It is proposed that one of the keys for such research is knowledge
organization. Knowledge organization determines control structure design, explanation and evaluation capabilities for the
resultant knowledge base, and has strong influence on system performance. We are exploring a framework for expert system
design that focuses on knowledge organization, for a specific class of input data, namely, continuous, time-varying data (image
sequences or other signal forms). Such data are rich in temporal relationships as well as temporal changes of spatial relations, and
are thus a very appropriate testbed for studies involving spatio-temporal reasoning. In particular, the representation formalism
specifies the semantics of the organization of knowledge classes along the relationships of generalization/specialization,
decomposition/aggregation, temporal precedence, instantiation, and expectation-activated similarity. A hypothesize-and-test
control structure is driven by the class organizational principles, and includes several interacting dimensions of search
(data-driven, model-driven, goal-driven temporal, and failure-driven search). The hypothesis ranking scheme is based on
temporal cooperative computation, with hypothesis “fields of influence” being defined by the hypothesis® organizational
relationships. This control structure has proven to be robust enough to handle a variety of interpretation tasks for continuous
temporal data. A particular incarnation, the ALVEN system, for left ventricular performance assessment from X-ray image
sequences, will be summarized in this paper.

Key words: knowledge representation, expert systems, medical consultation systems, time-varying interpretation, knowledge-
based vision

Les systemes experts dits de “premiére génération” étaient basés sur des régles et offraient un cadre intéressant pour la
construction de systémes d’application effectuant certaines taches particuliéres. Le raisonnement spatial, temporel et causal,
Pextraction et la structuration de la connaissance sont parmi les axcs de recherche considérés pour les systemes experts de
“seconde génération”. On suggére que I'une des clés de ce type de recherche soit 'organisation de la connaissance.
L’organisation de la connaissance conditionne I’élaboration de la structure de controle, les capacités d’évaluation et
d’explicitation de la base de données qui en résulte, et a une trés forte incidence sur les performances du systéme. Nous explorons
un cadre d’élaboration des systémes experts qui s’intéresse particulidrement a I'organisation de la connaissance pour une classe
spécifique de données analysées: les données continues temporalisées (séquences d’images ou autres formes de signaux). De
telles données sont riches en relations temporelles de méme qu’en modifications temporelles des relations spatiales et offrent ainsi
un cadre d’étude approprié pour les recherches impliquant le raisonnement spatio-temporel. En particulier, la représentation
facilite et renforce la sémantique dans I’organisation des catégories de savoir en fonction des rapports entre généralisation /
spécification, décomposition /agrégation, ordre temporel, instantiation, et prévision des similarités. Une structure de controle
par hypothéses et tests est guidée par les principes d’organisation catégorielle et comprend plusieurs dimensions
complémentaires de recherche (recherche guidée par les données, par modele, par but, par échec, et temporelle). Le schéma
principal d’hypothése est basé sur une évaluation prenant cn compte la temporalité, ol les “champs d’influence” d’une hypothese
sont définis par ses liens organisationnels. Cette structure s’est avérée suffisamment solide pour effectuer une variété de taches
d’interprétation de données temporelles continues. Une réalisation particuliere, le systtme ALVEN, qui évalue le
fonctionnement du ventricule gauche a partir de séquences d’images radiographiées, sera présenté dans cet article.

[Traduit par la revue]

Mots clés: représentation de la connaissance, systemes experts, systetmes de diagnostic médical, interprétation temporalisée,
vision raisonnée.
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1.0 Introduction

A brief overview of the ALVEN application domain and the
solution strategy is in order before detailed discussions are
presented.

The domain of application of ALVEN is that of the evaluation
of the dynamics of left ventricular tantalum marker implants
from X-ray image sequences. ALVEN is thus both a visual
motion understanding system as well as an example of artificial
intelligence applications in medicine. The goal is to analyse
both pre-operative (without markers, using contrast media) and
post-operative marker films (following coronary bypass sur-
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gery), to evaluate the efficacy of surgery, locally and globally,
quantitatively and qualitatively, over the recovery period
(several months), and to evaluate the effects of drug interven-
tions. It is crucial for such comparisons of perhaps subtle
changes that a rich representation involving both qualitative and
quantitative be obtained for each film. Other examples of
computer analysis of marker implants are presented in Ger-
brands er al. (1979), and Alderman er al. (1979), which
addresses the problem of point of reference.

The evaluation of left ventricular (LV) performance by
computer from cine representations of LV dynamics is a
difficult and long-studied problem. A large number of heuristics
have been proposed for measuring shape changes (Brower and
Meester 1981), following anatomical landmarks (Slager er al.
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1981), computing segmental volume contributions (for a
comparison, see Gelberg et al. (1979)), etc., all performing
with varying degrees of success, but being applied indepen-
dently of each other. Although such heuristics are indeed
valuable quantitative measures, we propose that their limited
performance is due to two key considerations: (1) it is unlikely,
given the complexity of the domain of LV dynamics and the
amount of training that a clinical specialist in this area receives,
that any single heuristic can capture all the important facets of
the evaluation and be successful in all applications; (2) the
heuristics are purely quantitative in nature, contrasting with the
fact that clinicians, and for that matter humans in general, deal
in qualitative or descriptive terms combined with numerical
quantities. That is, relational quantities are necessary compo-
nents of the interpretation process, while numerical ones are
secondary. The key here is that a computer system that is to
solve the difficult problems present in the domain of LV
dynamics interpretation must integrate the above-mentioned
numerical heuristics as well as consider the symbolic processing
aspects of the interpretation.

We propose that the current limited success of computer
assisted analysis of left ventricular dynamics is due to three
main reasons: (1) there is a strong tendency to remain within the
realm of mathematical modelling for LV dynamics, and it is not
at all clear that this is an adequate approach; (2) in places where
mathematical models alone may be insufficient, current re-
search into more sophisticated schemes is not yet complete, and
thus, more basic research is required, particularly into represen-
tations of knowledge and interpretation control structures,
before applications such as LV performance can be solved, a
view also stated in Boehm and Hoehne (1981); (3) there is a
distinct lack of knowledge about LV dynamics, in conjunction
with disagreements about what is important to model and what
terminology is to be used. We distinguish our approach from
those whose goal is to provide some intermediate visual
representation that must still be subjectively interpreted by a
clinician (the work described in Hoehne et al. (1980) is a
particularly good example of such a representation). Our goal is
to perform this interpretation, in much the same way as the
clinician does, and to do it in an objective and consistent
manner.

The strategy we adopted for the solution of this problem
follows. In reality, there are two major problems to be solved:
(1) the problem of understanding visual motion given a set of
primitive image tokens over time, and (2) the problem of
reasoning about spatio-temporal relationships in the context of
human left ventricular dynamics.

There are three major points to be made regarding the
ALVEN methodology. The first deals with the construction of
the knowledge base. ALVEN’s knowledge base is made up of
frame-like objects called classes, which are organized using the
relationships IS-A, PART-OF, SIMILARITY, and Temporal
Precedence. These are described later in the paper. The
definition of the knowledge classes requires two stages. The first
is to define the general knowledge that pertains to the task of
motion understanding. This must be done in such a way as to
satisfy the following: (a) a set of motion classes must be found
that is sufficient for use in defining the motion classes of the
problem domain—problem specific motion classes are defined
in terms of the general ones; and (b) the interface between
image-specific concepts and general knowledge concepts is
defined to be the leaves of the PART-OF hierarchy of motion
concepts, and the image-specific procedures must be known.

That is, the only concepts that can be leaves of the PART-OF
hierarchy are those that are directly extractable from the signal
input. The second stage of knowledge class definition is to use
the general purpose motion knowledge (which is a knowledge
base, fully usable, in its own right), and define concepts specific
to left ventricular dynamics in terms of the general ones. The
problem specific knowledge base of ALVEN therefore simply
‘hooks’ onto the general purpose one through the knowledge
organization relationships. Other motion problem domains
could be handled in a similar manner.

The second aspect of ALVEN to be introduced is the control
strategy. A cyclic process was defined that integrates the
different search schemes into a coherent whole (see Fig. 1).
Definitions of these search schemes appear later in the paper.
Perhaps the most interesting aspect is how the different search
schemes interact and are coordinated, and this is clear in Fig. 1.
The basic cycle involves the extraction of tokens from the input
signal, instantiating those tokens as leaves of the concept
PART-OF hierarchy, following that hierarchy in a data-directed
fashion to activate new hypotheses that are aggregates of the
input tokens, thus obtaining an initial set of hypotheses. That
initial set is then specialized by downward traversal of the IS-A
hierarchy (one level), selecting either the most likely of the
specialization, through a priori knowledge, or a random one.
This intermediate set is elaborated by the activation of all
component hypotheses (elements of the model specified by each
class). Each hypothesis of this refined set is then matched with
data or other instances. Matching successes lead to further
specializations and elaborations, while failures lead to selection
of alternate hypotheses via the failure-directed mechanism,
which are to be considered in parallel with the failing hypo-
theses. Once refinements of this sort are complete (there are no
more model elaborations, that is, each PART-OF subtree for
each hypothesis has been fully activated) and there are no
specializations (no successful matches are found for any
specializations of any hypothesis), the hypotheses are ranked
within competing sets by their updated goodness of fit measure,
or certainty: For some hypotheses, that goodness of fit displays
sufficient confidence so that the hypothesis is instantiated. Other
hypotheses are deleted from further consideration. The best
hypotheses are used to produce a set of predictions for the next
data sample. Those predictions may be of events that are
expected to occur next, or may be components of hypotheses
that should have been observed but have not (differentiating
between temporally-directed predictions in the former case and
model-directed ones in the latter). The predictions are projected
from hypothesis space to the signal domain and are used by the
token extraction process as guidance. If tokens cannot be found
from some prediction, a relaxation of constraints occurs, thus
generalizing the prediction by moving upwards along the IS-A
hierarchy from the hypothesis responsible for the faulty predic-
tion. A ‘blind’ token-finding procedure is available for cases
where no predictions allow for successful token finding.

The process by which time-varying matching evidence is
accumulated and integrated over time is the final aspect to be
introduced. This is based on relaxation labelling processes
(Zucker 1978); the relaxation process described by Zucker,
however, is modified in several important ways. Details of the
temporal cooperative process are beyond the scope of this paper
but are presented in Tsotsos (1984). The important points
follow. Firstly, it should be clear that it is meaningless to talk
about the certainty of a hypothesis using just its spatial
evidence—space and time are considered together and cannot
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be separated. Hypothesis certainty depends on the accumulation
of spatial evidence exhibiting temporal consistency and con-
tinuity over a time interval. It also depends not only on
individual hypothesis consistency but also on comparison with
the evidence for other hypotheses—in other words, both local
and global evaluations play a role. Relaxation methods operate
over networks of local processes where processes are connected
to other processes via weighted links or communication
pathways. The determination of the weights is a difficult
problem. In addition, the one that we use is non-linear.
Relaxation schemes typically require many iterations before
they converge to stable solutions (they are hill-climbing
schemes). In a time-varying interpretation situation, this is nota
desirable characteristic. We require that the process converge to
solutions within a small fixed number of iterations and thus must
discover the conditions under which relaxation schemes satisfy
this requirement. This must be so because new data are being
added to the interpretation as the interpretation proceeds. Our
temporal cooperative process is unified with the remainder of
the control scheme because the local processes are hypotheses,
and the communication pathways are the knowledge organiza-
tion relationships. Each relationship has an associated weight
(whose value is time-varying) that is related to the semantics of
that relationship. Thus, each local process (hypothesis) has a
field of influence (or neighbourhood, using relaxation termino-
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logy) that is defined by its semantic relationships to other
processes. A simple numerical inequality that was determined
empirically must be satisfied by the weights in order for the
required convergence property to be satisfied.

The remainder of the paper describes details of the repre-
sentation, the control and reasoning strategies, the domain of
left ventricular dynamics, and briefly presents an example of a
complete analysis. Implications of the methodology conclude
the discussion.

2.0 Overview of the representational scheme

2.1 Knowledge packages: classes

Packaging up knowledge leads to a modular representation,
with all the advantages of modularity, particularly the enhance-
ment of clarity and flexibility. Most knowledge-package repre-
sentation schemes borrow strongly from Minsky (1975). Our
frames are called classes. A class provides a generalized
definition of the components, attributes, and relationships that
must be confirmed of a particular concept under consideration in
order to be able to make the deduction that the particular concept
is an instance of the prototypical concept. Classes also have
embedded, declarative control information, namely exceptions
and similarity links. These features will be described shortly.
Note that there is a distinction between the ‘prerequisites’ of the
class, those components that must be observed in order to
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instantiate the class, and the ‘dependents’ of a class, those
components that must be derived on instantiation. Dependent
slots carry their own computation information. Classes exhibit
large grain size, and translating their contents to rules would
require many rules. An obvious advantage over the rule scheme
is that elements that conceptually belong together are packaged
together into a class, with some control information included.
Other frame-based schemes for medical consultation systems
include the MDX system (Chandrasekaran er al. 1979) and
CADUCEUS (Pople 1982).

2.2 Multi-dimensional levels of detail

The term ‘level of detail” seems to denote different things to
different people. In most schemes, it is used to express problem
decomposition only (Nilsson 1971). We present two separate
views of abstraction ‘level’. These views are related to the fact
that all concepts have both IS-A and PART-OF relationships
with other concepts. Thus the level of specificity of detail can be
controlled by, or examined by traversing, the IS-A hierarchy,
while the level of resolution of detail (decomposition in other
schemes) is reflected in the PART-OF hierarchy. In Patil ez al.
(1982) only the decomposition view of level is present, while in
CADUCEUS (Pople 1982), it seems that the level of specificity
is employed and level of resolution is restricted to causal
connections. In Wallis and Shortliffe (1982) rule complexity is
used, which may be likened to our view of level of resolution:
however, its use is restricted to explanation.

2.3 Time and its representation

Several interacting mechanisms are available for the
representation of temporal information. This multi-pronged
approach differs from other schemes that embody a single type
of construct for handling temporal information. The complexity
of time necessitates several special mechanisms. Our approach
differs from others (Allen 1981; Mittal and Chandrasekaran
1980) in that we were motivated by problems in signal analysis
rather than in representing natural language temporal descrip-
tions and their inherent ambiguity and vagueness. It is not clear,
for example, what kind of control strategy can be employed
along with Allen’s scheme of temporal representation. Fagan
(1980) is concerned with a temporal interpretation situation.
However, there are a number of issues, primarily in control, that
are not considered by his system, VM:

® using the rule-based approach, only a data-driven recogni-
tion scheme is incorporated, and thus, VM cannot initiate a
search for temporally expected events;

® the handling of noise is not formalized, but is rather ad hoc;

® the complexity of temporal relationships among rules
seems limited, and arbitrary groupings of temporal events and
their recognition are not addressed;

® cxpectations in time are table-driven, and no distinction is
made between them and default values or expected ranges.
Expectations in ALVEN are computed from such information,
but current context is taken into account as well so that
expectations are tailored for the task at hand:

® partial satisfiability of temporal event groupings cannot be
handled.

In addition, Long and Russ (1983) also address the problem
of time-dependent reasoning. Their scheme is closer to Fagan’s
than to ours. The control is data-driven exclusively. Their
representation of time, however, shares some similarities with
ours in that both points and intervals are used, and special
meaning is assigned to the variable ‘now’.

A brief description of the representation of time used by
ALVEN follows. A TIME_INTERVAL class is defined that
contains three slots, namely, start time, end time, and duration.
This class can then be included in the structure of any other class
and would define its temporal boundaries and uncertainty in
those values. Using those slots, the relations before, after,
during, etc., (similar to Allen (1981)) are provided. In
constraint or default definition, sequences of values (or ranges
of values) may be specified using an ‘at’ operator, so that in
effect a piecewise linear approximation to a time-varying
function can be included. In this case of course, constraint
evaluation must occur at the proper point in time. Tokens of
values such as volume or velocity for which use of this operator
is appropriate, have two slots, one for the actual value and the
other for the time instant at which that value is true. The time
instant slot is a dependent slot whose value is set to the value of
the special variable ‘now’ (current time slice). Note that this
kind of mechanism could easily be expanded if required to
multi-dimensional functions.

Finally, arbitrary groupings of events can be represented. The
set construct (which may be used for any type of class grouping,
not only for events) specifies elements of a group, names the
group as a slot, and has element selection criteria represented as
constraints on the slot. Patil ef al. (1982) described a version of
temporal aggregation similar to ours, but do not seem to have a
time-line along which selection of values can occur, nor do they
distinguish between aggregations of events and sequences of
measurements.

Since knowledge classes are organized using the IS-A and
PART-OF relations, their temporality is as well. By construct-
ing a PART-OF hierarchy of events, one implicitly changes the
temporal resolution of knowledge classes (as long as not only
simultaneous events are considered). For example, suppose that
the most primitive events occur with durations on the order of
seconds. Then groupings of those may define events that occur
with durations in the minute range, and then groupings of those
again on the order of hours, and so on. Events whose durations
are measured using months can be so built up. Yet, many kinds
of events cannot be so decomposed, and there is no requirement
that all events have such a complete decomposition. Those
events, however, are not left hanging, since they will also be
related to others in the knowledge base via the IS-A relation-
ship. The control scheme makes use of the temporal resolution
with respect to sampling rates and convergence of certainties.

In the following examples, first the TIME INTERVAL class
is shown, followed by the class for the concept of SEQUENCE,
followed by a constraint on volume of the left ventricle from the
normal left ventricle class, showing the use of the ‘at’
mechanism for both default and constraint definition, as well as
an example of a piecewise linear approximation to the volume
vs time function.

Example 1
class TIME_INTERVAL with
prerequisites
st : TIME_V such that [st > = 0];
et : TIME_V such that {et > = st];
dependents
dur : TIME_V with dur < et - st;
end $

Example 2
class SEQUENCE is-a MOTION with
prerequisites

motion__set : set of MOTION such that [
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for all m : (MOTION such that
[m element-of motion_set])
verify [

m.subj = self.subj,

-find m1 : MOTION where [

ml element-of motion_set,

(m1.time_int.st during m.time_int or

m.time_int.st during m1.time_int)],

find m2 : MOTION where |
m2 element-of motion_set,
(m.time_int.st = m2.time_int.et or
m2.time_int.st = m.time_int.et)]],

card(motion_set) > 1,

strict_order_set(motion_set,time_int.st)};

dependents
first_mot : MOTION with
first_mot < earliest_st(motion_set);
last_mot : MOTION with
last_mot <« latest_st(motion_set;
time_int : with time_int <
(st of TIME_INTERVAL with st «— first_mot.time_int.st,
et of TIME INTERVAL with et < last_mot.time_et);
end $

Example 3
volume : VOLUME_V with
volume <« (vol of VOLUME_V with
vol < (minaxis.length @ now) ** 3
default (117 @ m.systole.time_int.st,
22 @ m.systole.time_int.eft,
83 @ m.diastole.rapid_fill .time_int.et,
100 @ m.diastole.diastasis.time_int.et,
117 @ m.diastole.atrial _fill.time_int.et)
such that [
volume @ m.diastolet.time_int.et > = 97
exception [TOO_LOW _EDV with volume « volume ],
volume @ m.diastole.time_int.et < = 140
exception [TOO_HIGH_EDYV with volume < volume |,
volume @ m.systole.time_int.et > = 20
exception [TOO_LOW _ESV with volume < volume],
volume @ m.systole.time_int.et < = 27
exception[TOO_HIGH_ESV with volume < volume]],
time_inst of VOLUME_V with time_inst <= now);

A few words of explanation are in order. The key words
“verify”, “find”, and “‘strict_order_set” appear. Their meanings
are straightforward: “verify” means match constraints, “find” is
the equivalent of “does there exist”, and “strict_order_set” is a
function that checks to see if a potential motion_set’s elements
are strictly ordered in time.

2.4 Exceptions and similarity relations

The recording of exceptions to slot filling and constraint
matching has proven to be valuable. Exceptions are classes in
their own right, with slots to be filled on instantiation, i.e., when
raised. Each slot constraint (or group of constraints) of a class
may have an associated exception clause. This clause names the
type of exception that would be raised on matching failure, and
provides a definition for filling the exception’s slots, since these
slot fillers identify the context within which the exception
occurred and play an important role in the determination of the
action to take on the exception. Each slot has an implicit
exception associated with it for cases where a slot filler cannot
be found. Exceptions are used in two ways: (1) to record the
matching failures of current hypotheses, recording the failures
of the reasoning process; and (2) to assist in directing system
attention to other, perhaps more viable hypotheses. The

prototypical exception class is shown below along with one
of its specializations, followed by an example from a stroke
volume slot. Other examples have already appeared in
example 3.

Example 4
class EXCEPTION with
dependents
subj : PHYS_OBJ ;
time_int : TIME_INTERVAL ;
source_type : CLASS ;
source_id : INTEGER ;
end $

Example 5
class TOO_MUCH_MOTION is-a EXCEPTION with
dependents
seg : STRING ;
disp : LENGTH_VAL with disp «-
(len of LENGTH_ VAL with
len < dist(subj.centroid @ source_id.time_int.st,
subj.centroid @ source_id.time_int.et),
time_inst of LENGTH_ VAL with time_inst <= now);
end $

Example 6
stroke_vol : VOLUME_V with
stroke_vol « (vol of VOLUME_V with
vol « self.volume @ m.diastole.time_int.et -
self.volume @ m.systole.time_int.et
default(95) such that [
vol > = 70
exception [LOW_STROKE_VOLUME with
volume <« vol |,
vol < =120
exception [HIGH_STROKE_VOLUME with
volume < vol ] |,
time_inst of VOLUME_V with time_inst <= now);

Similarity measures that can be used to assist in the selection
of other relevant hypotheses on hypothesis matching failure are
useful in the control of growth of the hypothesis space. These
measures usually relate classes that together comprise a dis-
criminatory set, i.e., only one of them can be instantiated at any
one time. As such, they relate classes that are at the same level
of specificity of the 1S-A hierarchy, and that have the same IS-A
parent classes. Similarity links are components of the frame
scheme of Minsky (1975), and a realization of SIMILARITY
links as an exception-handling mechanism is presented in
Tsotsos et al. (1980) based on a representation of the common
and differing portions between two classes. This view is
contrasted with the sets of competitors described for the ABEL
system (Patil er al. 1982). In that formulation, the level of
specificity of the competing set is not represented. Similarity
links enable explicit discussion of class comparisons, not only
between the connected classes, but also by traversals of several
links (Gershon 1982). Thus they are an element of embedded
declarative control, and add a different view of class representa-
tion, thereby enhancing redundancy of the representation.

The three major components of a SIMILARITY link are (1)
the list of target classes (given first), (2) the ‘similarities’
expression; and (3) the “differences” expression, the time-
course of exceptions that would be raised through inter-slot
constraints of the source class or in parts of the source class. The
similarities represent the important common portions between
the source and target classed—during interpretation, the target
classes are not active when the SIMILARITY link is being
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evaluated; thus, in time-dependent reasoning situations, the
components of the target class that are the same as in the source
class before activation of the SIMILARITY link, or that the
source class may not care about that have already ‘passed in
time’, can be verified using the similarities expression. There is
an implicit conjunction of the differences in the exception
record, while the similarities form a disjunction. Many SIMI-
LARITY links will be shown in subsequent examples.

2.5 Partial results and levels of description

Partial instances are permitted with an accompanying excep-
tion record. More importantly, since instance tokens are
produced for each verified hypothesis, and since hypotheses
maintain the organization exhibited by the classes that they are
formed from, interpretation results also exhibit the same
structure. That is, there are levels of description that may be
examined as appropriate by a user.

It is important to realize that the instantiation of a hypothesis
is achieved only when its certainty has reached a threshold
value. (The thresholds are not set in an ad hoc fashion, but rather
depend on a number of factors relating to the context of
interpretation and knowledge structure; see Tsotsos (1984) for
details). Thus, even though not all components of a hypothesis
have been verified, instantiation may still take place if that
hypothesis has significantly more successes than its competitors
over the same time period. This would then create a partial
instance, including the verified components, the final certainty,
and a set of exception records specifying what was not
observed.

3.0 The interpretation control structure

3.1 Hypothesize and test: Parallelism and levels of attention

The ALVEN system employs hypothesize and test as the
basic recognition paradigm. The activation of a hypothesis sets
up an internal goal, that is, that the class from which the
hypothesis was formed, try to verify itself. However, activation
of hypotheses proceeds along each of five dimensions con-
currently, and hypotheses are considered in parallel rather than
sequentially. These dimensions are the same class organization
axes that are described above. Specifically, we define: goal-
directed search to be movement from general to specialized
classes along the 1S-A dimension, the goal being to find the
appropriate sub-class definition for the data in question;
model-directed search to be movement from aggregate to
component classes along the PART-OF dimension; rtemporally
directed search to be a specific form of model-directed search in
that a temporal ordering among components controls the time of
activation; failure-directed search to be movement along the
SIMILARITY dimension; and data-directed search to be
movement from components to aggregates of components
upwards along the PART-OF dimension. For a given set of
input data, in a single time slice, activation is terminated when
none of the activation mechanisms can identify an un-activated
viable hypothesis. Termination is guaranteed by virtue of the
finite size of the knowledge and the explicit prevention of
re-activation of already active hypotheses. The activation of one
hypothesis has implications for other hypotheses as well, as will
be described below. Because of the multi-dimensional nature of
hypothesis activation, the ‘focus’ of the system also exhibits
levels of attention. That is, in its examination, the focus can be
stated according to desired level of specificity or resolution (the
two are related), discrimination set, or temporal slice.

Each newly activated hypothesis is recorded in a structure

that is similar to the class whose instance it has hypothesized.
This structure includes the class slots awaiting fillers, the
relationships that the hypothesis has with other hypotheses, and
an initial certainty value determined by sharing the certainty
with the hypothesis that activates the new hypothesis.

3.2 Goal-directed and model-directed search

Top-down traversal of an IS-A hierarchy, moving downward
when concepts are verified implies a constrained form of
hypothesize-and-test for more specialized concepts. Similarily,
top-down traversal of the PART-OF hierarchy implies a
constrained form of hypothesize-and-test for components of
classes that reflect greater resolution of detail. These search
dimensions are success-driven, as shown in Fig. 2.

Verification of an IS-A parent concept implies that perhaps
one of its IS-A siblings applies, while the confirmation of an
IS-A sibling implies that its parents must also be true. Multiple
IS-A siblings can be activated, but a more efficient scheme
would be to activate one of the siblings if all siblings form a
mutually exclusive set, or one from several such sets, and then
allow failure-directed search to take over. This mechanism will
then determine how many siblings in a discriminatory set are
viable possibilities. Note that hypotheses are activated for each
class in a particular IS-A branch as the hierarchy is being
traversed, and thus tokens will be created for each on instantia-
tion. The activation of a hypothesis implies activation of all of
its PART-OF components as hypotheses as well. Cycles are
avoided since at most one hypothesis for a particular class can
exist for each time interval and set of structural components.

In the case of top-down PART-OF hierarchy traversal, the
activation of a hypothesis forces activation of hypotheses
corresponding to each of its components, i.e., slots. Note that
slots may have a temporal ordering, a feature handled by the
temporal search mechanism interacting with this one. The
search is therefore for all components of a class, increasing the
resolution of the class definition.

The MYCIN system (Shortliffe 1976) has only a single search
dimension, namely that of depth-first search of the AND/OR
tree of rules, while the INTERNIST system (Pople 1977)
employs both of these mechanisms in addition to the data-
directed search about to be described.

3.3 Data-directed search

The PART-OF hierarchy can also be traversed bottom-up in
aggregation mode as shown in Fig. 3. Bottom-up traversal
implies a form of hypothesize-and-test, where hypotheses
activate other hypotheses that may have them as components,
i.e., data-directed search. This form of search is success-driven
as well. Activation of hypotheses in this direction implies
activation of all IS-A ancestors of new hypotheses as well.
Arbitrary hypothesis groupings can be accomplished, but
specific groupings can only be recognized if defined as a class.

3.4 Failure-directed search

Failure-directed search is along the SIMILARITY dimension
as in Fig. 4, and depends on the exceptions of a particular
hypothesis. Typically, several SIMILARITY links will be
activated for a given hypothesis, and the resultant set of
hypotheses is considered as a discriminatory set, i.e., at most,
one of them may be the correct one. Similarity interacts with the
PART-OF relationship in that exceptions raised that specify
missing slot tokens are handled by the hypothesis’ PART-OF
parent, the hypothesis that contains the context within which the
exception occurred.
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3.5 Temporally directed search

Temporally directed search is automatically activated when-
ever a class has an IS-A relationship with the SEQUENCE
class, and this includes sequences of measurement values. Itis,
in other words, a special case of model-directed search along the
PART-OF dimension (sec Fig. 5). (Causal search is a special
case of temporal search, since causality implies an existensional
dependency as well as a temporal relation. This is present in the
CAA system (Shibahara er al. 1983)). Note that elements of a
sequence may be compound events, such as other sequences,
simultaneous events, or overlapping events. In a sequence, each
element of the sequence has a PART-OF relationship with the
event class. Thus, on activation of the class, it is meaningless to
activate all parts of a sequence at the same time or to expect all
measurements of a sequence at the same time. This dimension
of search is crucial for the ordering of expectations in time.
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3.6 Hypothesis conceptual adjacency

Active hypotheses are related to one another by their
‘conceptual adjacencies’. If a knowledge organization relation
(IS-A, PART-OF, SIMILARITY, Temporal Precedence) exists
between two classes, and hypotheses are active for those two
classes such that the hypotheses involve the same set of
structural components and time interval (they are attempting to
explain the same phenomenon), then the hypotheses also have
that same relation. The conceptual adjacency is one of the major
components of hypothesis ranking, in that it specifies what
kinds of global and local consistencies play a role for a given
hypothesis. In fact, the certainty updating scheme only uses
information about conceptual adjacency and hypothesis match-
ing.

An interesting result of the use of conceptual adjacencies in
hypothesis ranking is that performance of the ranking scheme is
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dramatically improved by their use. In Tsotsos (1984), experi-
ments on the control structure are reported. Those experiments
show that for this particular hypothesis certainty updating
scheme (and indeed for relaxation labelling schemes in gen-
eral), the addition of the global constraints to competition
exhibited in a discriminatory set of hypotheses, via the 1S-A
relation, speeds up convergence to correct instantiation.

3.7 Hypothesis matching and hypothesis ranking
The matching result of a hypothesis for the purpose of
hypothesis ranking is summarized as either success or failure.

Temporally directed search.

Matching is defined as successful if all slots that should be
considered for filling are filled and no matching exceptions are
raised. Otherwise, the match is unsuccessful. Using this binary
categorization of matching, and the conceptual adjacencies
amongst hypotheses, a certainty updating scheme based on
relaxation processes (Zucker 1978) is used. Details of this
scheme appear in Tsotsos (1984). Basically, hypotheses that are
connected by conceptual adjacencies that imply consistency
support one another, and those linked by adjacencies that imply
inconsistency compete with one another by removing support.
The IS-A relationship is in the former group, while the
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SIMILARITY relationship is in the latter group. The focus of
the system is defined as the set of best hypotheses, at each level
of specificity, for each set of structural components being
considered in the given time slice. The focus, because of the
slow change of certainties inherent in relaxation schemes,
exhibits inertia or procrastination, i.e., it does not alter
dramatically between certainty updates. Both global and local
consistency is enforced through the contributions of hypotheses
to one another via their conceptual adjacencies.

3.8 Hypothesis instantiation and deletion thresholds

The use of thresholds is necessitated by the numerical nature
of certainties for the instantiation and deletion of hypotheses.
These thresholds are not fixed for the lifetime of the system, but
rather are dynamic, in that they depend on the number of
competing hypotheses in a discriminatory set, and on whether or
not the same hypothesis is present in more than one discrimina-
tory set. Sampling rate and noise considerations are also
included (see Tsotsos 1984). In particular, the sampling rate
depends on the temporal resolution of the discriminatory set,
and can thus be variable. Events whose durations are described
in months must be samples at that resolution, and those of
durations in seconds must be sampled accordingly.

4.0 LV Dynamics knowledge and its representation

Although there is still much work to be done in the
determination of the knowledge of LV dynamics, much can be
found in current literature that can be incorporated into our
formalism. Two examples will be given. This knowledge is
used as a starting point for knowledge-base construction only.
Moreover, although the exact numerical quantities may differ
between imaging techniques, the qualitative descriptions do
not.

In the series of papers by Gibson and his colleagues (i.e.,
Gibson et al. (1976); Doran er al. (1978)), several investiga-
tions were carried out that determined quantitative aspects of
specific LV motions. In the Gibson et al. paper, the segmental
motions of the LV during isovolumic relaxation were examined
in normal and ischemic LVs using echocardiography in order to
determine dynamic differences between these two cases.
Without describing technical details of their method, we will
briefly summarize their findings. They discovered that in
normal LV’s an outward wall motion of 1.5-3.0 mm could be
present in any region during isovolumic relaxation. In abnormal
cases, i.e., patients with coronary artery disease, affected areas
show inward motion, 2 mm or more for posterior or apical
segments, and any at all for anterior regions, and non-affected
areas, because of a compensatory mechanism, may exhibit an
increased outward motion of up to 6 mm over normal. The key
feature to note here is that the description given does not have a
mathematical form at all—it is a combination of quantitative
and qualitative measures. The term ‘outwards’ does not specify
any precise direction as long as the motion of the segment is
away from the inside of the LV. It is not impossible to set up a
mathematical model of this; however, the model will be both
cumbersome and will bury the pertinent facts in its equations, so
that inspection by a non-sophisticated user becomes impossible.
The knowledge class for this information (and more) follows:

class N_ISORELAX is-a NO_VOLUME_CHANGE with
prerequisites
subj : N_LV such that [

(find ant_mot : NO_TRANSLATION where |
and_mot.subj = self.subj.anterior,

ant_mot.time_int = self.time_int
]
or
find ant_mot : OUTWARD where |
ant_mot.subj = self.subj ,
ant_mot.time_int = self.time_int,
dist(ant_mot.subj.centroid @ ant_mot.time_int.st,
ant_mot.subj.centroid @ ant_mot.time_int.et) < 3
exception [TOO_MUCH_MOTION with seg < “anterior”,
direction <« “outward”,
disp < dist(ant_mot.subj.centroid @ ant_mot.time _int.st,
ant_mot.subj.centroid @ ant_mot.time_int.ct)]

]
y exception {TOO_MUCH_MOTION with seg <— “anterior™,
direction < “inward”],

(find post_mot : NO_TRANSLATION where [
post_mot.subj = self.subj.posterior,
post_mot.time_int = self.time_int
]

or

find post_mot : INWARD where [
post_mot.subj = self.subj,
post_mot.time_int = self.time_int,
dist(post_mot.subj.centroid @ post_mot.time_int.st,

post_mot.subj.centroid @ post_mot.time_int.et) < 2
exception [TOO_MUCH_MOTION with seg «
“posterior”,
direction < “inward”,
disp < dist(post_mot.subj.centroid @ post_mot.time_int.st,
post_mot.subj.centroid @ post_mot.time_int.et)]

]

or

find post_mot : OUTWARD where {
post_mot.subj = self.subj,
post_mot.time_int = self.time_int,
dist(post_mot.subj.centroid @ post_mot.time_int.st,

post_mot.subj.centroid @ post_mot.time_int.et) < 3
exception [TOO_MUCH_MOTION with seg < “posterior™.
direction < “outward”,
dist(post_mot.subj.centroid @ post_mot.time_int.et,
post_mot.subj.centroid @ post_mot.time_int.et)] ]

)

(find ap_mot : NO_TRANSLATION where |
ap_mot.subj = self.subj.apical,
ap_mot.time_int = self.time_int

]
or
find ap_mot : INWARD where |
ap_mot.subj = self.subj,
ap_mot.time_int = self.time_int,
dist(ap_mot.subj.centroid @ ap_mot.time_int.st,
ap_mot.subj.centroid @ ap_mot.time_int.et) < 2
exception [TOO_MUCH_MOTION with seg < “apical”.
direction < “inward”,
disp < dist(ap_mot.subj.centroid @ ap_mot.time_int.st.
ap_mot.subj.centroid @ ap_mot.time _int.ct)]

]
or
find ap_mot : OUTWARD where [
ap_mot.subj = self.subj,
ap_mot.time_int = self.time_int,
dist(ap_mot.subj.centroid @ ap_mot.time_int.st,
ap_mot.subj.centroid @ ap_mot.time_int.et) < 3
exception {TOO_MUCH_MOTION with seg < “apical”
direction « “outward”,
disp < dist(ap_mot.subj.centroid @ ap_mot.time_int.st,
ap_mot.subj.centroid @ ap_mot.time_int.e0) | ]
)
JE
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dependents
time_int : with time_int <— (dur of TIME_INTERVAL with
dur < default(0.093*(30/(0.8*HR))))
such that [
time_int.st = 0.24*(30/(0.8*HR)),
tim_int.et = 0.43*(30/(0.8*HR)),
time _int.dur = 0.08*(30/(0.8*HR)),
time_int.dur =< 0.12*(30/(0.8*HR))
exception [TOO_LONG_ISORELAX]
J5
similarity links
sim_linkl : ISCH_AP_ISOVOL_RELAX
for differences :
dl : TOO_MUCH_MOTION where [
seg = “apical”,
direction = “inwards”,
time_int = ap_mot.time_int];
d2 : TOO_MUCH_MOTION where [
seg = “anterior”
direction = “outwards”,
disp < 9,
time_int = ant_mot.time_int];
d3 : TOO_MUCH_MOTION where |
seg = “‘posterior”,
direction = “outwards”,
disp <9,
time_int = post_mot.time_int];;

sim_link2 : ISCH_ANT_ISOVOL_RELAX
for differences :

d1 : TOO_MUCH_MOTION where [
seg = “anterior’”,
direction = “inwards”,
time_int = ant_mot.time_int];

d2 : TOO_MUCH_MOTION where |
seg = “apical”,
direction = “outwards”,
disp < 9,
time_int = ap_mot.time_int];

d3 : TOO_MUCH_MOTION where |
seg = “posterior”,
direction = “outwards”,

disp < 9,

time_int = post_mot.time _int]:;

sim_link3 : ISCH_POST_ISOVOL_RELAX
for differences :
dl : TOO_MUCH_MOTION where [
seg = “posterior”,
direction = “inwards”,
time_int = post_mot.time_int];
d2: TOO_MUCH_MOTION where |
seg = “anterior”
direction = “outwards”,
disp < 9,
time _int = ant_mot.time_int];
d3 : TOO_MUCH_MOTION where |
seg = “apical”,
direction = “outwards”,
disp < 9,
time_int = ap_mot.time_int];;
end

The definition states that for a normal isovolumic relaxation
phase to be recognized, normal motions for each segment must
be present. There are three main clauses in the definition. The
first defines the expected normal motion of the anterior segment,
the second for the posterior segment, and the third for the
remaining segment, the apical one. So for example, in the first
clause, the definition reflects Gibson’s characterization: the

FiG. 6.

A typical image and ‘blind’ marker finding.

anterior segment during this phase must either not display any
translational movement, or could display an outward motion of
displacement of less than 3 mm. A larger displacement than this
in the outwards direction would be recorded as the exception
TOO _MUCH_ MOTION, with specific additional contextual
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information recorded as well. In the matching of class defini-
tions to actual observed motions, matching failures are recorded
as exceptions. If the anterior segment was displaying motion
and was not outwards, then it must be inwards, and this fact too
would be recorded as an exception. The dependent portion
specifies relevant timing information for the temporal place-
ment of the phase within the left ventricular cycle. HR is in units
of beats per second, so that the right-hand side of the timing
expressions is in units of number of images. Also, using the
information derived from Gibson et al. (1976), the similarity
links provide definitions of the constraints that must be found if
a possible ischemic segment is to be recognized. Note that only
the connections to possible ischemic states detectable by
considering only the characteristics of the isovolumic relaxation
phase are included above; a set of similarly formed constraints
would have to be present for other disease states as well, for
those cases where the isovolumic relaxation phase plays arole in
their definition. ‘sim_link2’ relates the normal phase to the

Guidance for marker finding from hypotheses.

motion of an abnormal apical segment exhibiting the effects of
ischemia. This, according to Gibson’s definition, is shown by
either the apical region itself having too much inward motion
during this phase, and (or) one of the other regions (posterior or
anterior) exhibiting too much outward motion during the phase.
Note that the set of differences does not define a necessary set;
any one of the conditions is sufficient.

If should be clear that the above is not complete: it requires
the remainder of the definitions for the other phases and
motions, since the entire definition of each class of LV motion is
defined as a hierarchy of abstraction, each level adding more
detail to the previous one. Some of the types of information that
are represented are: volume changes where known for normal
phases, ejection fractions, for example; measures of degrees of
abnormalities, derived heuristically; and others.

A second body of knowledge of the form necessary for
interpretation can be found in Fujii et al. (1979). These
researchers investigated eight different clinical cardiac disease
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states with the intent of discovering posterior-wall motion
differences and similarities among the diseases, as well as
global LV characteristics. The diseases were: pericarditis,
congestive cardiomyopathy, hypertrophic cardiomyopathy,
valvular aortic stenosis, aortic insufficiency, mitral stenosis,
mitral insufficiency, and systemic hypertension. Normal LV’s
were also studied. The measurements made for each of the
above LV states were: stroke volume, rapid filling volume, slow
filling volume, atrial filling volume, the percent filling for each
of the previous three phases with respect to the stroke volume,
posterior wall excursion in total, and for each of the three phases
of diastole, as well as the percentage excursion in each phase
diastolic posterior wall velocity, rapid filling rate, LV end
diastolic dimension, and ejection fraction. It is, of course,
difficult to verify their results. However, they are important for
they provide at least a starting point for the further elaboration
and verification of such detailed dynamic information. In
addition to the large amount of numerical information that they
derived, they attached to the significant findings qualitative
descriptors, such as whether or not this quantity should be
higher or lower than in the normal case. This was rather
fortunate from our point of view: the representational formalism
that we had designed can handle description via common
components and differences very well, and uses such informa-
tion to advantage during the decision phases of the interpreta-
tion. It should be clear from the previous example how such
information would be included into the representation, and this
fact alone raises another important advantage of this scheme.
The addition of information into a mathematical model may
require a complete re-definition of the model. In our case.
information is easily inserted, as long as one understands the
semantics of the representation.

5.0 An example

The initial evaluation is done on a cine contrast representa-
tion; each patient has a permanent volume correction factor for

Inward and outward motions of an LV cycle.

both diastole and systole that accounts for the shell of muscle
enclosed by the contour created by connecting the markers
(Alderman et al. 1976). Interpolation is used for variations in
this correction over time. Nine markers on the LV wall, and two
on the aortic valve edges constitute the LV outline from which
volume calculations are done, using an area—length formula that
was devised for this purpose. Figure 6 displays an actual image
with the stages of image analysis that lead to ‘blind’ marker
finding, that is, without any sort of guidance as to expected
marker location. The first stage involves filtering the image with
a Marr—Hildreth like operator (Hildreth 1980). Zero-crossings
with their standard definition, however, do not lead to useful
image tokens because of the nature of the X-ray images and their
low contrast. A specially tuned version of the Marr—Hildreth
operator was then used to extract the markers. This operator was
tuned such that the size and shape of the marker was reflected in
the center of the operator with the surround enveloping this
center. The results of this are then superimposed on the original
image, in order to highlight the markers. These two steps are
expanded in Fig. 6b and c.

Guidance, however, is an integral feature of the framework,
namely, during the hypothesization of motion classes, the
hypotheses themselves can be used to predict expected motion
characteristics for the markers, segment, and entire left ven-
tricle. Figure 7 then shows the kind of predictions that an
‘outwards’ motion hypothesis creates and the guidance it
provides. Note that for this example ‘outwards’ refers to
outwards motion of the marker with respect to the segment, not
to the ventricle. Clearly, for this case the marker is not found on
that path. The hypothesis structure is then modified to enclose a
larger space, corresponding to a relaxation of the constraints of
the hypotheses, until it is found. The same marker-finding
process described earlier is used, but only in the prediction
window. Four images are shown corresponding to the four
predictions generated until this marker is found. In addition to
the examination of a very small image subset for each marker,
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marker 5 exhibits:

TRANSLATING—time interval (0, 5)

rate (mm/s) — 60, 21, 33, 45, 51

trajectory (radians) — 4.71, 2.36, 0.46, 1.24, 2.18

specializations:
OUTWARDS wrt ANTERIOR during (0, 1)
INWARDS wrt ANTERIOR during (1, 2)
OUTWARDS wrt ANTERIOR during (2, 3)

TRANSLATING—time interval (6, 10)
rate (mm/s) — 15, 33, 42, 15
trajectory (radians) — 1.24, 4.19, 5.50, 1.24
specializations:
INWARDS wrt ANTERIOR during (6, 7)
OUTWARDS wrt ANTERIOR during (7, 9)

TRANSLATING—time interval (14, 15)
rate (mm/s) — 15
trajectory (radians) — 1.24
specializations:
INWARDS wrt ANTERIOR during (14, 15)

others

NO MOTION during (5, 6)

NO MOTION during (10, 14)

NO MOTION during (15, 16)

exceptions to normal detected :

MODERATELY HYPOKINETIC—CONTRACTION
wrt ANTERIOR during (1, 2)

ANTERIOR segment exhibits:
TRANSLATING—time interval (0, 1)
rate (mm/s) — 45
trajectory (radians) — 4.71
specializations:
INWARDS wrt VENTRICLE during (0, 1)

TRANSLATING—time interval (3, 8)
rate (mm/s) — 30, 15, 21, 15,15
trajectory (radians) — 1.24, 1.24, 2.36, 2.36, 4.71
specializations:
INWARDS wrt VENTRICLE during (3, 8)

TRANSLATING—time interval (9, 11)
rate (mm/s) — 15, 15
trajectory (radians) — 1.24, 1.24,
specializations:
OUTWARDS wrt VENTRICLE during (9, 11)

TRANSLATING—time interval (13, 16)
rate (mm/s) — 15, 15, 15, 1§
trajectory (radians) — 0.00. 3.14, 0.00, 0.00
specializations:
OUTWARDS wrt VENTRICLE during (14, 16)

VOLUME CHANGE—time interval (0, 16)
rate (ml/s) — —1.2, —66, 33, —48, —30, —12, =3, 27, 12,
—12, 21, 33, =6, —6,2.1, 39, 39
specializations:
CONTRACTING during (0, 1)
UNIFORMLY CONTRACTING during (0, 2)
SYSTOLE during (3. 6)
EXPANDING during (2, 3)
UNIFORMLY CONTRACTING during (3, 5)
CONTRACTING during (6. 7)
DIASTOLE during (7. 9)
CONTRACTING during (9, 10)
DIASTOLE during (10, 12)
CONTRACTING during (12, 14)
DIASTOLE during (14, 16)

PERIMETER CHANGE—time interval (0, 8)
rate (mm/s) — 45, —60, 30, —45, —45, —30, —30, 90
specializations:

LENGTHENING during (0, 1)

SHORTENING during (1, 2)

LENGTHENING during (2, 3)

SHORTENING during (3, 7)

LENGTHENING during (7, 8)

PERIMETER CHANGE—time interval (9, 10)
rate (mm/s) — —30
specializations:

SHORTENING during (9, 10)

PERIMETER CHANGE—time interval (13, 16)

rate (mm/s) — 30, —30, 45, 45

specializations:
LENGTHENING during (13, 14)
SHORTENING during (14, 15)
LENGTHENING during (15, 16)

others

NO TRANSLATION during (1, 3)

NO TRANSLATION during (8, 9)

NO PERIMETER CHANGE during (8, 9)

NO PERIMETER CHANGE during (10, 13)

NO TRANSLATION during (11, 13)

exceptions to normal detected:

SEVERELY HYPOKINETIC—CONTRACTION
wrt VENTRICLE during (2, 6)

TOO SHORT SYSTOLE during (7, 7)

MILDLY POOR SYSTOLE during (7, 7)

SEVERELY HYPOKINETIC—EXPANSION
wrt VENTRICLE during (8, 14)

APICAL segment exhibits:
TRANSLATING—time interval (1, 6)
rate (mm/s) — 33, 33, 60, 48, 33
trajectory (radians) — 2.08, 1.05, 1.24, 1.99, 2.08
specializations:

INWARDS wrt VENTRICLE during (1, 6)

TRANSLATING—time interval (7, 10)
rate (mm/s) — 60, 51, 15
trajectory (radians) — 4.71, 4.09. 3.14
specializations:
OUTWARDS wrt VENTRICLE during (7. 9)
INWARDS wrt VENTRICLE during (9. 10)

TRANSLATING—time interval (11, 14)
rate (mm/s) — 33, 15, 21
trajectory (radians) — 5.81, 4.71, 5.50
specializations:
OUTWARDS wrt VENTRICLE during (11, 14)

TRANSLATING—time interval (15, 16)
rate (mm/s) — 33, 33
trajectory (radians) — 5.81, 5.81
specializations:
OUTWARDS wrt VENTRICLE during (15. 16)

VOLUME CHANGE—time interval (0, 6)
rate (ml/s) = —12, =72, =24, —60, —42, —36
specializations:
CONTRACTING during (0, )
UNIFORMLY CONTRACTING during (0. 2)
SYSTOLE during (1, 6)
UNIFORMLY CONTRACTING during (3. 6)

Fi6. 9. ALVEN'’S descriptive output for the motions in Fig. 8.
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VOLUME CHANGE—time interval (7, 16)
rate (ml/s) — 54, 24, 15, 15, 48, 36, 9, —15, 45, 45
specializations:
DIASTOLE during (7, 14)
UNIFORMLY EXPANDING during (7, 8)
UNIFORMLY EXPANDING during (9, 13)
CONTRACTING during (14, 15)
DIASTOLE during (15, 16)

PERIMETER CHANGE—time interval (0, 6)
rate (mm/s) — 15, =75, —30, —60, —45, —45
specializations:
LENGTHENING during (0, 1)
SHORTENING during (1, 6)

PERIMETER CHANGE—time interval (7, 16)
rate (mm/s) — 15, 30, 30, 30, 60, 45, 15, 15, 15, 15
specializations:

LENGTHENING during (7, 13)

SHORTENING during (13, 14)

LENGTHENING during (14, 16)

others

NO TRANSLATION during (0, 1)

NO MOTION during (6, 7)

NO TRANSLATION during (10, 11)

NO TRANSLATION during (14, 15)

exceptions to normal detected:

SEVERELY HYPOKINETIC—EXPANSION
wrt VENTRICLE during (10, 11)

SEVERELY HYPOKINETIC-—EXPANSION
wrt VENTRICLE during (14, 15)

POSTERIOR segment exhibits:

TRANSLATING—time interval (0, 6)

rate (mm/s) — 15, 48, 33, 21, 33, 33

trajectory (radians) — 1.24, 0.95, 1.05, 0.77, 1.05, 1.05

specializations:
INWARDS wrt VENTRICLE during (0, 3)
OUTWARDS wrt VENTRICLE during (3,4)
INWARDS wrt VENTRICLE during (4, 6)

TRANSLATING—time interval (7, 16)

rate (mm/s) — 15, 30, 21, 48, 21, 21, 15, 15, 15, 15

trajectory (radians) — 4.71, 4.71, 3.92, 3.92, 3.92,
3.92,4.71,0.00, 3.14. 3.14

specializations:
OUTWARDS wrt VENTRICLE during (8, 14)
INWARDS wrt VENTRICLE during (14, 15)

VOLUME CHANGE—time interval (0, 6)
rate (ml/s) —» —33, =90, —15, =75, =96, —78
specializations:

SYSTOLE during (1, 6)

VOLUME CHANGE—time interval (7. 16)
rate (ml/s) — 5, 6, 27, 75, 111, 21. 15, 60, 21, 21
specializations:

DIASTOLE during (7, 16)

UNIFORMLY EXPANDING during (9, 12)

PERIMETER CHANGE—time interval (0, 2)
rate (mm/s) —» —45, —15
specializations:

SHORTENING during (0, 2)

PERIMETER CHANGE—time interval (3. 6)
rate (mm/s) — —30, ~90, —15
specializations:

SHORTENING during (3, 6)

PERIMETER CHANGE——time interval (7, 12)
rate (mm/s) — —45, =30, 30, 75. 75
specializations:
SHORTENING during (7, 9)
LENGTHENING during (9, 12)

PERIMETER CHANGE—time interval (13, 16)
rate (mm/s) — 15, 60, 15, 15
specializations:

LENGTHENING during (13, 16)

others

NO PERIMETER CHANGE during (2, 3)
NO MOTION during (6, 7)

NO PERIMETER CHANGE during (12, 13)

LEFT VENTRICLE exhibits:

TRANSLATING—time interval (0, 6)

rate (mm/s) — 15, 33, 15, 33, 1, 21

trajectory (radians) — 4.71, 1.05, 1.24, 1.05, 1.24, 2.36

TRANSLATING—time interval (7, 15)

rate (mm/s) — 15, 15, 15, 15, 15, 15, 15, 15

trajectory (radians) — 4.71, 4.71, 4.71, 3.14, 4.71, 3.14,
0.00, 4.71

VOLUME CHANGE—time interval (0, 16)

rate (ml/s) - —57, =216, =75, —168, —186, —138, 2, 120, 57, 54,
120, 162, 90, 27, 45, 90, 90

specializations:
UNIFORMLY CONTRACTING during (0, 1)
SYSTOLE during (1, 6)
UNIFORMLY CONTRACTING during (2, 6)
UNIFORMLY EXPANDING during (7, 11)
DIASTOLE during (7, 16)
UNIFORMLY EXPANDING during (12, 14)
UNIFORMLY EXPANDING during (15, 16)

PERIMETER CHANGE—time interval (0, 6)
rate (mm/s) — 15, —150, 15, —165, —165, —105
specializations:

LENGTHENING during (0, 1)

SHORTENING during (1, 2)

LENGTHENING during (2, 3)

SHORTENING during (3, 6)

PERIMETER CHANGE—time interval (7, 8)
rate (mm/s) — 90
specializations:

LENGTHENING during (7, 8)

PERIMETER CHANGE—time interval (9, 16)
rate (mm/s) — 30, 75, 150, 60, 15, 60, 60, 60
specializations:

LENGTHENING during (9. 16)

WIDTH CHANGE—time interval (0, 16)
rate (mm/s) — —15, —15, =60, —15, —60, —60, —60, ~60, —60. 60. 75.
45,45,45,45, —15, —15

LENGTH CHANGE—time interval (0, 16)
rate (mm/s) — 30, —45, —15, —60, —60, —30, —30, 45, 15, 15, 15,
45,45, 45, 45, 45, 45

others

ISOMETRIC CONTRACTION during (0, 1)
NO TRANSLATION during (6, 7)

NO PERIMETER CHANGE during (6, 7)
NO PERIMETER CHANGE during (8, 9)

NO TRANSLATION during (15, 16)

exceptions to normal detected :

MILDLY DYSKINETIC-—CONTRACTION during (3, 4)
ISCHEMIC ANTERIOR ISOMETRIC RELAXATION during (6, 7)
SEVERELY POOR SYSTOLE during (7. 7)

MODERATELY DYSKINETIC-—EXPANSION during (9. 15)

FiG. 9.

(Concluded).
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this process of prediction-verification also provides important
feedback for other levels of the system. This marker-finding
process is guaranteed to always find a marker because the
default process is the ‘blind’ one referred to above. Figure 8
shows the sequence of marker motions for a complete cycle (a
different cycle than the one from which the preceding images
were taken.)

ALVEN is capable of reporting on LV performance at
marker, segment, and global LV levels of detail. Relative
directions, motion extents, rates of change, and temporal
relationships are described both numerically and symbolically.
Anomalies are detected by using the appropriate heuristic or by
comparisons to accepted normal performance. Anomalies such
as asynchrony, hypokinesis, dyskinesis, too slow or too fast rate
of change of volume with respect to the LV phase, too long or
too short phase duration, or degree of anomaly are considered.

An example of marker motions is shown in Fig. 8 a and b, for
a patient from the Cardiovascular Unit at Toronto General
Hospital. Figure 8a shows the contraction phase, while Fig. 86
shows the expansion phase. This particular example was
assessed by the radiologists with respect to motion anomalies:
the radiologist reported that the anterior segment was hypo-
kinetic, and the remaining segments exhibited normal motion.
A portion of the output of the ALVEN system for this particular
film (taken at 30 images per second, 17 images in all) is shown
in Fig. 9. Let us highlight some of the important points of this
analysis. Firstly, a short summary of how to read the example is
necessary. For each physical entity that the system knows
about, which is in this case the markers, the segments, and the
LV as a whole, a short summary of the motions observed is
produced. This has been abbreviated because of space limita-
tions in the following way: descriptions for the aortic clips were
deleted, as were the descriptions for all of the markers save for
marker 5. The remaining motions would have a form similar to
those for the other markers. Each motion has a descriptive term,
a possible referent where necessary (for example, ‘INWARD’
motion is not semantically complete without saying inwards
with respect to some other object that has an inside, usually
defined by the geometric centroid), quantitative values where
appropriate (clearly a calibration phase is necessary), and a time
interval or instant at which it was recognized. Time is noted in
image units. The range of descriptive terms that ALVEN can
understand is apparent from the example. Descriptions are
shown for only one marker (5), and for each segment, and for
the left ventricle. The motion of marker S is of particular interest
for this example.

Secondly, the example of the knowledge for isovolumic
relaxation given earlier is relevant here. The motions exhibited
by the anterior segment (that is, there is a small inward motion
during that phase, as shown by the description at time interval
(6, 7), because of an inward motion of marker 5 during that
interval, and further evidenced by the volume contraction noted
in the segment description), cause that chunk of knowledge to
be activated and verified. The result is the descriptive term
‘ISCHEMIC ANTERIOR ISOVOLUMIC RELAXATION’,
which can be found in the description of the motions of the left
ventricle. In addition, it will usually be true that if one segment
is not performing up to par (notice the number of HYPO-
KINESIS instances detected—the great majority are present for
the anterior segment thus confirming the radiologist’s report),
then the overall performance of the ventricle must be impaired
as well. This can be seen by the instances of ‘POOR SYSTOLE’
that appear. These are confirmed independently using volume
change information.

Fic. 10. ALVEN?’S graphic display of the evaluation in Fig. 9.

Some other interesting descriptive terms are briefly des-
cribed. UNIFORM CONTRACT/EXPAND—for this to be
detected, the object considered must have a decreasing volume,
and all of its markers/segments (depending on the level of
description) must be moving in the proper direction. So for a
uniform contraction at the LV level, the three segments must all
be moving inwards and the overall volume of the LV must be
decreasing. HYPOKINESIS—can only be noted if all markers/
segments are moving in the same direction, and a comparison of
their relative motions reveals one that is lagging behind. Note
that the use of the term hypokinesis does not make sense if all
markers are not moving in the same direction, since this is a term
describing anomalies of motion extent. If they are all moving
too slowly, then no anomaly is detected at the marker level, but
it is detected at the segment level. If in turn, all segments are
exhibiting small motion extents, no hypokinesis is noted at all,
however, serious performance problems will be noted, because
the volume changes will be lower than normal. The detection of
hypokinesis is purely relational. Note, however, that it is not
necessarily so. The data in Fujii ez al. (1979) do provide some
quantitative information on normal and abnormal extents for the
posterior segment; these will be incorporated into the repre-
sentation. However, the relational approach is a valid one when
one is lacking information.

No constraints are currently in place for length changes, i.e.,
normal or abnormal circumferential shortening, although exam-
ples are shown of how such changes are detected.

It should be apparent that the amount of information reported
is large, and that this is not a desirable characteristic for a
medical consultation system. Therefore, a simple, graphic
display has been devised that captures much of the important
information required for appropriate analysis. This display is
presented in Fig. 10. A brief explanation is in order. Imagine
that the ventricle is opened up along the circumference and laid
flat along the vertical axis with the right side of the aorta on the
bottom, the apex in the middle, and the left side of the aorta at
the top. Time is the horizontal axis. For each time interval
(image pair of the film), and for each segment, a summary is
displayed in terms of whether or not the segment was moving
inwards (blue), outwards (red), or was not moving (white).
Remember that these are motions relative to the ventricular
centroid. The yellow dotting represents hypokinesis, with the
more densely concentrated dots representing increasing levels
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of severity. The black lines traversing the plot horizontally are
the marker paths in time, useful for viewing circumferential
shortening effects. Finally, percent shortening for each marker
with respect to the ventricular centroid are provided on the right
side, along with ejection fraction. This display is particularly
clear in revealing temporal relationships of a variety of types.

If these evaluations are compared with those of the radiolo-
gist, it can be seen that there is infinitely more detail present in
ALVEN’s evaluation, yet it is completely consistent with the
radiologist’s opinion. This has also been borne out in several
other examples. Moreover, this analysis is repeatable and
objective. Although there is much knowledge refinement
required before ALVEN’s knowledge base is as competent in
general as a good radiologist/cardiologist, the value of the
enhanced evaluation is clear.

6.0 Discussion

The knowledge organization dimensions of generalization/
spectialization (IS-A), aggregation/decomposition (PART-OF),
mutual exclusion (SIMILARITY), and Temporal Precedence
have all appeared previously in the representational literature,
with the first two receiving the lion’s share of attention (see
Brachman 1979, 1982; Levesque and Mylopoulos 1979). The
arguments for their use have been mostly qualitative, that is,
these dimensions seem to have desirable formal properties and
lend themselves naturally to the construction of large know-
ledge bases. In this work, we have shown that not only are these
aspects important, but also that each representational dimension
has a distinct role to play in an interpretation scheme. In fact,
they each have two important roles. One role is that of enabling
multiple, interacting search mechanisms. This function should
not be underestimated. Rule-based recognition paradigms, for
example, only offer a single dimension of search. As pointed
out in Aiello (1983), such systems suffer from serious problems
owing to the one-dimensionality of the inference procedure.
The conclusion that we draw from this report is that goal-
directed, data-directed, and model-directed inference mecha-
nisms most effectively can compensate for the deficiencies of
each other if used in concert. For example, a data-directed
scheme considers all the data and tries to follow through on
every event generated. It can be non-convergent, can only
produce conclusions that are derivable directly or indirectly
from the input data, and cannot focus or direct the search toward
a desired solution. The goal-directed strategy is easy to
understand and implement, and at each step of the execution the
next step is pre-determined. Rules are evaluated in the same
order regardless of input data. It is thus inefficient and cannot
exhibit a focus with respect to the problem being solved since
there is no mechanism that determines what is important and
what is not. Finally, the model-directed approach, although the
most efficient and the one that exhibits correct foci of problem-
solving activity, has the disadvantage that its conclusions
depend heavily on the availability of the correct model and
initial focus. An incorrect initial focus will lead it to the
examination of useless and incorrect analyses and will cause
some perhaps relevant data to be ignored.

In our scheme, several dimensions of inference are included,
each driven by the semantics of one of the organizational
dimensions. They are integrated with one another so that each
dimension of search compensates for the failings of another, and
thus as a whole offers a rich and robust framework.

Further, each organization dimension offers distinct and
necessary contributions to the updating of hypothesis certainty
within a relaxation framework, and to the maintenance of

consistency within an interpretation. Not only have the know-
ledge organization dimensions been integrated within a relax-
ation labelling process, driving the definitions of neighbour-
hood, compatibilities, weights, and consistency in an intuitive
yet concrete fashion, but also the following results on the
relaxation process have emerged:

® IS-A, besides offering a definition of global consistency of
hypothesis’ certainty, plays the role of speeding up the
convergence of results. This is an important role, since it allows
smaller temporal sampling rates. Because of inheritance, the
problem posed by the propagation of results through the
network disappears. IS-A also has an important part in the
graceful recovery from poor predictions. Finally, feedback
imposed by the IS-A hierarchy increases the stability of the
cooperative process and partly compensates for the effects of
noise disturbances and parameter variations, important con-
siderations for the non-linear relaxation scheme.

¢ SIMILARITY plays the discrimination role, and is the
only mechanism that allows for competition between hypo-
theses, enabling ‘best choice’ selection. In conjunction with the
exceptions that drive SIMILARITY activations, this is a strong
feedback mechanism, enhancing the stability of the cooperative
process. Moreover, it is central to the definition of temporal
sampling rate and of compatibility values.

® PART-OF is the mechanism that permits the selection of
the stronger of two equally consistent hypotheses based on the
strength of their components.

® Temporal Precedence assists in the discrimination of
proper temporal order, important for temporal predictions, and
temporal ‘gluing’ of events into higher order ones.

Such strong evidence for the use of knowledge organization
axes, besides for knowledge access, during interpretation has
been lacking in past works, and supports our claim that
knowledge organization has far more to offer than has pre-
viously been evident.

7.0 Conclusions

A methodology has been presented foi the knowledge-based
interpretation of continuous time-varying signals. The key idea
is that knowledge organization dimensions play several major
roles beyond their access and structuring properties. We have
shown that significant advantages result in both sophistication
of the reasoning process for spatio-temporal data as well as in
the formalization of a certainty-updating process rooted in
relaxation processes. An example of the practical implementa-
tion of this methodology was shown with the examples of
ALVEN’s knowledge base and analysis. ALVEN is currently
implemented on a VAX 11/780 running Berkeley UNIX 4.2 in
the C language. The example shown above requires about 30
min. of CPU time, including the generation of the displays.
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