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given item is the desired target. In the face of some variable
amount of internal noise, each subject sets a termination thresh-
old based on a desire to respond quickly and yet miss few target
items.

None of these problems could be said to represent a “fatal
flaw” in Tsotsos’s work. Rather, each represents an area for
possible revision of his current model. We find it encouraging
that overall, Tsotsos’s model, driven by complexity theory,
already bears considerable resemblance to our data-driven
guided search model.
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Tsotsos argues that “an attentional scheme has as its main goal
the selection of certain aspects of the input stimulus while
causing the effects of other aspects of the stimulus to be mini-
mized.” Moran and Desimone (1985) empirically discovered
that “the very structure of the receptive field, recently consid-
ered to be a fixed property of the neuron, can change from
moment to moment in the behaving monkey depending on the
immediate task and state of attention.” The process of focusing
attention is thus connected to dynamic variation in receptive
ficld properties, a scemingly novel connection. Butis this truly a
novel phenomenon, and, if so, how might the mechanism be
understood? We submit that analogous phenomena exist in a
more primitive form as adaptation, and that the roots of atten-
tion can be illuminated by cxploring the analogy with
adaptation.

Adaptation exists in two forms: (1) intensity adaptation, by
which the central excitatory region of a circular-surround (reti-
nal ganglion) receptive ficld expands or contracts at the expense
of the inhibitory surround as a function of photon intensity
(Barlow et al. 1957); and (2) the effective operating range of cells
in the visual cortex varies as a function of contrast (Sclar ct al.
1989). That is, both (1) receptive field structure and (2) activity
levels can vary as a function of stimulus properties. In this case
the stimulus properties are physically based, and functionally
they extend the sensitivity of the visual system to a broader
range of operating environments.

The analogy between adaptation and attention arises as fol-
lows. Visual cortical neurons respond to contrast-encoded stim-
ulus features, and exhibit a sigmoidal operating characteristic
(plot of firing rate versus contrast). If all contrasts were in the
saturated range then no structure would be visible. Adaptation
is a primitive mechanism for preventing this, that is, for adjust-
ing the operating range so that orientation (say) structure is
detectable (pops out?) from the background. Analogously, at-
tention is a mechanism for adjusting the feature context so that
more complex structures are detectable from the background
feature clutter. The increased responses to attended stimuli
(Desimone et al., in press) would imply that the visual system
has “adapted to” the unattended stimuli.

Although the analogy between adaptation and attention pro-
vides perspective, much remains before biologically plausible
mechanisms can be specified. Adaptation is largely a bottom-up
process, whereas attention may well be a myriad of processes
many of which are top-down. Nevertheless, Tsotsos argues for a
model of attention as an inhibitory process within a pyramidal
beam, extending from large abstract receptive fields to tiny,
low-level ones. A key reason for this is the positional accuracy to
which attentional effects can be measured. It is almost as if the
attended stimuli are deseribed within a finer coordinate system
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than the unattended ones. This accuracy may well reside in the
visual descriptions being selected, however, and not in the
details of the attentional beam. There is no evidence that
abstract descriptions or their features are continuously dis-
tributed over the retinotopic array, with the attentional “beam”
highlighting a well-delimited retinotopic subfield. In contrast,
one might speculate that visual inferences are carried out by
multistage processes, with feedforward and feedback loops
between them. The initial stages could be coarse, local ones,
and the latter stages precise, global ones. Attention could act as
a gate between the early and later stages, effectively adapting
away the unattended stimuli. There would then be no need to
postulate a “beam” running through a pyramid of receptive

fields.
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1. Introduction

Commentators misunderstood several points in the tar-
get article. T will deal with these before addressing the
many important and substantive issues raised in the com-
mentaries.

[ did not claim that computational complexity is “the
key” to vision, as Dickinson states, only that it is an
important and heretofore neglected dimension of study.
This is explicit throughout the introductory section of the
paper. Complexity analysis can reveal insights that no
other method of analysis can, but it cannot even begin to
address certain other equally important issues. Dickin-
son’s commentary was dedicated to countering a view
that was not expressed in the target article.

Siegel mistakenly believes that complexity theory is a
top-down approach to vision. Marr (1982) describes the
use of Laplacian operators; would Siegel consider La-
place’s equation a bottom-up approach to vision? I hope
not. Both complexity theory and Laplacian functions are
tools. Complexity theory led me to develop a theory that
has a significant top-down component; complexity pro-
vides its mathematical foundation. Strong likewise makes
this unusual connection between tool and model, claim-
ing that complexity theory as currently conceived is not
adequate for modeling biological information processes
even though in his own work he develops computational
models of biological information processing. Complexity
theory is one of the theoretical underpinnings of com-
putation. Complexity theory does not model; it is a tool
that provides a source of constraints for a model.

Heathcote & Mewhort provide an algorithm for un-
bounded visual search that they claim solves mv only
example in polvnomial time. I did not give such an



example in the paper, however. The example in section
2.2 was provided as part of the general discussion of visual
match to illustrate the definition; it preceded the formal
definition of unbounded visual search. That definition
does not include the target pattern and although Heath-
cote & Mewhort are not specific, I assume that their
algorithm requires the target. Kube also makes this
mistake (his third point). The target is not specified in the
unbounded problem; the values of the functions are given
only as mappings. Heathcote & Mewhort distinguish
between matching and search incorrectly; as described in
section 2.2, the former is a subproblem of the latter, and
thus its difficulty must be included within the difficulty of
the latter. If unbounded visual matching is NP-Com-
plete, as Heathcote & Mewhort seem to agree, then
unbounded visual search is necessarily NP-Complete,
too.

A major component of the representations I use is the
hierarchy - the simple variety that everyone under-
stands. I did not claim that the simple hierarchy is the
“best” mechanism for beating complexity (Strong). The
argument was for sufficiency only, as clearly stated in
section 3.1. Perhaps intrinsic parallelism (Holland 1975)
is indeed more efficient. Although the simple hierarchy is
logarithmically time-bounded, Holland’s scheme is expo-
nential in the worst case. The worst case would be when
the search creates the subset that contains the answer
only after all other possible subsets have been examined.
As Uhr points out, the logarithmic convergence in my
model may be the best attack on the complexity problem;
it is also biologically plausible.

Krueger & Tsay claim that [ have misplaced the
complexity and that the truly complex processes may be
at the decisional level, vet they do not indicate whether or
not they believe that the lower-level processes 1 have
considered are tractable. I therefore assume that al-

cated, they believe that decisional ones are even more so.
This may be so, but it is not obvious that perceptual
processes, such as those in visual search, which require
specific choices between response actions, require no
decisional process.

Krueger & Tsay also note that I have not considered
how “smart nonoccupational perceptual mechanisms”
could eliminate complexity altogether and thus obviate
my analysis. I cannot seriously entertain this suggestion. I
have great difficulty in determining what “noncomputa-
tional” means in this context. The polar planimeter is not
“noncomputational,” and Runeson (1977) does not label it
so in his paper. Moreover, he notes that he is only
proposing an analogy, lest anyone mistakenly infer any
closer ties between the planimeter and the brain. The
polar planimeter is indeed computational because there
is a precise mechanistic algorithm for using it with well-
defined input and output. It would be easy to simulate its
operation with a computer program. Digital computers
are only one manifestation of a device that computes; one
must not equate computation with computers alone.

Krueger & Tsay argue that a really smart process
would use only one measure for matching, either same-
ness or difference, not both, as I propose. They seem to
have misunderstood the correlation measure, which is
not just a measure of sameness but ensures the max-
imality of the match. A single correctly matching pixel
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would pass a sameness or difference test, but not the two
tests together as [ have set them up. In addition, lightness
and darkness have nothing to do with the validity of the
computation. The formalism is capable of dealing with
any type of physical measurement of a visual stimulus.

Krueger & Tsay go on to point out that vision may
operate in “all kinds of undreamed of ways.” Siegel also
makes the “what if things aren’t like this?” argument.
This kind of criticism is easily leveled at any theory when
the critics have no empirical counter evidence and offer
no viable alternative theory. Is it really that complex?
Siegel asks. After all, there aren’t any green elephants.
Have you never watched cartoons nor enjoyed abstract
art? Siegel describes his view as contradicting mine, yet
[ agree completely that “the beauty of the brain is
that . . . it can solve really tough problems.” I am sim-
ply proposing a way of determining how tough the prob-
lems are and how they may be solved. More to the point,
it is the very toughness of the problem that may force the
brain to use the kinds of solutions I propose.

Both Cave and Strong claim that I have defined feature
maps that operate independently. In section 2.4, I state
that “types are not necessarily independent.” A map
represents one type of visual parameter; maps are phys-
ically independent, but the types of parameters they
represent are not necessarily so. Many physical visual
maps have now been documented, and within each a
variety of visual parameters seem to be represented, not
all independent of each other (Maunsell & Newsome
1987).

Cave concludes his commentary by claiming that my
model is not a serious one unless more detail of operation
is provided. T had stated explicitly, however, that [ would
not address the operational level in this paper. All {
intended was to provide a source of constraints and
hypotheses.

Uhr points out what he calls a minor quibble — that the
complexity is really O(VY). This is the correct order for the
number of distinct images, not the number of data group-
ings. My analysis does not include the number of possible
values of each type of visual information. This is of course
an important issue, but the O(2'!') stands, for the purpose
of my analysis.

Strong claims that my account requires one to assume
that the entire image is in the head during processing and
that this is a bad assumption. “Don’t carry anything you
can readily find later,” he says. First of all, in the typical
visual search experiment, there is no time to wait until
later — the trial is over in a few hundred milliseconds.
Second, how do you know what to discard and what to
carry if you have not analyzed, at least to some degree, in
the first place? Strong goes on to argue that this bad
assumption leads to performance that does not agree with
human data. He provides a figure as an example and
claims that any human would see a perfectly good match
to the target I define in Figure 1 of the target article. This
is highly unusual because I certainly cannot see my
target, an open black rectangle, in his figure!

Heathcote & Mewhort write that I cannot use Treis-
man'’s data for comparison with my results because I use
pixelsand Treisman uses display items. In the early parts of
the paper, [ may have been unclear with this comparison;
however, the relationship becomesexplicitand clearin the
description of the variables for Equation 23.
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2. On computational modeling and visual science

Several commentators point out the impossibility of ex-
plaining biological phenomena with computational mod-
els. This argument has been made since the early days of
artificial intelligence. Many have claimed that there is
something special about implementations that are brain-
like. This objection comes from at least two sources: those
who follow Searle (1990} and those who work on neural
networks. In the former case, the argument is rather
nonspecific; in the latter case, it seems misguided. As
Uhr points out, massive parallelism leads to greater
speed and the ability to conceive radically different archi-
tectures than if one considers only von Neumann archi-
tectures. Most neural network research, however, is
implemented on serial machines! Does this cause a prob-
lem? No, neural networks are Turing-equivalent, again as
Uhr points out, and they are subject to the same results
about computational complexity and computational theo-
ry as any other implementation. (See section 1.3 of the
target article about the Church-Turing thesis.) It is
important to note that relaxation processes are specific
solutions to search problems in large parameter spaces
and nothing more. Neural networks use variations of
general search procedures called optimization tech-
niques. If relaxation {or other optimization processes) is
indeed the process by which real neurons perform some
of their computation as Siegel suggests, it is subject to
precisely the same considerations of computational com-
plexity as any other search scheme.

Uttal points out that my particular theory cannot be an
explanation of biological behavior and that it would at best
be an analogy. Is there any other type of explanation? In
physics, cosmology, or chemistry explanations and theo-
ries are put forward and the only requirement for their
validity is that they account for the experimental observa-
tions. Would a cosmologist be required to create a uni-
verse in order for his theories to be taken seriously? Or a
biologist, life? A theory that accounts for more observa-
tions than another is a better theory. Theories whose
predictions are falsified are modified or rejected. In
addition, computation itself plays a large role in modern
theory construction even in the above disciplines. Com-
puter simulation in particular has been a very powerful
tool in the physical sciences. Yet, no cosmologist would
claim that he is creating a universe and no one would
criticize him for not doing so.

Is simulation of information processing particularly
menacing for some reason? Or is it that in Al we have
concentrated too much on toy examples and have not
developed falsifiable theories and a solid experimental
tradition, as in other disciplines? It is hard to say. The
work presented in the target article, however, is intended
to be one dimension of a framework for developing a
general theory of biological and artificial perception. I
have considered the dimension of computational com-
plexity only, but other dimensions must also play a role,
as many commentators have correctly noted. I have
developed constraints that apply to all theories of percep-
tion and have tried to show one possible path of develop-
ment that would satisty those constraints.

Eklundh wonders whether the sort of analysis I pro-
pose can yield precise predictions or only provides con-
straints on the model space. He is right to ask. Complex-
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ity level analysis only yields constraints, as I point out in
the target article. My analysis is followed by one possible
model conforming to those constraints. Competing mod-
els are encouraged; such models do lead to precise
predictions.

The target article was guided by observations in psy-
chology, neurophysiology, and neurcanatomy. The life-
time of my results will be determined by experimental
confirmation or refutation from those disciplines and by
their usefulness in designing machine-based perceptual
systems. Many predictions were made in the target
article, most of which no commentator criticized. Most of
the predictions conform very closely to known findings in
biology. I am pleased to see that such investigators as
Desimone, Cave, Wolfe, and Treisman find such a close
resemblance between my suggestions and their own.
That was the whole point! A large interdisciplinary set of
observations was tied together using the thread of com-
plexity analysis.

3. Visual search within vision

It is suggested by Lowe that 1 have not shown the
importance of visual search for vision in general. Indeed,
I only state that visual search may be a very basic problem
that is found in most other types of visual information
processing. Elaboration is in order. Basic bounded visual
search task seems to be precisely what any model-based
computer vision system has as its goal: Given a target or
set of targets (models), is there an instance of a target in
the test display? Lowe's own work certainly falls into this
category (Lowe 1987). Even basic visual operations, such
as edge-finding, are also in this category: Given an edge-
detection model {e.g. Ballard & Brown 1982), is there an
instance of this edge in the test image? It is difficult to
imagine any vision system that does not involve similar
operations. My remark about the ubiquity of search in
vision therefore seems to have merit. The point has not
been rigorously proved, of course, but it is clear that
these types of operations appear from the earliest levels of
vision systems to the highest.

4. Complexity is even more complicated

Strong wonders about the relationship between the two
Knapsack problems I present, one as an example in
section 1.3 and one with a formal definition in section 2.3.
The complexity literature indicates that the same prob-
lem can be formulated in various ways. Different in-
stances will share certain basic features. So it is with the
Knapsack problem. Many different statements of it are
given in Garey & Johnson (1976). The example in section
1.3 was found in Rosenkrantz & Stearns (1983) as an easily
understood example for a noncomputational readership.
The intractability claim that Kube disputes came from
that article. As defined, the statement is true; more on
this later.

Kube proposes that the theorems I present concerning
the intractability of unbounded visual search do not hold;
he provides conditions under which Theorem 1 does not
hold, noting that the Knapsack problem is not NP-Com-
plete in the “strong sense.” He is right; however, he goes
on to say that unbounded visual search is consequently



not NP-Complete either. This is simply wrong. The
problem is still NP-Complete and has exponential time
complexity as defined, that is, with no a priori assump-
tions or bounds. My proof for unbounded visual search
has been duplicated twice so far, each proof with slightly
differing problem formulations (by Bart Selman, 1989, in
our own department and by Ron Rensink at the Univer-
sity of British Columbia, personal communication, 1989).

Let us examine this a bit further. First, some defini-
tions must be presented. Define two functions over the
nonzero integers, Length and Max. The former is a
function that maps any instance I of a problem to an
integer corresponding to the number of symbols used to
describe the instance under some reasonable encoding
scheme for all instances. The latter maps an instance to an
integer corresponding to the magnitude of the largest
number in the instance. An NP-Completeness result
does not necessarily rule out the possibility of solving a
problem with a “pseudopolynomial” time algorithm. This
is true only for “number problems,” such as Knapsack. A
problem is a number problem if there exists no poly-
nomial p such that Max[I] = p(Length{l]) for all L
According to Kube, [ assume that the magnitude of image
values must increase exponentially with retinal size. I
make no such assumption. Moreover, by definition, the
relationship cannot be polynomial. Kube’s comment does
not fit the definitions. An algorithim that solves a problemn
is a pseudopolynomial-time algorithm ifits time complex-

ity tunction is bounded above by a polynomial tunction of

the two variables Length(I] and Max[T]. Kube points out

that Knapsack has a known polynomial-time algorithm if

an assumption can be made about the magnitude of the
numbers; but this is not the same as the problem being
inherently polynomial. If it were, it would have proved
that all NP-Complete problems have polynomial solu-
tions, disproving the conjecture on which the entire
theory of NP-Completeness depends. It turns out that
this is a common mistake, but to show why one must
determine the complexity function for the proposed solu-
tion and the length of an instance of unbounded visual
search.

The polynomial-time solution to which Kube refers is
presented by Dantzig (1957) based on a method first
proposed by Bellman (1954). Lawler (1976) provides a
different algorithm for Knapsack also based on Bellman’s
equations. Bellman motivates his solution by pointing out
that practical experience with the problems is put to use.
I wished to conduct an analysis that did not depend on
such experience. After all, there was no experience to
draw on before our visual systems had evolved. Dantzig
carefully notes that although algorithms for approximate
solutions also exist using techniques of linear program-
ming, the solution by Bellman is intended for the deriva-
tion of exact solutions. As such, it is recommended when
there are only a few items in the knapsack and only one
kind of limitation. Moreover, Bellman says that because
of the nonlinear functional relationships inherent in his
equations, only special cases of them can be solved and,
even then, solutions will not necessarily be unique. The
algorithm, which relies on dynamic programming, seems
to require O(8-{I]) operations where 8 corresponds to one
of the thresholds of the unbounded visual search problem
defined in section 2.3, and |I! is the number of elements in
the test image set. To encode an instance of unbounded
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visual search O(I]-log,Max[1]) bits are needed. The
number of operations, O(8+|1|) is not bounded by any
polynomial function of |I|-log,Max[I] and thus the general
problem does not have a polynomial-time algorithm. ! It is
still NP-Complete. The NP-Completeness depends on
large inputs.

What sizes of numbers are present in unbounded visual
search? This problem has three kinds of numbers: the
values of the test image, and the values of the diff and corr
functions. The human eye can discriminate over a lumi-
nance span of about 10 billion to 1 (Dowling 1987). Thus,
image values should have this as a range; similarly, the
diff function has this range while the corr function has a
range of 1 to 10? billion because it is a product of two
image values. Thus Max{I] is at least 1029, The retina has
about 130 million photoreceptors. To binary encode one
instance of unbounded visual search for humans would
require O([log,1029]-1.3-108-3) bits or more than 20 mil-
lion bits! This is certainly too large to be biologically
plausible. According to the definition given earlier, an
algorithm is pseudopolynomial if it has a time-complexity
function bounded from above by a polynomial function of
Length[I] and Max([I]. Using the estimates for Max and
Length derived here, such a time-complexity function is
of little help. This in fact exhibits a property of number
problems that are NP-Complete yet have a pseudopoly-
nomial-time solution: They display exponential behavior
with large input numbers.

There is an additional problem with the pseudopolyno-
mial time algorithm for Knapsack. That solution, together
with all solutions based on Bellman's initial formulation?®
use the following clever observation: If we wish to solve a
problem of size N, first determine the solution to same
problem but of size N-1; the cost of determining the
solution to the original problem then becomes easy be-
cause the decisions that must be made are only for the
additional element. This line of reasoning can be ex-
tended from problems of size N all the way down to size 1.
With this technique the number of operations becomes
very small. Such solutions are known as recursive; each
decision depends on decisions made for the problem of
the next size down. This recursiveness poses a serious
problem for biological plausibility. Bellman’s functions
are nonlinear; the algorithm that uses them involves two
nested if-then-else conditions to decide which functions
are used for each step based on the magnitude of the
values determined in the previous step. Even though the
solution may require polynomial rather than exponential
time, it does not appear to be parallelizable because of the
strong dependence of each step in the solution on the
previous step.> In a retina size problem this solution may
necessarily require 130 million sequential steps.

Lowe, Krueger & Tsay, Uttal, and Wolfe all describe
the importance of noise and probabilities in vision. I
agree that research must pursue these considerations.
Probabilistic complexity is not quite so well understood,
however. Lowe and Uhr question the use of worst-case
complexity. I first point out that worst case does indeed
occur in practice. In any problem of fixed length, not
necessarily large, it is quite possible that a search method
will find a solution only after all other possible solutions
have been tried. That is just as much a worst-case scenario
as is the largest possible problem. Perceptual algorithms
must be time-bounded to be useful to a perceiving sys-
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tem. Worst-case complexity can provide this bound.
Worst-case analysis can tell us about all instances of the
problem; average-case analysis can only tell us about the
average case; it is unclear what the average case could be
for vision. Average-case and probabilistic analyses should
also be attempted once the techniques are developed and
we get a good enough idea of what the average visual
input could be.

5. Complexity equations and the data

Several comments were made about the algorithm and
explanation for visual search. Four experimental sce-
narios are addressed by the algorithm in section 5:

Type I: The target is the only item in the display to
exhibit a specific feature; the target is known in advance.

Type 1I: The target is the only item in the display to
exhibit a specific feature; the target is not known in
advance.

Type II1: The target is the only item in the display to
exhibit a specific feature combination (two or more fea-
tures); the target is known in advance.

Type IV: The target is the only item in the display to

exhibit a specific feature combination (two or more fea-
tures); the target is not known in advance.
Type [ is the usual version of disjunctive search found in
the literature; similarly, Type I is the usual version of
conjunctive search. The target article is a bit vague about
odd-man-out searches (Wolfe is justified in his criticism).
In my defense, [ have not seen too many experiments
with Type 11 or 1V conditions, Treisman and Sato (1990)
being the only example. To help clarify the conclusions of
the algorithm for visual search, I will give the time-
complexity function for each of these conditions and
comment on the relationship to the experimental data,
where possible.

Type I: Response Time varies as [T|-®(M)/2

Type II: Response Time varies as |R|[T]-(2%¢) — 1)

Type III: Response Time varies as |R, || T|-®(M)/2

Type IV: Response Time varies as [RJ|T|-(2%0 — 1)
where |R,| stands for the total number of items in the
display and |R | represents the number of candidates left
for matching after inhibitory tuning is applied. The other
variables are as defined in the target article. In each case,
the target may be present or absent in the test displays.
Two targets rather than one would lead to a doubling of
time to compute the visual response. Quinlan & Hum-
phreys (1987) report similar effects. The story is not quite
so neat, however. In section 5.2.6 1 point out that the
selection of candidates for matching may depend on their
relative response strength. In other words, the ordering
of candidates may be in descending order of response.
Section 4.5 points out that inhibitory tuning based on the
characteristics of the target leads to computational sav-
ings as well as larger responses and that the inhibition
should be applied using a Gaussian weighting function
over the feature dimension of interest, applying this
weighting function multiplicatively. This mechanism ma-
nipulates the relative ranking of candidates for a search
task. Consider the example in Figure 1. In the top half of
the figure, the possible elements of a simple conjunction
task are shown. For the given target. inhibition would
rank the possible distractors depending on which features
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Figure 1. A comparison of possible relative effects of inhibito-
ry tunings with known targets for simple and triple conjunction
experiments. The "= implies inhibition, the “+7 denotes no
change, both with respect to the relevant feature dimension.
The magnitude of inhibition is not considered here; it would

have an important effect in the actual ranking of candidates.

they possess (and to what degree). [ have specified only a
“4/=""scheme here; this is not to say that the ranks are
equally spaced. The response depends on the relative
strength of the item and the amount of inhibition applied.
This, in turn, depends on the distance of the distractor
feature from the comparable target feature along the
same dimension. The weaker the distractor relative to the
target, the smaller its final response; the farther away a
feature from a target’s feature along the same dimension,
the weaker its final response. The fact that features may
not be independently computed (coarse-coding, or neu-
rons that are selective for both color and orientation, for
example) complicates the determination of “same” di-
mension.

In a typical conjunction display, some combination of
target and distractors is presented. Each display poses a
potentially different distribution of relative rankings of
candidate elements. It cannot be assumed that each
display is of precisely the same difficulty. This is even
more evident in a triple conjunction where the possible
distributions of candidate rankings are even more varied,
as shown in the triple conjunction example of Figure 1. If
search does proceed by selecting candidates in order
according to response strength, then it is easy to see how
triple conjunctions may be faster than simple conjunc-
tions. All that is required is to ensure that the ranking



always leaves the target on top and that the distractors,
even if ranked second, be distant seconds.

The proposal described in the preceding paragraph
would lead to the observations of Egeth et al. (1984), who
found that subjects can eliminate a feature dimension
from consideration if instructed to do so. Treisman & Sato
(1990) found that triple conjunctions can be fast if the
target differs from distractors in two dimensions (repre-
senting two sources of inhibition for distractors) but that
this is harder than a simple conjunction if the difference is
only on one dimension. It also predicts the observations
of Wolfe et al. (1989). Wolfe et al. always use size in their
triple conjunctions and the target is always larger by at
least double. It is easy to see how inhibition selective for
scale can strongly favor the large element over the small.
If Wolfe et al. repeated their experiments with small
targets, my proposal predicts slower searches. It is odd
that size plays such a large role in their experiments
because Cave & Wolfe (in press) say that stereo and size
are very effective for top-down guidance. Treisman &
Sato (1990) report that conjunctions involving large size
are faster than with small size. Burbeck & Yap (1990)
recently reported that scale seems selectable based on
context, with the largest response dominating. Further
support for the proposal comes from Quinlan & Hum-
phreys (1987), who observed that target-distractor dis-
criminability influences the rate of conjunctive search.
Another way of influencing the selection of candidates is
to precue for location. Treisman (1985) reports a large
advantage to precueing for location in conjunctive search
whereas it is irrelevant in disjunctive searches. This, too,
is consistent with the proposal.

Wolfe describes an odd-man-out problem that is surely
“easy,” i.e., parallel, with practice. If a unique item is
created by one or more differences over the defining
distractors, but all distractors are the same, then [ must
agree that the search appears easy, especially with prac-
tice.

It seems that my predictions for Type I and III agree
well with observations. I have only one set of experimen-
tal data with which to compare with equations for Type 11
and IV; data supplied graciously by Anne Treisman
(Treisman & Sato 1990). In that experiment, targets were
unknown to subjects and displays were created with 4, 9
or 16 items. Targets consisted of (a) large items; (b) small
items; (c) large-colored items; (d) small-colored items; (e)
large-oriented items; and (f) small-oriented items. Using
the standard method, the response times for each of these
six conditions are plotted against display size and lead to
linear relationships of varying slopes. These data are
really three-dimensional, however, with the third dimen-
sion the feature dimension. My predictions for Type II
and IV call for an exponential relationship in this dimen-
sion and a linear one in the display size dimension as
observed. But how should we plot this feature dimen-
sion? It will not do to simply enumerate the features; it
cannot be assumed that they are computed with equal
ease. I fit exponential curves of the type predicted leaving
the y-intercept and constraining the ®(M) to have the
same value across all display sizes for the same feature
combination. The result is shown in Figure 2. The fit is
very good.* The values of the exponents for each condi-
tion are: (a) 4.54; (b) 4.66; (c) 4.73: (d) 4.82; (¢) 5.77; and ()
6.12. The y-intercepts are: for 4 items, 564 for 9 items,
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Figure 2. Plots of response time versus feature dimension

&(M) for unknown target experiments of Treisman & Sato
(1990). (A) 4 items in display; smooth curve is RT = 364 +
4-(260M) — 1) (B) 9 items in display; smooth curve is RT = 516 +
9-(2640 — 1) (C) 16 items in display; smooth curve is RT = 411
+ 16:(2400 — 1). The values of &(M) found for cach of the display
types are: large size: 4.54; small size: 4.66; large-color: 4.73;
small-color: 4.82; large-orientation: 5.77; small-orientation:
6.12. These are common across display size.
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the initial motivation for the beam arose out of the
contradiction created by the determination of lower
bounds on map size, the need is identical for the feature
dimension. In the algorithm given in section 5.0, atten-
tion is applied in two key places, step 2 (section 5.2.2) and
step 6 (section 5.2.6). In the first instance, it is used to
“tune” the entire input hierarchy to expect features that
are specified by the task and does not involve selection of
spatial elements. One of the major effects of this tuning is
to manipulate the distribution of competitors in the
winner-take-all processes that are responsible for deci-
sion making. This manipulation changes the response
characteristics of those processes, leading to enhanced
response values achieved in shorter time. Haenny,
Maunsell and Schiller (1988), as well as Desimone (1990),
have observed a change in time course of response for
attended units. Enhanced response is therefore a side-
effect of an inhibitory mechanism. It is not necessarily the
case that enhanced response implies an enhancement
mechanism, as Krueger & Tsay suggest. Krueger & Tsay
go on to point out that there is little evidence for any
attentional effects on what features are extracted or com-
pared. Their view is out of date and incompatible with the
observations of Moran & Desimone, Haenny, Maunsell
& Schiller and many others as cited in the target article.

The second instance of attention is the application of
the beam as it was originally motivated, namely, to select
spatial candidates for matching. The mechanism for this is
currently being investigated. Treisman correctly crit-
icizes the lack of detail for the implementation of the
beam. [had intended it as an analogy only for the purpose
of the target article, however, and a future paper will
provide detail (Tsotsos, in preparation). Treisman points
out that it is difficult to attend selectively to one feature at
a particular location and to ignore others. How can one
then account for the results of Moran & Desimone (1985)
and other similar findings? In those experiments, exactly
this type of selection occurs within individual receptive
fields. I would suggest that some other mechanism must
play a confounding role for the interferences Treisman
cites. For example, coarse-coding of features would cause
this effect to fall out naturally. Suppose a single unit codes
both color-and shape to some degree in a coarse-coded
fashion. If only spatial selectivity is applied to that unit, it
may indeed be difficult to select color over shape. This
would be confirmed by my explanation too, as long as the
only dimension of attention was location. Moran & De-
simone and others showed that features selected can also
be within units. My beam idea thus includes both of these
aspects and the specification-of the task determines which
is used, if not both.

[ still maintain that detectors in the early abstraction
hierarchy are almost never in their “untuned” state;
vision is almost always purposeful and if it is, the visual
system will attempt to tune its resources in the direction
most suited for that purpose. Optimizing the tuning of
detectors for expected features will lead to faster re-
sponses for at least two reasons: competing items in the
display are attenuated, and, winner-take-all results are
speeded up as shown in section 4.5. Treisman points out
that my alternative explanation for search asymmetries
cannot be correct because I misinterpreted the “instruc-
tions” given to subjects. I did not misunderstand, but
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certainly misstated my understanding in the article. 1
realize that subjects only see the stimuli and nothing else
and are not told to search for a logical negation of features.
Attentional tuning for search asymmetry cases would
inhibit any detectors that would respond to the features
that were not part of the target. In an attempt to put the
requisite decisional process into computation terms, I
used the term “logical negation” and thus created some
confusion about my meaning. Treisman asks why “could
the standard stimuli not be found simply by leaving the
detectors in their untuned state, so that only the target is
effective?” Does that mean during the course of an
experiment? How is it proposed to turn off attentional or
top-down influences in a conscious human subject? I
agree, however, with Treisman’s clarification of the dif-
ference between “discovering existence” and “specifying
identity.”

7. Representation

Desimone and Zucker question the need for certain
representations of features within the framework that I
have presented. They (along with several other commen-
tators but on different issues) must be reminded of the
caveat I made early in the target articles. The derived
constraints and framework resulted from complexity con-
siderations alone. This is the view of vision that complex-
ity alone can yield = a considerable one, all things
considered, but certainly not complete. Moreover, in my
definition of features, I deliberately left them unspecified
because the goal was simply to count how many were
possible. This led to a lower bound for the number of
physical feature maps. [ fully recognize that feature
representation is a “murky” area; I do not think I have
contributed much to it other than to place constraints on
numbers of features.

Zucker points out that the beam idea requires continu-
ous representation of features across space. In the ide-
alized framework I present this is true.® I might point out
that Zucker's own work, on curvature for example, also
has this requirement and does not reflect the spatially
fragmented nature of representations in the cortex. Do
those breaks and gaps in representation have functional
value, or are they artifacts of evolution or some other
mechanism? We do not know at this point. I know of no
model that has intentionally included the seemingly ran-
dom gaps and anomalies of representation one finds in
biology. How could it? We do not yet understand what a
complete representation could be doing let alone one that
seemingly cannot cover visual space adequately.

Treisman points out the need for object files, tempo-
rary ad hoc representations that are not hard-wired in a
prelearned visual dictionary; she claims that my visual
search algorithm has a problem because it does not
include this. In step 1 of the algorithm (section 5.2.1), 1
describe the need to store a representation of the target.
In step 7 (section 5.2.7), I argue for the need for a buffer
representation, precisely because the wiring require-
ments would be too great. These temporary representa-
tions serve the same purposes (roughly) as Treisman’s
object files. Mohnhaupt & Neumann also point out the
need for such an intermediate representation in vision,
citing much relevant research.
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8. Concluding remarks

The research described in the target article was first
published as a technical report at the University of Toron-
to dated September 1987 (Tsotsos 1987a), shortly before
that paper was submitted to Behavioral and Brain Sci-
ences. The arguments of section 3 first appeared at the
International Conference on Computer Vision, London,
June 1987 (Tsotsos 1987b). Cave’s comment about the
newness of the results is not correct; at the time of
submission, none of the researchers currently espousing
visual search explanations involving inhibitory guidance
(Wolfe, Cave, Treisman) were doing so. The idea was
indeed new back then, as was the explanation for visual
search.

Throughout my development, I attempted to include
only minimal assumptions and very simple optimizations
within the framework. Heathcote & Mewhort believe
that I confuse simplicity with tractability. If tractability
can be achieved simply, then the result is all the more
powerful. If you need to hang a picture frame, do you use
a jackhammer for that nail or a simple tack hammer? In
addition, I certainly do not propose that further optimiza-
tions are not possible. Some commentators objected to
my pointing out that the best use must be made of the
tools provided or that I could have chosen more powertul
or extensive optimizations (Strong, Cave,® Wolfe!'?). One
should remember that not all dimensions of a problem
can be optimized simultaneously. How to choose which
dimensions should be optimized and by how much is a
judgment call — my intuition versus yours. Topted for a
principle of least commitment. Who is right? Time will
tell, of course. Science has always favored simple explana-
tions for complex phenomena and it is our challenge to
find them. If a solution is indeed too simple, then it
should be easy to demonstrate this because it will not
account for the experimental observations as well as
another more sophisticated theory. This is how science
progresses. I cannot claim at this point that I have found
the complete and correct explanation; I can only hope
that I have provided some useful constraints that delimit
the future search for the solution and some hypotheses for
one possible model. I was actually quite surprised to see
how much can be explained with simple mechanisms and
the single dimension of study on which I embarked.

Finally, I wish to emphasize strongly that complexity
theory is as appropriate for the analysis of visual search
specifically and of perception in general as any other
analytic tool currently used by biological experimen-
talists. Experimental scientists attempt to explain their
data and not just to describe it; it is not surprise that their
explanations are typically well thought out and logically
motivated, involving procedural steps or events. In this
way, a proposed course of events is hypothesized to be
responsible for the data observed. There is no appeal to
nondeterminism or to oracles that guess the right answer
or to undefined, unjustified, or “undreamed-of” mecha-
nisms that solve difficult components. Can you imagine
theories that do have these characteristics passing a peer-
review procedure? They wouldn’t pass such a procedure
(at least not in our current view of science!). In proposing
an explanation, experimental scientists attempt to pro-
vide an algorithm (using the definition ot algorithm pro-
vided in my section 1.1) whose behavior leads to the
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observed data. Because biological scientists provide al-
gorithmic explanations, computational plausibility is not
only an appropriate but a necessary consideration. One
dimension of plausibility is satisfaction of the constraints
imposed by the computational complexity of the prob-
lem, the resources available for the solution of the prob-
lem, and the specific algorithm proposed.
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NOTES

1. This line of reasoning is borrowed from Garey & Johnson
(1976, pp. 90-91), who demonstrated that even though the
Partition problem has a pseudopolynomial-time algorithm, it is
still NP-Complete. The proof for the NP-Completeness of
Knapsack involves a reduction from Partition.

2. It seems that the great majority of pseudopolynomial-time
algorithms for NP-Complete number problems are derived
using the methods outlined by Bellman (1954) and Dantzig
(1957).

3. Forexample, no algorithmns are known for linear program-
ming that are parallelizable (Dobkin et al. 1979). Linear pro-
gramming is used for approximate solutions to Knapsack.

4. Error data, ete. were unavailable for proper statistical
analysis of the fit.

5. Van Essen and Anderson (1990) note that 24 visual areas
are currently known.

6. The heavily myelinated zone of the superior temporal
sulcus area that is direction-selective receiving input from
striate cortex.

7. MT* (sq.mm.) = 14-body weight (kg.)

8. Bob Desimone points out that recent experimentation has
found a rather continuous representation of feature values along
a given dimension, say color, at a given spatial location in V4
(personal communication).

9. Cave's suggestion for cncoding the relevant maps with
cach prototype leaves open the problem of how to recognize
colored objects in a black and white image, normally stationary
objects that are moving, and other such exceptions from default
scttings.

10. Wolfe’s “optimal” use of top-down guidance leads him
and his colleagues to appeal to undefined noise effects to “fix”
their model because it “works too well.”
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