Artificial
e Intelligence

ELSEVIER Artificial Intelligence 75 (1995) 135-160

Behaviorist intelligence and the scaling problem

John K. Tsotsos™"'

Department of Computer Science, 6 King's College Rd., University of Toronto, Toronto.
Ontario M5S 1A4, Canada

Received October 1992; revised November 1993

Abstract

This paper argues that the strict computational behaviorist position for the modeling of
intelligence does not scale to human-like problems and performance. This is accomplished
by showing that the task of visual search can be viewed within the behaviorist framework
and that the ability to search images (or any other sensory field) of the world to find stimuli
on which to act is a necessary component of any behaving, intelligent agent. If targets are
not explicitly known and used to help optimize search, the search problem is NP-hard.
Knowledge of the target is of course explicitly forbidden in the strict interpretation of the
published behaviorist dogma. Also, the paper summarizes the existing neurobiological and
behavioral realities as they pertain to behaviorist claims. The conclusion is that there is
very little support from biology for strict behaviorism. Strict adherence to the philosophy
of the behaviorists means that efforts to demonstrate that the paradigm scales to human-
size problems are certain to fail, as are attempts to evaluate it as a model of human
intelligence. The strict position thus cannot be what the behaviorists really mean. It would
benefit the research community if they could elucidate their terms, and provide theoretical
arguments that support claims of scalability.

1. Introduction

Recently, the philosophy for realizing intelligent behaviors in machines as
articulated by Brooks, his colleagues and others has received a great deal of
attention and has attracted many vocal supporters as well as equally vocal
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detractors (Brooks [6-8], Aloimonos and Rosenfeld [1], Ballard [3]).” Brooks
claims

... that intelligence be reactive to dynamic aspects of the environment, that a
mobile robot operate on time scales similar to those of animals and humans,
and that intelligence be able to generate robust behavior in the face of
uncertain sensors, an unpredicted environment and a changing world. . . (R.
Brooks, Computers and Thought Lecture, International Joint Conference on
Artificial Intelligence, Sydney, August 1991)

It seems difficult and unreasonable to argue against this philosophy, yet many do.
Another of Brooks’ beliefs is that machines constructed out of simple modules
with simple communication will exhibit intelligent behavior as an emergent
property; the behavior is not directed by a single homunculus nor is it explicitly
specified in the machine in any way. This too sounds like it is an approach to
complex behavior that is worth pursuing.

1.1. Setting up the controversy

Where is the controversy? The cornerstones of the “subsumption” architecture
Brooks proposed in [5] for intelligent control include: control layers define a total
order on a robot’s behaviors; the dominance of layers follow a hypothesized
evolutionary sequence; each layer may “spy” on layers at lower levels and
“inject” signals into them. It is claimed that the structure is scalable to human-
like behavior® and Brooks argues strongly against many of the currently promi-
nent concepts and activities in AL. Specifically, he believes that there is no place
for: the sense-model-plan-act framework for robot control; the representation of
intermediate* results, the use of hierarchical computations; the explicit repre-
sentation of goals; and, CAD-like models of the world. As proof of his position
he offers evidence that is compelling: many mobile robots that seem to have
robust and interesting performance (Allen, Herbert, Tom & Jerry, Attila, Squirt,
Allenmore, and others).

Brooks seems to be re-kindling the torch of old behaviorism, a philosophy
appearing about 1913 in the psychology community (see Watson [49], the
“founder” of the behaviorist position in psychology). Behaviorism stood for one
basic belief: humans are biological machines and as such do not consciously act,
do not have their actions determined by thoughts, feelings, intentions or mental

* In addition, proponents have received two prestigious awards: Rod Brooks was a co-recipient of the
1991 1IJCAI Computers and Thought Award and Dana Ballard was awarded the 1989 1JCAI Best
Paper Prize.

I think that the new approach can be extended to cover the whole story, both with regards to
building intelligent systems and to understanding human intelligence™. (Brooks [7, p. 585].

“For this paper, an intermediate representation is one which has the following qualities: it can be
considered as an input representation by two or more other processes; it is not a representation of the
input in its raw form.
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processes. Human behavior is a product of conditioning: humans react to stimuli.
Stimulus-driven internal states were allowed, but internal mental states were not.
Arguments against behaviorism are easily found in the cognitive science
literature.’

Similarly, arguments against Brooks’ position are not new. Kirsh, for example,
focuses on one of Brooks’ claims, that intelligent behavior is “concept-free” [26].
Kirsh claims that concepts are necessary for some types of behavior and also can
make computational processes simpler. He argues for the need of representation
in a theory of perception simply because vision is complex and must be sometimes
solved in general ways.

Three other papers present sympathetic and complementary views to that of
Brooks. Aloimonos and Rosenfeld coined the term ‘“‘purposive and qualitative
vision” and claim that the “purpose” of a vision system was neglected in past
research [1]. They may have forgotten to note that the vision systems that many
tested in the mid-to-late 1970s and early 1980s, although they may have had other
failings, did not have the failing of ignoring purpose and qualitative descriptions
(see [47] for a comprehensive review). On the contrary, those systems were very
much task-oriented and model-based; their outputs were typically qualitative,
task-specific representations of the scenes using some form of natural language-
like primitives. In fact, the focus on task-specific solutions was the major criticism
leveled against that work. They further state that for many vision problems,
complete and accurate recovery of the scene is not necessary. This is an amazing
understatement. In fact, not only is it not necessary, it is not a computationally
tractable problem [43, 44]. Aloimonos and Rosenfeld basically support Brooks’
stand because they propose that research concentrate on specific vision-guided
behaviors.

Ballard also proposes a similar view but more focused on visual behavior; he
uses the term “animate vision” [3]. He claims that animate vision systems must
have gaze control and thus can be vastly less expensive when considered in the
large context of behavior. This is far from obvious; in fact, there are many cases
where it is not true [48]. Agreeing with Brooks, Ballard says that elaborate
categorical representations may not be needed. Further, he claims that memory is
not required since an animate vision system can compute a representation of the
vision world rapidly on demand. This last claim (if not also the previous ones) is
easily refuted.

The above positions will be grouped together for the purposes of this paper
since they contribute to “computational behaviorism™ (for the remainder of the
paper, the term behaviorism is intended to refer to the new computational version
as opposed to the old psychology position). One further theory will be briefly
mentioned since it is often used as evidence from the biological community for the

* For example, the following appeared in a recent overview of cognitive neuroscience. Kandel and
Squire point out that “It was easy to show that any study of mental activity that failed to consider
representations of mental events was inadequate to account for all but the simplest forms of behavior”
[24, p. 143].
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above computational paradigms; it should be clear that the following work does
not fall into the “psychological behaviorist” camp. Nevertheless, Ramachandran’s
[36] utilitarian theory is remarkably similar to the positions outlined so far.
Ramachandran rejects previous well-known theories (Helmholtz’s perception as
unconscious inference, Gibson’s direct perception, Marr’s natural computation)
and proposes rather that perception does not involve intelligent reasoning, nor
resonance with the world, nor the creation of internal representations. Rather,
perception is a bag of tricks. Through millions of years of evolution, the visual
system has evolved numerous short-cuts, rules-of-thumb, and heuristics each one
adopted only because it works and not because of any other appeal. However,
some stimulus must be responsible for triggering or activating the various tricks at
the appropriate times. The trigger is not necessarily the stimulus itself, but may be
some early representation of the stimulus that is extracted in a mechanical
fashion. But all of the tricks cannot be always active; there would be too many
and it would imply that spatial parallelism is sufficient for perception (arguments
against this position will be recounted later). The processing that is required for
stimulus recognition is of the same kind as required for stimulus recognition in the
behaviorist schemes above. The key problem with Ramachandran’s utilitarian
theory is not in the early processing but rather that it is insufficient with respect to
the control of which tricks can be active and which are executed at a given point
of time.

This paper will focus on two claims of the computational behaviorist’s
philosophy which are difficult to prove: that behaviorism will scale up to problems
which are human-like in their size; and, that behaviorism can be used as a model
of human intelligence. It is important to present a definition of “scale up to
human-like problems” in order to make the discussion concrete. A computational
theory scales to human-like problem sizes if:

® the algorithm that embodies the theory accepts up to the same number of

input samples of the world per unit time as human sensory organs.’

® the implementation that realizes the algorithm exists in the real world and

requires amounts of physical resources which exist,

® the output behavior of the implementation as a result of those stimuli is

comparable both in quality and timing to human behavior’ (i.e., it would be
indistinguishable from human behavior in all important respects).

For the remainder of the paper, the term “‘scales up” will be grounded in this
definition. Many seek escape from the difficulties inherent in dealing with human
behavioral performance by claiming their models are not intended to be models of

°It is a nontrivial task to determine exactly the quantitative nature of the input to the human sensory
system. With respect to the visual system, there are two eyes; each has about 110-125 million rods and
6.3-6.8 million cones; cach eye can discriminate over a luminance span of 10 billion to one; the spatial
resolution of the system peaks at about 40 cycles/degree while the temporal resolution peaks at about
40 Hz but the two are not independent; finally, there are many inputs from other sensory and motor
areas. See [13, 14] for further discussion. Similar data is necded for non-visual sensory systems.

" The behavioral literature on exactly what the quality, quantity and timing of human behavior is to a
variety of stimuli is immense, but far from complete.
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human intelligence (Ramachandran, Ballard and Brooks, however, do claim
biological plausibility). Note that the definition does not necessarily require that
either the algorithm or its implementation have any relationship to how humans
process information, nor is there any biological restriction on the amount of
resources used (numbers of processors, for example, are not restricted to be less
than the number of neurons in the brain). Thus, there is no implication that this
definition applies only to models of biological behavior; it is just a specification of
problem size and system performance. However, for those researchers who claim
biological plausibility, the following must be added to the definition in order to
define “scaling with biological plausibility”:

® solutions should require significantly fewer than about 10'° processors

operating in parallel if modeling the whole brain (the visual cortex of the
macaque monkey is about 60% of the cortex; the figure above includes the
cortex as well as the various sub-cortical structures [16]), each able to
perform one weighted sum computation over all its input per millisecond
(possibly with an added nonlinearity such as thresholding);

® processor average fan-in and fan-out should be about 1000 overall® so that

the total number of connections is on the order of 10"’ [24]; and

® solutions should not involve more than a few hundred sequential processing

steps (the firsts spikes arrive in inferotemporal cortex about 80-100 ms after
the onset of a stimulus in the monkey with resulting task-driven eye
movements initiated about 250 ms after the stimulus onset [9].

The arguments behaviorists present on scaling are inadequate (for example, see
[6,7]). Recently, a special issue of SIGART Bulletin [37] included the proceed-
ings from the Workshop on Integrated Cognitive Architectures, and a large
number of presentations were either motivated by, or support, the behaviorist
position. The proposed schemes fail on issues of scalability and cognitive
plausibility. This issues contains at least 15 papers on work that attempts to
integrate perception with action. All of the authors claim that their methods scale
nicely. Almost all of them trivialize the perception component, assume they are
given correct and abstracted input or say nothing about how perception is to be
solved. All consider the issue of cognitive plausibility in a very superficial manner.
One of the papers (Ogasawara, p. 140) at least attempts a complexity analysis to
support claims for scalability. Unfortunately, if the issues of scaling to human-like
problems plus cognitive plausibility are taken seriously, even polynomial algo-
rithms are too slow (see [44-46]).

1.2. A different perspective on the behaviorist strategy

One can view the behaviorist intelligence paradigm as a particular implementa-
tion of one of the most basic tools of Al: the well-known ‘hypothesize-and-test”

" Connectivity varies with cell type: stellate cells may receive a few hundred synapses, small pyramidal
cells a few thousand, while large pyramidal cells may receive tens of thousands of synapses. Most if
not all computational models of perception use the average figure of 1000 as a guide.
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strategy for search. It is easy to place the hypothesize-and-test idea into a reactive
framework: assume (as is done in such frameworks) that the set of choices of
stimulus—action pairings is given. The behavior specification of the device can
easily provide this. The standard hypothesize-and-test paradigm operates as
follows:

® Acquire the current input and determine which aspects of it are salient to the
problem.

® Propose a particular explanation (hypothesis) as the correct one for the
current input.

® Devise a test in order to verify that it is indeed the correct explanation.

e [f the hypothesis passes the test, proceed with that explanation and its
consequences. If the hypothesis fails the test, select another explanation and
try again. The selection mechanism may be quite complex depending on the
size of the hypothesis space.

Suppose now that all hypotheses can be tested in parallel. Connell [10] for
example, defines nodes that have the above functionality. This would lead to a
configuration such as shown in Fig. 1; this is not unlike the kinds of circuits
derived using subsumption ideas. Fig. 1 is an abstraction of the several control
diagrams given in [10]. The stimulus transducer passes to each stimulus—action
pair the subset of input data that is relevant for that action. The node stimulus—
action determines whether or not the stimulus can indeed act as a trigger for the
behavior it represents. Since at this stage, the triggered behavior has not yet
received final routing to the robot’s actuators, it may be considered as one of
several hypotheses that must be considered as active candidates for response to

the possible
stimulus-action pairs

stimulus
transducer

Fig. 1. An abstraction of Connell’s architecture.
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the current stimulus. Hypotheses are thus represented and tested individually and
in parallel. Actions are executed that move the sensors or do whatever else is
appropriate depending on the best hypotheses after a conflict resolution step. This
circuit is reactive: it reacts to stimulus as they enter the system, and it appears to
have many behaviors since it has many stimulus—action pairs to choose from and
it resolves conflicts. But most importantly, it has exactly the same hypothesize-
and-test mechanism that has been common in AI’

The key difference is the parallel implementation. This should have triggered a
warning however: recall Neisser’s claim that a theory of perception based on
spatial parallelism alone is quantitatively inadequate to explain human perceptual
behavior [33]. Effective quantitative demonstration of this claim was provided in
[42]. This extends easily to behavior in general since behavior is stimulus-driven.
In effect, this is exactly what Brooks is proposing: that parallel hypothesize-and-
test of stimulus—action pairs is sufficient to cause an agent to exhibit intelligent
behavior. This is feasible only for relatively small stimulus—action pair spaces,
such as the ones which are currently implemented in various reactive devices.
Interestingly, one of the behaviorists, Mataric, argues that the behaviorist’s
strategy is not appropriate for high bandwidth, high density sensors such as vision
[27]. She points out that coarse grain, low density, low bandwidth sensors
naturally lead to solutions involving parallelism for stimulus—action activation.

2. Perception and the scaling problem

The scaling problem has been addressed by many researchers in the context of
specific algorithms for specific visual problems. The analysis below follows
[43,44,47,48]. The approach here is to look at vision “in the large” by
considering the problem of visual search, a ubiquitous activity within intelligent
behavior. Visual search can be viewed within the behaviorist paradigm and is an
integral part of any intelligent behavior. In a typical experimental setup for the
study of visual search behavior in humans, a subject is presented with a target (or
targets), and a test image and asked to determine whether or not that target is
present in a test image. This involves two behaviors (or stimulus—action pairs): (1)
if target present, press button A; (2) if target absent, press button B. Thus, the
task has exactly the same characteristics as shown in Fig. 1, with two possible
stimulus—action pairs.

It is difficult to imagine any vision system which does not involve similar visual
search operations, and it is clear that these types of operations appear from the
earliest levels of vision systems to the highest. Vision usually begins with a set of
measurements at a number of locations in a sensory field (pixels). In most cases,
the first step of visual information processing is to create an edge representation.
What are the physical structures responsible for the edges? Edge-finding is an

’ This view of the behaviorist strategy first appeared in a discussion relating the behaviorist paradigm
to the concept of incremental active vision in [47, 48|.
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instance of visual search: given a model of an edge, is there an instance of this
edge model in the test image? This search problem is unbounded: there are no a
priori constraints on the size, extent, shape, etc. of the structures sought. The
model base of possible objects in the world would be of no help since it would be
very large and varied in general and thus not provide useful overall constraints
(all possible edge types could exist at all possible image locations). Region
growing, shape matching, structure from motion, the general alignment problem,
and connectionist recognition procedures, etc., are also specialized versions of
visual search in that the algorithms must determine which subset of pixels
corresponds to a given prototype or description or satisfies some set of con-
straints. This search task is precisely what any model-based computer vision
system also has as its goal: given a target or set of targets (models), is there an
instance of a target in the test display? Visual search tasks are integral com-
ponents of any visual information process.

2.1. Visual search

According to the definition provided by Rabbitt [35] visual search is a
categorization task in which a subject must distinguish between at least two
classes of signals: goal signals which must be located and reported and back-
ground signals which must be ignored. In [43], a computational definition of the
visual search task was presented that contained two important subcases: un-
bounded visual search in which either the target is explicitly unknown in advance
or it is somehow not used in the execution of the search; and bounded visual
search, in which the target is explicitly known in advance in some form that
enables explicit bounds to be determined that can be used to limit the search
process. These bounds may be in the form of spatial extent of the target, feature
dimensions that are involved or specific feature values. Then, a proof was given
showing that the unbounded case is NP-complete in the size of the image, while
the bounded case has linear time complexity in the same variable. The proofs are
not specific to vision; they apply equally well to search problems with any
modality of sensory information. The NP-completeness of the unbounded case is
due solely to the inability to predict which pixels of a test image correspond to
objects in a non-exponential manner. From the behaviorists’ perspective, the
ability to find stimuli on which to act is necessary, and thus the results of those
theorems apply directly to behaviorism.

Let a test image [ contain p pixels, and there are M feature values associated
with each pixel. Thus, |I| = pM. The size of the target image T is defined in a
similar manner, |T| = gn; the values of ¢ and n corresponding to the number of
image locations and number of feature values represented in the target respective-
ly. An instance of the Visual Search problem is specified as follows:

® a test image /,

® a target image 7,

® a difference function diff(a) for a €1, diff(a) ERE, (R‘; is the set of non-

negative real numbers of fixed precision p),
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® a correlation function corr(a) for a €1, corr(a) € Rg,

® two thresholds, # and ¢, both positive integers.

The diff and corr functions basically constrain the acceptability of a solution by
requiring that the solution subset have sufficiently low error and be the maximal
subset satisfying the error measure respectively. The functions may be any
appropriate functions (even table lookup). They are only constrained to require at
most polynomial time complexity to compute. For example, the diff function may
compute an L, error norm, while the corr function may compute a correlation.
Images do not refer to retinotopic collections of pixel elements only. Rather,
images can be thought of as abstractions (““intrinsic images”) or as collections of
features indexed by image location. More detail may be found in [43]. It must be
emphasized that this formalism is not necessarily intended as an implementation
level description of the problem (although it could be implemented exactly as
stated). It is an “in principle” solution, to use Marr’s levels of abstraction, at the
computational level. Both passive (fixed stimulus acquisition system) and active or
animate (dynamic, feedback-controlled stimulus acquisition system) situations are
addressed by the work.

Four problems will now be given with basic theorems regarding their time
complexity. The proofs and detailed discussions are found in [43, 47, 48] as are
the intuitions behind their definitions and relationships to real-world vision
problems. These discussions are not repeated here; however, the theorems are
re-stated both for completeness and because they form the basis of the new
theorems presented in Section 3 and the discussion of Section 4.

2.1.1. Unbounded passive visual search (UPVS)

In the unbounded version of visual search, no guidance is permitted and search
proceeds blindly as in the following formulation. Given a test image, a difference
function, and a correlation function, is there a subset of pixels of the test image
such that the difference value is less than a given threshold and such that the
correlation value is at least as large as another specified threshold? In other
words, is there a set I’ C /[ such that it simultaneously satisfies

> diffla)<6, 2, corr(a)=$?
acl’ acl’

Think of the diff and corr functions as encoding aspects of the target sought, but
the recognition system is not permitted or is unable to recover the target explicitly
by unraveling the diff and corr functions in order to use the information to help
guide search. For example, consider the situation where you are running off to
work, and you know you have forgotten something at home, but have no idea
what or where it is. You start searching everywhere, for objects of all sizes and
shapes, in all locations. The aha! you experience when you find the forgotten,
unknown item is roughly analogous to the satisfaction of the diff and corr
functions above. Even so, the unboundedness of the search is not quite complete,
since you do not group totally arbitrary collections of image fragments as
hypotheses for the unknown object. The unbounded search task is like trying to
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make sense of the well-known Dalmation Sniffing at Leaves image using the
strategy of grouping arbitrary blobs together until structure is seen.

Theorem 1. Unbounded passive visual search is NP-complete

The proof is by reduction from Knapsack and is given in [43]. It is well known
that Knapsack has a pseudo-polynomial solution because it is a number problem,
and in fact several logarithmic time, parallel solutions. These solutions yield
approximate, not optimal, solutions within a given error bound and the time
complexity varies with the setting of the error. However, it is argued in [45, 46]
that none satisfy the constraints of biological plausibility (and the proposals of
Brooks, Ramachandran and Ballard are intended to be biologically plausible). In
any case, the methods by which such efficient solutions are found include
hierarchical divide-and-conquer techniques and the use of intermediate repre-
sentations, both of which are not permitted in the context of behaviorism.
Moreover, there are other vision problems that are not formulated as number
problems which are NP-complete and do not have such easily found approxi-
mation solutions (for example, [11,25]). The use of a different implementation
strategy such as neural networks does not help; the complexity class is for the
problem, not the algorithm or implementation (recall that problem complexity is
independent of algorithm or implementation). Also see [23] for a discussion of
complexity and a set of theorems regarding the difficulty of learning procedures
for neural networks.

The issue of approximate versus optimal solutions is an important one with
respect to biological intelligence. It is probably true that for many tasks, an
approximate solution suffices. In fact, this is a key point in the proposal by
Tsotsos [44, 45] where a set of optimizations and approximations were presented
in an attempt to achieve a biologically plausible architecture for vision. However,
even to achieve this, certain compromises on processing must be made; the
common ones, and those made by the Tsotsos proposal, are disallowed by the
behaviorist dogma (hierarchical abstraction, intermediate shared representations,
explicit targets, attentive processing, and so on). The search space is much too
large to even find a set of acceptable yet sub-optimal solutions efficiently without
specific combinatorics-defeating strategies.

2.1.2. Bounded passive visual search (BPVS)

The diff and corr functions here are based in the target data; that is, the test
image subset is still sought as the solution, but the contents of the target image
direct the search within the test image. Given a test image [, a target image T, a
difference function, and a correlation function, is there a subset of pixels I" of the
test image such that the difference between that subset and the corresponding
subset of pixels in the target image is less than a given threshold and such that the
correlation between the two is at least as large as another specified threshold? In
other words, is there a set I’ C I such that it simultaneously satisfies
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> diffy<6, 2 corr()=¢?
teT €T

Theorem 2 (Tsotsos [43]). Bounded passive visual search has linear time complexi-
ty in the number of test image locations.

2.1.3. Unbounded active visual search (UAVS)

In [40], a view of active perception as an incremental hypothesis-test strategy
was proposed. This strategy was joined with the visual search definitions
presented earlier to arrive at a new formulation of the active visual search task. A
necessary component is an input image sequence. The incremental strategy solves
the visual search task for each image in the sequence, but instead of stopping the
search process after the first satisfactory solution is found, it continues until all are
found for each image. This forms the hypothesis set which is carried over to the
next time instant. The thresholds on the diff and corr functions are tightened to
constrain the solutions further and the process repeats. This incremental tighten-
ing of constraints may be viewed as passing the initial hypothesis set through an
ever-narrowing sieve. The method is further elaborated in theory in [48], and in
practice in [51].

The incremental strategy can be formalized as follows. Given a test image
sequence in time /,, t =1, ..., 7, a difference function, and a correlation function,
is there a sequence of sets J, for r=1,...,7, where 3, is the union of all sets
1] C 1, such that each I, satisfies

> diffay=<6,, > corr(a)=4,,

acl] aci]
where
0,=0,=---=0_, b =¢d,=---=¢_.

Theorem 3 (Tsotsos [48]). Unbounded active visual search is NP-complete.

2.1.4. Bounded active visual search (BAVS)

The incremental strategy briefly described above applies equally well to the
bounded version of the problem. Given a test image sequence in time I,
t=1,...,7, a target image in time T,, a difference function, and a correlation
function, is there a sequence of sets J, for r=1, ..., 7, where 3, is the union of
all sets I, CI,, such that each I satisfies

2 diff(a) <6, , 2 corr{a) = ¢,

aET[ aET,
where
6, =6,=--- =20, p=dy=--=¢,.

Theorem 4 (Tsotsos [48]). Bounded active visual search has linear time complexity
in the number of test image locations.
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Summarizing, if no targets are available, search performance may require at
worst exponential time in the size of the image. If targets are known, and
permitted to participate in top-down guidance, then performance is no worse than
polynomial (approximately linear) in the same variable. These theorems provide
strong evidence that general-purpose, data-directed vision is not only computa-
tionally intractable, but also biologically implausible [44, 45].

3. Perception within behaviorism

The last section argued for visual secarch as an intcgral part of intelligent
behavior and showed that data-directed solutions to visual search are not
acceptable in any theory of behavior. This section focuses on a number of related
major points. First, arguments are presented as to why perception is not as easy
as implied by the behaviorists and why all perceptual actions are not necessarily
directly linked to action, i.e., are not externally observable. Then, several of the
key principles of behaviorism will be tested against current biological knowledge,
and it will be clear that those principles have no support.

3.1. Perception is not easy

Behaviorists imply that perception is easy: a set of primitives exist that can be
used as input to behavior modules and that these primitives are next to trivial to
compute. Only if this is true could they claim that the world be used as memory
and visual information can be rapidly re-acquired on demand. It seems that such
conclusions can only be obtained from an over-simplification of results from
behavioral psychophysics.

There is much evidence from human behavior on visual search tasks for the
“pop-out’” effect: for certain visual displays, subjects can find targets in time
independent of the number of distracting items in the display (see [39] for
example). This response time is on the order of a few hundred milliseconds. This
seems to be the source of the belief that perception can be easy. Those targets,
however, are very specific (for example, a red target among a field of green ones,
or a square in a field of lines, or the like). Moreover, in many of the experiments
the target must be known explicitly in advance; in other experiments, the task is
figure-ground segregation. Although there is a good deal of controversy as to how
complex the differences between targets and distracters can be in order to ensure
this behavior," it is quite clear that many types of visual search behavior require
time linear (or worse) in the number of items in the display (see [39, 41, 44, 45}).

" Some experimenters found that more complex target types, which are conjunctions of two or three
features can also be found in constant time (Wolfe et al. [52], Nakayama and Silverman [32]). Others
claim this is artifactual or that performance depends on the degree of dissimilarity between target and
non-target (Tsotsos [45], Duncan and Humphreys [15]).
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Even if the general structure of the display points to a linear response time curve,
the slope of that curve varies significantly and is determined by the spatial
arrangement and distribution of features, and the Y-axis intercept is determined
by the “cognitive and motor overhead” of processing and responding to the
display (this is not understood in general). Finally, the types of displays used are
quite impoverished compared to natural images; they typically include no more
than about 20 items, nicely segregated on a white background. In general, the
characterization of which stimuli lead to what kinds of performance is not
completely understood. It is important to note that there are really four different
kinds of tasks that must be addressed: detection (is a target present in the test
image or not?), localization (where is the target?); segmentation (which subsets of
pixels represent it?), recognition (label the found subset of pixels with a
semantically relevant entity). Of these, experimentalists have concentrated on
detection, localization and recognition. All are of importance in a behaviorist
context.

The bounded visual search problem described earlier predicts linear behavior
for visual search where the target is known. If the mechanism of attentional
control is added using knowledge of the target, constant time performance is
predicted for pop-out displays [44, 45]. Therefore, if perception is to be fast the
visual world as well as the intelligent agent must have special characteristics. The
following conclusions are due to converging behavioral'' and complexity analysis
results.

(I) If the target (and position) is known, and it is distinguished from all
distractors in an obvious manner'* (colour for example), then detection,
localization and recognition can be done in time independent of the
number of items in the display [38].

(IT) If the target (but not position) is known, and it is distinguished from all
distractors in an obvious manner, then detection, localization and recog-
nition can be done in time independent of the number of items in the
display, but is slightly slower than case I [38].

(I1I) If the target (but not position) is known, and it is not distinguished
uniquely in a simple way"’, then detection may require up to linear time
in the number of display items [40].

(IV) If the target (and position) is known, and it is not distinguished uniquely
in a simple way, then detection may require up to linear time in the
number of display items, but is much faster than in type III [38].

(V) If the target is not known, but is distinguished in an obvious manner, then
detection and localization may be done in time linear in the number of
display items (for example, texture pop-out [4]).

" The citations included below only scratch the surface of the literature which is relevant. The reader
is referred to the review article by Green [17].

“*That is, it is a disjunctive type of display [38].

" That is, it is a conjunctive type of display [38].
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(VI) Otherwise, detection and localization may require anything from a high
slope linear function to polynomial to exponential time (with respect to
the image size and/or feature space) [41, 44, 45}).
Detection and localization seem to always go together at least for the type I and
I1 cases above [22]. Localization is a prerequisite for accurate recognition [31].
These six classes presented are by no means the complete set of classes. For
example, in all of the above, single targets are assumed: what happens if there is
more than one target? Although this account may present a somewhat clear
version of events, the truth is that things get complicated very quickly if variations
in experimental settings, features, etc. are considered. See [17] for a review.
The bounded visual search problem referred to in this paper has obvious
counterparts (types I, II, III, and IV); the unbounded problem is associated with
types V and VI. However a little care is required in making this distinction. It
does not appear to be the case that arbitrarily complex targets can be used to
guide search. Thus, there may be many situations when, even though the target is
explicitly known, it is of such a form as to be unusable by our visual systems as
guidance. For example, it is not likely true that arbitrarily complex colour
combinations can lead to constant time target recognition in humans.* These
search tasks would be included in the unbounded category.
Visual search behavior and theoretical evidence do not support the behaviorist
position that vision can be fast except when targets in disjunctive displays are
known explicitly or if target and location are known in conjunctive displays.

3.2. All perceptual acts are not externally observable

In Connell’s incarnation of behavior-based architecture, a number of in-
dependent modules are proposed, each of which uses some type of perceptual
information as input and produces commands for a creature’s actuators; compet-
ing commands are merged with a hard-wired priority scheme. A module is
equivalent to a production rule, perhaps with a small amount of state. Each
module thus implements a small piece of the creature’s overall behavior at the
actuator level. Behavior is always observable and perception is always directly
linked to action. This is clear in Brooks’ use of the intelligence principle, namely,
that intelligence is in the eye of the beholder.

In biological systems, all visual behavior does not lead to externally observable
behavior and there is a clear example of this. It has been known for some time
now that visual search behavior in humans is due in part to a form of attention

'* Simply consider the various picture matching puzzles designed for children. Even though sometimes
target images are provided, they seem not to help with target localization; detailed exhaustive search is
still required. A particularly good example is the set of colour pictures in the “Where’s Waldo?” series
of books [20], which depict large numbers of soldiers engaged in battle. Even if the exact image of a
target soldier is given, the search task does not seem to benefit from this knowledge in any useful
manner. Part of the problem is that in these kinds of images, individual items are not segmented from
one another (not separated with intervening background as in typical visual search experiments).
Thus, one may hypothesize that the task of segmentation may be a major barrier to fast response.
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termed “covert” [34]. Typical experimental paradigms for visual search require
that the eyes remain fixated and thus there is no external or “overt” attention
manifested by eye movements. The observed linear time behavior mentioned in
the previous section is due to internal serial processes. Recall the definition of
“scalability” presented earlier—that performance be the same in quality and
timing. This aspect of timing is not captured by Brooks’ subsumption scheme in
the same formalism as is an external behavior.” In an important sense, this
internal processing may be considered as a type of reasoning.

3.3. Biological realities

Most of the published behaviorist positions do not receive support from current
knowledge of the neuroanatomy and neurophysiology of primate and human
visual cortex. It is not possible to provide a thorough review of this material here
and the reader is referred to Felleman and Van Essen’s review [16] of the
macaque visual cortex, the most complete collection to date of anatomical and
physiological data on the functional organization of the monkey visual cortex.

Three behaviorists’ claims go against biology: there are no intermediate
representations; there are no hierarchical computations; and there is no explicit
representation of goals. These will be addressed in turn.

One of the more established characteristics of the visual cortex is that it
contains visual areas or maps. The current total of such areas for the macaque
monkey is 32; no doubt all have not yet been discovered. These areas have been
studied by anatomic methods, single-cell recordings, PET scanning and by lesion
studies over the past twenty years. Although the story is far from complete, and
the exact function of ecach area is not fully understood, it is clear that each area
represents the result of some processing of visual input; the sensitivities and
selectivitics of the neurons within the areas are one of the key determinants of
area segregation. The representation may be considered to be the array of firing
rates of the population of neurons in a given cortical area. Many areas seem to
represent the whole visual field; others, only parts of it.

An interesting connectivity pattern has emerged among the 32 areas. The total
number of inter-area connections discovered so far totals 305. Most of the 305
connections form reciprocal pairs (121 pairs). Of the reciprocal pairs, 65 pairs
have been clearly identified as ascending/descending pairs. Second, the areas are
organized into a hierarchy of 14 layers deep, beginning with the retina at the input
and ending with the hippocampus at the top. Ten of those layers arc visual
processing layers within the visual cortex. There are no connections that span the
full 14 layers; the greatest span is 7 layers and the majority of connections span
only 1 or 2 layers. The connectivity figures do not include the connections to
lower brain areas; most of the cortical areas have connections to lower visual and
oculomotor areas (superior colliculus, thalamic reticular nucleus, pulvinar com-

""This is only one type of internal behavior out of possibly a large number. Are humans who are
sensory-deprived not intelligent?
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plex, basal ganglia). Information from the retina also goes directly to the superior
colliculus. A role for such connections in eye movement behavior is hypothesized.
Only 4 of the 32 areas have connections (so far) to the somatosensory and motor
areas of the brain; these areas are all within the top few layers of the hierarchy.
These 4 areas receive connections from only 8 other visual areas in total.
Information from the retina necessarily makes many stops along the way, being
processed by several areas (at least including the lateral geniculate nucleus and V1
and 14 other intermediately positioned areas in 6 different layers of the hierarchy
if the shortest paths to the “output” areas are considered; see the figures in [16]).
It is clear that the visual cortex uses both hierarchical organization as well as
intermediate representations.

It is becoming clear that task knowledge has a great effect on visual processing.
Individual neurons (in monkey) in areas considered early in the processing
sequence (V1,V2 and V4, [19, 29, 30]) have been observed to change their tuning
properties as a result of task knowledge. Some neurons in V4 even appear to code
the cue provided to the subject for a particular experiment (target orientation in
an orientation selection task). Even more surprising is the observation that the
orientation cue may be provided through tactile stimulation rather than visual,
and then is stored in area V4 neurons of the visual cortex [18]. Knowledge of task,
that is the goal, not only has great effect on processing, but seems to be
represented explicitly within the processing hierarchy. Indeed, in area IT, cues
seem to not only be represented but the representation is retained for several
seconds in anticipation of a task [9].

Although many have hoped that simplifying assumptions may be made in order
to model the human visual system computationally, the evidence is pointing away
from this. For example, the concept of independent modules received a great deal
of attention within the computational vision community for some time and
behaviorists have embraced this notion as well. There is no reason to believe that
any of the visual areas process information independently of one another; the
connectivity patterns do not support this. Lesion studies demonstrate most clearly
that if one area of the brain is destroyed or a connection is cut, the remaining
areas at the individual neuron level as well as at a gross functional level yield
different functions (clinically, this occurs naturally in humans as a result of a
stroke). Another concept which appeared to permit simplifications was the
segregation of ““‘what” and “where” processes into independent pathways. This
too has very recently fallen into doubt; higher visual functions leading to the
perception of spatiotemporal relationships or to visual object recognition do not
depend exclusively on information processed by either pathway [28]. Finally, the
fact that a given neuron in the visual hierarchy, even as early as area V1, can
change its functional properties as a result of task (that is, external) influences is
all the proof that is required to put the independent modules concept to rest. The
notion that vision may be modeled by integrating independent modules is not
viable.

The description above focuses on the visual cortex. Since the behaviorist
approach relies on fast perception and the ability to find stimuli that trigger
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behaviors as integral components, its principles must also extend to perceptual
processing. There is little biological support for behaviorist principles as they
apply to perception.

4. Behaviorism and the scaling problem

There are four major components to a behaviorist solution (call the problem
“stimulus—behavior search’):

® localize and recognize a stimulus (with no pre-specified target);

® link the stimulus to an applicable action;

® decide among all applicable actions,

® generate actuator commands.
The first subsection will present two theorems relating to the problem complexity
of stimulus—behavior search

4.1. Complexity of stimulus—behavior search

Since the unbounded passive visual search problem (UPVS) described in
Section 2 is exactly the first of the four components of the behaviorist solution
given at the beginning of Section 4, the following theorem is stated without proof:

Theorem 5. Unbounded passive stimulus—behavior search is NP-hard.

It must be stressed that the NP-hardness, like for unbounded passive visual
search is due entirely to the combinatorics of secarching an image without an
explicit target. The fact that there is additional processing for determining the
applicability of behaviors and for deciding which behavior to execute only makes
the time complexity of the problem worse than that of unbounded visual search.

Will active behaviorism help? The addition of the time dimension so that the
search for a behavior-stimulus pair is over time does not necessarily help. In
[47,48] it was shown that if two problems can be solved by both active and
passive methods, then the active approach will be more efficient only under
certain constraints having to do with the amount of memory available for storage
of intermediate results, the extent of sensor movements, the size of the visual field
and so on. More importantly, an intermediate representation of best hypotheses is
required in order to satisfy those constraints (and is implied in Bajcsy’s original
paper [2]). The use of such intermediate representations is not within the
behaviorist paradigm. In any case, the following theorem follows directly from
Theorem 3 and the task decomposition given at the beginning of this section:

Theorem 6. The unbounded active stimulus—behavior search problem is NP-hard.

As described in Sections 2.1.2 and 2.1.4, the bounded visual search problem
can be linear with respect to image size. Although no argument supporting the
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following claim is given here, it is likely that the bounded stimulus—behavior
search problem has low order time complexity also.

4.2. Implications

Recall that the central thesis of this paper is to argue against the behaviorist
claims that the theory will scale up to problems which are human-like in their size
and, that behaviorism can be used as a model of human intelligence. Much
discussion has already been presented with respect to how poorly the theory fits
with biological evidence. The previous section adds to this evidence the fact that
given our current understanding of computational complexity, the behaviorist
philosophy presents a view of human intelligence as a computationally intractable
activity. Since human intelligence is an existence proof for its own tractability, in
fact, this means that the behaviorists are defining and then attempting to solve the
wrong problem!

A couple of small modifications to the behaviorist position have appeared in
implementations which are claimed to make a difference; they do not. The
addition of state to behaviors does not affect this result at all since the NP-
hardness is due to the perception component alone. The use of many special small
sensors instead does not change the NP-hardness. Moreover, humans do not have
many special visual sensors, they have only two eyes. These points are further
discussed in the next section.

4.3. A numerical exercise

The behaviorist position, if relaxed, might in fact result in biologically plausible
solutions; these modifications to the theory would be anathema to its proponents.
This section presents a little numerical exercise whose goal it is to show how
necessary the modifications are.

Above it was shown that bounded visual search may be fast, so it is natural to
suggest that perhaps the behaviorist strategy could employ bounded search rather
than unbounded search. Let us numerically check whether relaxation of the *“no
targets” principle is sufficient to permit scalability. Let us permit explicit
representations of stimuli that trigger behaviors (the Herbert robot does exactly
this: Herbert contains an explicit procedure for the recognition of soda cans, and
can recognize them only at a certain height and in certain positions, [10]). Thus,
all behaviors can run in parallel, each has complete knowledge of its trigger
stimulus and performs perceptual processing independently of the other be-
haviors. Each behavior can extract a stimulus relatively quickly. Can this
architecture now satisfy the scaling definition presented earlier?

It is required to not only specify the size of the input data as was done in the
definition of Section 1, but also, to specify the number of possible responses to
this data (or behaviors). How can this be done? One simple-minded (and perhaps
not the best) way follows. The Visual Dictionary [12] contains over 3,000 images
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portraying over 25,000 generic objects in all (cars, stadiums, forks, etc.). These
images do not include:

@ variations in object context which could lead to very different behaviors
(picking up a fork at the dinner table while seated is very different from
picking up the fork your child dropped behind the living room couch);

® variations due to object type or brand (the act of sitting on a chair is virtually
identical to the act of sitting on a sofa even though the images are very
different; there are scores of brands of cars, and we all would drive a sleek,
red, 2-seat sports car very differently than we would drive the family sedan);

® variations due to colour (the human eye is sensitive to about 500 different
hues, 20 steps of saturation for each and 500 levels of brightness for each
hue-saturation pair);

® variations due to lighting (the eye is sensitive to luminance spans of
10,000,000,000 to one);

® variations due to viewpoint (seeing an object from one viewpoint may cause a
shift to another viewpoint in order to fully recognize it; depending on the
resolution of the sensing system and on the method of perceptual processing,
up to 30% of the viewing sphere around a single object may contain
degenerate viewpoints which require sensor motion for disambiguation, [50]);

® time-varying events.

Would 1,000,000 behaviors be sufficient? 100,000,000? It is very hard to say;
however, it is clear that the number is necessarily very large for the average adulit.
Let us use 25,000,000 for the sake of argument. Thus, on average, each of the
25,000 generic objects in the dictionary:

® can be found in 4 different spatial contexts;

® can be seen under 4 different lighting conditions;

® can be of 2 different types;

® can have one of 4 distinct colours;

® can be seen from 4 distinct viewpoints.

For each of these objects, the most primitive of behavior sets is included. Each
can elicit one of two behaviors: do something or ignore the object. This seems to
be a very conservative estimate for the total number of human behaviors
considering that only visual stimuli and their resulting behaviors are counted!

Given 2 retinas with about 250,000,000 photoreceptors, each perception
module for each of the 25,000,000 behaviors must be directly connected to each
photoreceptor (in order to ensure translation invariant recognition). The total
number of connections would be 6.25 x 10", That is already larger than the total
number of synapses in the human brain (and remember only visual behaviors are
counted). As a model of intelligence, behaviorism with explicit targets is
untenable.

Suppose that some machine someday can easily handle that connectivity. The
model now requires 25,000,000 independent processing pathways, each beginning
with targeted analysis of the visual image. Do any of the 25,000,000 analyses have
any processing steps in common? Of course they do; it is hard to imagine any
perception process that would not use methods to detect image structure (for
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example, discontinuity, homogeneity, temporal variation) or if not, to use some
kind of matching procedure on the data directly that would ensure colour
constant, translation and rotation invariant, motion invariant perception of object
identity. Would it not enhance the efficiency of processing resources and system
power consumption if those steps were unified, performed once, and then the
results shared? Of course, and thus is born the intermediate representation;
behaviorism disallows such representations.

Suppose that hardware is so cheap and power so plentiful that the replication of
representations (so that they are not shared) is not really a concern. The output of
the 25,000,000 behaviors must now be processed such that the most appropriate
behavior is the overall system response. A priority network is needed (as in
Connell’s implementation of the subsumption scheme) for deciding this. In the
subsumption scheme, each behavior may spy on and inject signals into any other
lower level behavior. Assume that there are L levels, each with an equal number
of behaviors, and compute the total number of connections needed. Further
assume that each behavior on average only affects 1/nth of all the behaviors in
the levels below it. Thus, each of the top level’s 25,000,000/L behaviors are
connected to (L —1)25,000,000/(nL ) behaviors; the next level down also has
25.,000,000/L behaviors and each of them is connected to the (L — 2)25,000,000/
(nL) behaviors below it and so on. How many connections are there in total in
the priority net alone? Some simple calculations lead to the total of
wL—1)

=6.25%10 L

LS 125,000,000\ / L — x\ /25,000,000
2 L L

x=1

connections. Stated otherwise, there would be B*(L —1)/(nL) connections,
where the number of behaviors is represented by B. To this number one must add
the number of connections required at the sensory end as derived earlier; the total
number of connections for the input plus the priority net is

6.25x 10" x (10 + (L — 1)/(nL.)) .

Even if very sparse connectivity in the priority net is assumed (n is large), this
total is much too large for a biologically plausible model of intelligent behavior.
From a machine intelligence standpoint, very optimistic assumptions must be
made.

The above calculations assumed static images; the world is a dynamic one and
we react to motion and to moving objects and changing events. How many more
behaviors must be added to account for the dynamic nature of the world? It is
clear that it is not easy to estimate this figure and it is equally clear that it must be
very large. In a sense, behaviorist implementations which permit each behavior to
contain state account for some of the time-varying aspects of the world. However,
following behaviorist principles, state is not permitted to affect the sensory
processing; this would mean that processing would be guided or targeted in some
sense. Exactly the same conclusions as above are reached insofar as the
perception portion of processing is concerned. Since the limits were exceeded
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without time-varying images, they are exceeded in a much more obvious manner
once these are included in this numerical exercise.

It seems that regardless of the direction one takes in this exercise, some
behaviorist principle must be violated or questioned. The difficulty of perception
is the issue and not the behaviors themselves.

What about other modifications to the paradigm? Would many small, special-
purpose sensors help? Let us leave aside for the moment that humans have two
eyes and not a set of many small special visual sensors; this strategy seems to have
no relation to human biology. Suppose that each behavior has its own sensor so
that there are 25,000,000 sensors. Let their average number of receptors (or
pixels) be given by R. R must be at least 10 in order to at least cover the visual
field of the two eyes. Overall connectivity seems reduced to an acceptable degree,
yet small values of R mean that each perception module is position-specific. In
order to enable for translation-invariant recognition, all of the behaviors must
have access to the output of all the sensors undoing the connectivity benefit
and/or necessitating the representation of results which are shared by all
behaviors.

The strict behaviorist position, even after permitting very optimistic hardware
expectations, does not scale to human-like problems as defined in Section 1; it
also does not scale in a biologically plausible manner. Note that this exercise was
performed using the size of visual problems only; the remaining senses also
require analysis. Relaxing some of the principles seems necessary; this is true
especially as the scaling issue pertains to a model of human behavior. One may
argue that the number of behaviors used in this “back of the envelope”
calculation is wildly too large. It depends on what one means by behavior. Here,
since behaviors must employ bounded visual search, and taking the lead from
Connelil’s implementation (soda cans in one orientation, at one height and one
distance from the robot), it is not at all difficult to imagine far more behaviors
than 25,000,000 if every motor action that has slightly different parameters
(speed, grasp strength, arm pose and trajectory in space, etc.) is considered as a
unique behavior since it would be necessitated by a slightly different target image.

4.4. Summary: scaling and computational behaviorism

Several key points must be emphasized:

® Visual search can be viewed within the behaviorist paradigm and is an integral
component of any intelligent behavior. Recall that for a visual search task, a
subject is presented with a target (or targets), and a test image and asked to
determine whether or not that target is present in a test image. This involves
two behaviors (or stimulus—action pairs): (1) if target present, press button
A; (2) if target absent, press button B.

® Behaviorism with embedded unbounded visual search problems may require
exponential time (exponential in image size) for the signal matching tasks. If
the target is given as a set of constraints or is known only implicitly in some
way, behaviorism will not scale for realistic, nontrivial images.
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® Active behaviorism requires intermediate representations of hypotheses by
definition. Although the terms active vision, reactive behavior, animate vision
etc. are used in the literature almost as synonyms, in fact none truly reflect
active perception as defined by Bajcsy [2] simply because they do not
acknowledge the need for intermediate representations of hypotheses [48].

® Strict behaviorism cannot satisfy the definition of scaling in Section 1. Data-
directed, spatial parallelism simply does not make sense if human-size
problems and behavior spaces are considered.

® The strict behaviorist position must be modified in order to satisfy the scaling
definition presented earlier. The appropriate kind of scaling in the context of
human visual behavior may be accomplished by permitting optimizations and
approximations of the kind described in [44, 47, 48]: intermediate representa-
tions, task guidance, visual attention, hierarchical organization, spatial
abstraction, logically segregated visual maps. This set has been shown to be
sufficient (but not necessary) to ensure scalability as defined in Section 1 with
human-like resources, problem sizes and performance specifications.

5. What do the behaviorists really mean?

The strict behaviorist position has too many problems; the claims of biological
relevance and scaling simply are not supportable. But, is the strict position really
what the behaviorists mean? The strict position is certainly the cause of
controversy: the controversy is due to the use of slippery terms such as goals,
hierarchies, representations, intermediate, perception, etc. What exactly do these
mean in the context of behaviorism? Three examples will be given now that show
that the arguments presented in print by the behaviorists and the implementations
of their robots in practice do not agree with regard to these terms.

Targets and goals

In the previous sections, it was argued that perception with no targets is not
necessarily fast. Ballard’s claim that the external world can be used as a visual
memory because its contents can be re-acquired quickly is not in most cases valid.
Moreover, biological vision seems to make use of task information and perhaps to
even represent targets explicitly. But, the term target as used in the definition of
UPYVS referred to a model of what is being sought such that it was sufficient to
constrain search in image space and it was applied in a processing architecture
able to optimize search given knowledge of the target. If the target is known (the
target or goal is explicitly represented and/or realized by the circuit) the
behaviorist paradigm can be very fast even if targets can be rotated and scaled
(although this has not appeared in any of the behaviorist implementations). This
corresponds exactly to the existing realizations of subsumption architecture.
Targets are always specified. This kind of goal is not the same as the type of goal
a planning system may be given (starting in room A go to room D), but it is a goal
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nevertheless. The behaviorists, it seems, are arguing against the latter, but their
position on the former is unclear.

Hierarchical computations

In print, Brooks uses the term hierarchy in the same sentence as subroutine
calls [7]. It is highly doubtful that the brain does much in the way of calling
subroutines in the same way conventional programming languages do. However,
there seems little doubt that the brain does use hierarchical processing, one level
providing input to the next, in both data-driven and knowledge-driven directions.
Is this not exactly how the different levels of a subsumption architecture interact?
The priority network which connects and arbitrates among behaviors in the
subsumption scheme is an example of a hierarchical computation. Further,
Connell [10] suggests the use of partitions for grouping behaviors and for levels of
arbitration. In this scheme, a group of behaviors can be switched on and off
extending the capability of his Herbert robot so that it might recognize more
objects and could treat them differently. In fact, he suggests another good use of
hierarchical processing.

Intermediate representations

In the brain, intermediate representations seem to be everywhere; even within
visual areas, many separate populations of neurons have been found to encode
the same visual space but in different ways. Yet the published strict behaviorist
dogma claims there is no need for such representation. However, in the control
system diagrams published by Brooks [5] and by Horswill and Brooks [21],
examples of intermediate representations (using the definition presented earlier)
can be found. In the former case, a sonar map is used as input for two behaviors
(halt and move forward) while in the latter, a representation of object features
(centroid and x, y coordinates) is used as input for two behaviors (drive and turn).

What do the computational behaviorists really mean?

6. Summary

Strict adherence to the philosophy of the behaviorists means that efforts to
demonstrate that the paradigm scales to human-size problems are certain to fail,
as are attempts to evaluate it as a model of human intelligence. The strict position
thus cannot be what the behaviorists really mean. It would benefit the research
community if they could elucidate their terms, and provide theoretical arguments
that support claims of scalability. This is not to say that the research by those
researchers is not useful. Far from it: the exercise has proved very important. For
small behavior sets, and well understood and small sensor signals, the behaviorist
solution seems to lead to useful devices. The combinatorial problems described
above are avoided by ensuring that the number of “pixels’ of signal is very small.

The behaviorist position will lead to successful special-purpose robots—this is
not a small accomplishment. However, it is not the solution, as it is currently
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stated, to intelligent behavior. The issue of scaling to human-like problems
requires a much deeper analysis of the amount of computation required for
human-sized problems plus much more serious consideration of actual human
behavior and neurobiology. Superficial correspondences are misleading.
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