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Abstract

A model for aspects of visual attention based on the concept of selective tuning is
presented. It provides for a solution to the problems of selection in an image, information
routing through the visual processing hierarchy and task-specific attentional bias. The
central thesis is that attention acts to optimize the search procedure inherent in a solution
to vision. It does so by selectively tuning the visual processing network which is
accomplished by a top-down hierarchy of winner-take-all processes embedded within the
visual processing pyramid. Comparisons to other major computational models of attention
and to the relevant neurobiology are included in detail throughout the paper. The model
has been implemented; several examples of its performance are shown. This model is a
hypothesis for primate visual attention, but it also outperforms existing computational
solutions for attention in machine vision and is highly appropriate to solving the problem in
a robot vision system.

1. Introduction

This paper presents theoretical and computational arguments supporting a
model of various aspects of visual attention based on the concept of selective
tuning. Previously, the concept was named the inhibitory beam model and was
first presented at the June 1991 Conference on Spatial Vision in Humans and
Robots, York University [59]. The goal of the research is to develop a model of
visual attention that has both biological plausibility as well as computational
utility.

The central thesis of this paper is that attention acts to optimize the search
procedure inherent in a solution to vision whether that solution is implemented in
the brain or in a computer. This model of attention addresses the reduction of the
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number of candidate image subsets and of feature subsets that are considered in
matching; it does so by selectively tuning the visual processing network. Compu-
tational arguments linking search optimization to attention for vision and the
concept of attentive selective tuning first appeared in [55]. Attention operates
continuously and automatically: without attention, so-called general-purpose
vision is not possible. The theory described in this paper is most closely related to
the works of Koch and Ullman [29], Burt [7], Niebur et al. [39] and Olshausen et
al. [42].

It is important to situate the model in its appropriate contexts. Not only is this
model a hypothesis for primate visual attention, but it also outperforms existing
computational solutions for attention in machine vision and is highly appropriate
to solving the problem in a robot vision system. Primate vision is an existence
proof for the functionality of systems computer vision researchers seek to
develop. If it were possible to use the same methods as are found in primate
vision embodied in a computational theory then machine vision would be
successful. It is clear that the resuiting system would not necessarily be the only
possible computational vision system with similar functionality; however, it would
be one of the solutions. Thus, the work follows in the footsteps of many other
well-known works in computer vision where biological inspiration has played an
important role. The inspiration is clear in our research; in fact, we go beyond
simply being inspired and attempting to build in characteristics of the biology.
The goal is to derive from first principles the nature of the attentional mechanism
needed by any vision system, whether it be biological or machine. As a result, our
past work has focused on laying the theoretical foundation [55-58]. This paper
details the model of visual attention that has been developed on this foundation,
presents the relationship to the neurobiology of primate visual attention, makes
predictions regarding the neurobiology, and demonstrates the computational
utility both in terms of theoretical results showing the method superior to past
models as well as experimental results demonstrating implementations of the
model. Thus, the model has two lifelines along which its success might be
measured. The first is dependent on whether the biological predictions can be
verified and whether new observations might be explained well by the model. The
second is dependent on whether the model is useful in computational solutions of
vision.

1.1. The need for attention in vision

As argued in [57], selective attention is one of the important mechanisms for
dealing with the combinatorial aspects of search in vision. The visual attention
mechanism seems to involve at least the following basic components: (i) the
selection of a region of interest in the visual field; (i) the selection of feature
dimensions and values of interest; (iii) the control of information flow through the
network of neurons that constitutes the visual system; and (iv) the shifting from
one selected region to the next in time. These are discussed in turn below, and
later in the paper specific solutions are proposed for some of them. Other aspects
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of attention such as the transformation of task information into attentional
instructions, integration of successive attentional fixations, interactions with
memory and indexing into model bases are not addressed here. Some past work
has dealt with some of these issues. For example, Ahuja and Abbot [1] integrate a
variety of cue types in an active scheme for surface estimation. Wilkes and Tsotsos
[69] discuss how to recognize object models using an active method which
requires several fixations from viewpoints determined by the state of interpreta-
tion. Wilkes and Tsotsos [68] deal with the problem of indexing in an active object
recognition system. However, the general problems are still open.

1.1.1. The need for region of interest selection

In [56], it was proved that visual search, in the case where explicit targets are
given in advance, has time complexity which is linear in the size of the image (and
this linear response time versus display size is verified psychophysically in a large
body of work). If, on the other hand, no explicit target is provided, the task is
NP-complete. Thus, it may be concluded that the brain is not solving this general
problem [57, 58]. The intractability is due solely to the combinatorial nature of
selecting which parts of the input image are to be processed; there are an
exponential number of such image subsets. Attentional selection may determine
which mapping to attempt to verify first; if the first such mapping selected is a
good one, a great deal of search can be avoided, otherwise there is the potential
for a very inefficient search process. For sufficiently small images and/or
sufficiently massive computational power, the brute-force search strategy will
work perfectly well without attention. For both the primate and realizable
computational visual systems and natural images and tasks, this brute-force
approach fails [57].

1.1.2. The need for features of interest selection

Search within feature space seems to also have an exponential nature [57].
Although the number of feature types seems much smaller than the size of an
image, the number of feature values is very large. Suppose that there are a large
number of potential models and that a target containing the color red is sought in
an input image and that nothing more is known about the target. As a first
strategy, it would seem sensible to consider only matching to those models that
contain red features. This is a large subset. Suppose now that the target may also
contain the color blue (the target contains red or blue or both). Using this simple
strategy, all models with blue features are added to the subset; the resulting set is
larger. And so on, as feature types and values are added to the image, more and
more models are added to this subset. In the extreme, this data-directed model
activation strategy might include almost all models. Thus, this is not a good
method. The mere presence of a feature type gives little discriminating power for
a vision system unless there is an associated restriction on the set of objects or
events in the task. This is exactly the situation which led to the conclusion in [53]
that presence of a feature is sufficient for popout; the target is known and the
feature is a sufficient discriminator. The number of feature value subsets is an
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exponential function of the set size, and brute-force search in natural images for
feature value subsets which may be the best candidates for matching will not
suffice [57]. Recent neurobiology concludes that attentional selection acts in both
the feature and spatial domains and does so independently [27].

1.1.3. The problems with information flow

The computational complexity of vision suggests pyramidal processing |3, 7, 55,
60]. Although pyramids solve part of the complexity problem by reducing the size
of the representations to be processed, they introduce others: they corrupt the
signals flowing through them unless some additional mechanisms are included.
Assume an architecture with a hierarchical arrangement of computing units;
values represented at each unit are coded by their response strength similar in
spirit to other pyramid schemes (say, [7]). Connectivity from layer to layer need
not be fixed and each layer (indeed, each unit) may have different connectivity
patterns including overlap. There may be more than one output representation;
that is, from an initial input layer several subhierarchies may be constructed, each
specializing parts of the original input. This kind of configuration is consistent
with that described by Van Essen et al. [63] as the starting point for their model.
The hierarchy is composed of computing units (which for the remainder of the
paper will be referred to as interpretive units) which perform processing related
directly to the interpretation of their input (e.g., color, edges, motion). Each
interpretive unit receives feedforward as well as feedback connections within the
pyramid. Each position in a layer may be the site of several interpretive units,
each specialized for some type of visual process. In other words, each spatial
position within a layer may involve a column of interpretive units. Within a
column, each unit is sensitive to a similar portion of the visual field (its receptive
field—RF) but may process different modalities of visual information. For the
remainder of the paper the examples and discussion, without any loss of
generality, will focus on single pyramids composed of a single type of interpretive
unit. Sizes of layers and connectivities do not affect the conclusions.

Four information flow problems due to pyramidal processing will be described;
the problems arise on the assumption that no direct or indirect information flow
control exists in the structure described in the previous paragraph. The first
problem is depicted in Fig. 1A: the Context effect. A single unit at the top of the
pyramid receives input from a very large subpyramid, and thus from a very large
portion of the visual field. Unless an object is alone in the visual field, the
response of units whose receptive fields contain the object will be affected not
only by that object but also by any other image event in that receptive field, and is
confounded by the object’s context. Surround effects have been observed
previously. For example, Van Essen et al. [64] speculate that the large feedback
pathways in the cortical hierarchy may be causing this phenomenon. Blurring is
the second problem with pyramid architectures. A single event at the input will
affect an inverted subpyramid of units (Fig. 1B). Thus, although a single event
may be well localized at the input layer, it is blurred as it flows upwards so that a
large portion of the output layer now represents parts of it. The third problem is



J.K. Tsotsos et al. | Artificial Intelligence 78 (1995) 507-545 511

(=]

at top of pyramid

g
w

[~
=

=
w

—
(=

weighting due to pyramid co
wul

0
02 4 6 8 1012 1416 18 20

position across input layer

/ %’M. ’:" .

A\

peripheral central D

stimulus stimulus

BN
a¢
Y

Fig. 1. A. Context effect. B. Blurring effect. C. Cross-talk effect. D. Boundary effect. E. Impulse
response of the pyramid. All connections are equally weighted.

Cross-talk (Fig. 1C). Two separate visual events in the visual field will activate
two inverted subpyramids which overlap. The region of overlap will contain units
whose activity is a function of both events. Thus, each event interferes with the
interpretation of other events in the visual field. The final problem is the
Boundary problem: central items will appear to be stronger at the output layer
than items in the visual periphery even if the peripheral items are in fact stronger.
This is due solely to the numbers of connections feeding units in successively
higher layers in the outer regions of the pyramid. The input layer is thus divided
into a central and peripheral region. In Fig. 1D, the cause for the effect is
illustrated: the parts of the pyramid affected by two stimuli in the input layer, one
being located centrally and the other peripherally, are shown. Note how the
number of ascending connections differs in the two cases; the peripheral units will
have smaller valued responses than the central ones even if the stimuli are of
equal strength. Normalization or local weighting corrections will not solve this.
This is even more evident in Fig. 1E. Here, a unit strength single stimulus is swept
across the input field and a plot is shown of the maximum value at the output
layer produced as a function of its input position.

1.1.4. The need to shift selection in lime

Once a region is selected, it then follows that the remainder of the visual field
cannot be processed unless a sequence of different regions are selected which
together cover the visual field. There is the possibility that many regions might be
selected simultaneously and matched in parallel; the behavioral observations
however do not support multiple foci of attention (see [16]). There are many
choices for how to select next regions to process. An algorithm might simply tile
visual space, sclecting regions in some arbitrary order that will eventually cover
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the entire visual field. Alternatively, an ordering might be imposed on image
subregions such that after one is processed it is not processed ever again unless
some new image event occurs in that region. Whatever the algorithm, solutions
must be found to the following problems: (i) in what order should regions be
selected? (ii) when should a previously selected region be re-selected? (iii) if the
visual world is time-varying, how are changes in the image contents taken into
account in determining the selected regions? Task requirements may help in this
determination.

1.1.5. The need to balance task- and data-directed processes

Many of the above arguments point to the need to use task information
whenever possible in order to reduce the computational cost of vision. But task
information is not always available; many human activities seem mindless or
casual as opposed to directed by some specific goal. Thus, one must not ignore
data-directed processing and the need to balance the task- and data-directed
dimensions of vision processing and of attention specifically. Neither task
direction for attention nor the need for balance between the two processing
modes is a new idea. For example, Roland [44] proposed the existence of a
task-dependent selective attention mechanism which independently of stimulus
rates and intensities enhances or inhibits the metabolism in cortical areas in a
differential way. Selective attention can influence different processing levels in the
visual system possibly reflecting a facilitatory effect on different visual computa-
tions or task components. For example, psychophysical sensitivity for discrimina-
tion of subtle attribute variations is observed to be enhanced with task guidance
[11]. Finally, a review of the neurobiology of attention can be found in [10]. That
paper concludes that attentional processes must achieve a balance between
data-driven and knowledge-driven processes.

1.2. Other models

Several hypotheses for the computational modeling of biological visual atten-
tion have appeared. The connectionist hypotheses are not detailed in this brief
review; most include learning models and do not address the relevant neuro-
biology of attention. There are many computational vision models which include
aspects of attention, some of which are briefly overviewed.

1.2.1. The selective routing hypothesis

Several models fall into the Selective Routing Hypothesis category. The first is
that of Koch and Ullman [29]. The model includes the following elements: (i) an
early representation, computed in parallel, permitting separate representations of
several stimulus characteristics; (ii) a selective mapping from these representa-
tions into a central non-topographic representation which at any instant contains
only the properties of a single visual location; (iii) a winner-take-all (WTA)
network implementing the selection process based on one major rule: conspicuity
of location (minor rules of proximity or similarity preference are also suggested);
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and, (iv) inhibition of this selected location causes an automatic shift to the next
most conspicuous location.

Feature maps code conspicuity within a particular feature dimension. The
saliency map combines information from each of the feature maps into a global
measure where points corresponding to one location in a feature map project to
single units in the saliency map. Saliency at a given location is determined by the
degree of difference between that location and its surround as suggested by Julesz
and Bergen [28] with their texton difference idea and further explored by
Nothdurft [41] who showed that feature contrast is the major determinant in
speed of visual search and not feature values per se. Different features may be
weighted differently or their contribution may be modulated by higher-order
computations. The WTA network implements a parallel computation based on
the values on the saliency map localizing the most conspicuous location. Due to
biological constraints on connectivity as well as theoretical convergence difficul-
ties, the WTA takes a particular form: it requires a tree of intermediate nodes
breaking up the computation into smaller subtasks and permitting better conver-
gence properties. If the size of the saliency map is n units, and the branching
factor of the intermediate tree is m, then the network requires log, n com-
parisons to determine the globally most salient item. Then, a second pyramid
marks the location of this most salient item and through another log,, n steps the
most salient item reaches the output of the system. A shift of attention thus
requires at most 2 log,, n time steps. The WTA will not converge if there are two
equally strong items.

The shifter circuit model presented a strategy for information flow in stereopsis,
visual attention and motion perception (Anderson and Van Essen [3]). The model
enables the re-alignment of successive representations in the processing stream
starting in the lateral geniculate nucleus and the input layers of primate visual
area V1. The realignment is based on the preservation of spatial relationships,
thus the name “shifter” circuits. The shift is accomplished by a succession of
stages linked by diverging excitatory inputs. Control of the direction of shift is
accomplished at each stage by inhibitory neurons that selectively suppress sets of
ascending inputs. For visual attention, the routing stages are grouped into small-
and large-scale shifts. Control signals are generated externally to the main
processing stream. If shifts are assumed spatially contiguous it is straightforward
to show that this strategy requires an implausibly large number of connections per
neuron.

The Olshausen, Anderson and Van Essen [42] model is an elaboration of the
shifter circuit idea. The problem described above with the original shifter circuits
model is remedied via a clever re-structuring of the connectivity patterns between
layers. By allowing the spacing between neighboring connections to increase in
successively higher layers, the routing network has early layers that are well-
suited for small-scale shifts while the higher layers can implement larger-scale
shifts. The key goal of the Olshausen et al. [42] mechanism is to form position-
and scale-invariant representations of objects in the visual field at the output layer
of the visual processing pyramid. This is accomplished via a set of control
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neurons, originating in the pulvinar, that dynamically modify synaptic weights of
intracortical connections so that information from a selected region of primary
visual cortex is routed to higher areas. The topography of the selected portion of
the visual field is preserved by the resulting transformations. Each node in the
processing hierarchy performs a simple linear weighted sum operation. Selected
objects in the visual field are found by the Koch-Ullman mechanism using
luminance saliency, then routed to the top layer of the pyramid. The selected
object is transformed by the routing so that it spans the top-level representation
where associative recognition takes place.

1.2.2. The Temporal Tagging Hypothesis

The Temporal Tagging Hypothesis proposes that selected items are distin-
guished as they flow through the processing system because they are tagged by
superimposing a frequency modulation of 40 Hz on the signal. Crick and Koch
[12] suggest that an attentional mechanism binds together all those neurons whose
activity relates to the relevant features of a single visual object. This is done by
generating coherent semi-synchronous oscillations in the 40-70 Hz range. These
oscillations then activate a transient short-term memory. These suggestions are
not fully developed computationally in that paper. However, in a subsequent
effort, Niebur, Koch and Rosin [39] detail a model based on those suggestions.

Niebur et al. assume that salient objects have been selected in the visual field
by the Koch-Uliman mechanism. Attentional modulation is added at the level of
primary visual cortex V1 and affects only the temporal structure of the spike trains
of V1 neurons but not their mean firing rate. The existence of frequency-selective
inhibitory interneurons are assumed in V4. These are required to act as bandpass
filters selective to spikes arriving every 25ms or so. Thus, they would pass
temporally tagged spike trains and block other non-frequency modulated signals.
Both Crick and Koch [12] and Niebur et al. [39] assume that selective attention
activates competition within a stack or microcolumn of neurons in V4. In the
presence of multiple stimuli, neurons will compete with each other. Since the
outputs of V1 neurons are tagged, their postsynaptic targets in V4 will win in the
V4 level competition. They go on to say that there are no attentional effects on
firing rates in V1, only in V4 or higher areas.

Niebur and Koch [40] further modified the model to deal with the observation
that oscillatory firing of neurons has been difficult to confirm experimentally.
Thus, rather than suggest that oscillatory modulation is used for temporal tagging,
they have proposed that firing coincidences among V2 neurons are sufficient.
There is no evidence available which might favor one proposal over the other.
However, Shadlen and Newsome [49] present theoretical arguments proving the
existence of neurons that defect fine timing coincidences is doubtful.

1.2.3. Models of attention within computer vision

There are a great many proposals for attentive processing in computer vision,
and it is not possible to review all of them here. Clark and Ferrier [9] use a
salience measure where at each position in the visual field, a value is associated
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that is a function of the response of some feature detector (brightness, color, etc.)
and the relative importance of the particular feature to the task being solved.
WTA methods then find the strongest of those responses and this becomes the
focus of attention. The goal of the work was to guide the overt attention of the
Harvard stereo head and not to model covert attentional fixations. Burt [7] has
developed an attention mechanism based on a multi-resolution Laplacian image
pyramid. A rudimentary fovea is formed within the pyramid. At the lowest
frequency level, the foveal region encompasses the whole image and represents
the capability of peripheral vision to resolve low resolution patterns over the full
field of view. At successive levels, the region in the fovea is half the field of view
of the level below it. The overall mechanism has three basic functions: foveation,
tracking and prediction of next salient locations. As such, it has some of the
characteristics of an overt attentional system.

Color is used as a means of locating matching candidates in work by Swain and
Ballard [51], Ennesser and Medioni [20] and Grimson et al. [23], to name a few.
In these cases, models of the objects sought in the images are known in advance
and the color distribution of the object is used (and in conjunction with position
by Ennesser and Medioni [20] and with stereo by Grimson et al. [23]) to filter
images for candidates. There seems to be no relationship between this kind of
attentional guidance and human behavior. The attentive part of the solution to
the “Waldo” hidden pictures game described in [20,23] appears inherently
parallel, whereas humans require painstaking serial search to accomplish the
same. Further, in humans it is feature contrast that affects the speed of
performance, not feature values themselves, i.e., color histograms [41]. For
human vision, although a particular visual task may contain many qualities which
we feel are salient, it is not the case that they can all be used by the visual
processing system with equal ease for search optimization. In the ‘“Waldo”
pictures for example, the complex outlines of the various figures do not appear to
be useful saliency cues. Thus, there is a difference between what is perceived
salient at the task level and what is usable saliency at the early vision level.
Usable saliency should probably be restricted to those image qualities that can be
rapidly detected, to those that “pop out” or are the output of the filters present in
the early pathways. Thus these systems, although they have utility for computer
vision, were not developed as models of the biological attentive system. In fact,
by assuming that all salient features are usable, they go beyond what human
vision seems capable of and attempt to solve too large a problem in comparison to
biology.

2. The selective tuning model of visual attention

Selective tuning takes two forms integrated within a single algorithm: spatial
selection is realized by inhibition of irrelevant connections in a pyramid of visual
computations; and, feature selection is realized by inhibition of those units which
compute non-selected features. The search process which spatially localizes the
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image subset to process is as follows. A WTA process operates across the entire
visual field at the top layer of the pyramid: it determines the globally most salient
(or winning) unit in the output layer. This WTA can accept guidance for areas or
stimulus qualities to favor if that guidance were available but operates in-
dependently otherwise. The search process then proceeds from the top layer to
the lower layers. The globally winning unit activates another WTA that operates
only over its direct feedforward inputs. This localizes the winning unit within the
top-level winning receptive field. All of the feedforward branches of the pyramid
that do not contribute to the winner are pruned (that is, the connections are
inhibited leaving the units unaffected). This pruning idea is then applied
recursively to successively lower layers. The end result is that from a globally
strongest response, the cause of that largest response is localized in the sensory
field at the earliest levels. The paths remaining may be considered the pass zone
while the pruned paths form the inhibitory zone of an attentional beam (see Fig.
2). The WTA does not violate biological connectivity constraints if the top layer is
constrained to contain at most a number of interpretive units equal to the lesser of
the permitted neuron fan-in and fan-out. Further there is no restriction on the
uniqueness or contiguity of winners; a group of equally strong yet non-contiguous
units can be identified as most salient. Conflicting biases are dealt with solely
within the WTA scheme much like Clark and Ferrier [9] suggest (this is discussed
further below).

The process of selection requires two traversals of the pyramid. First, the
representations of the interpretive units throughout the pyramid are computed in
a feedforward manner. Second, the hierarchy of WTA processes is activated in a
top-down manner to detect and localize the strongest item in each layer of
representation, pruning parts of the pyramid that do not contribute to the most
salient item and continuously propagating changes upwards.

There is similarity between the selective tuning model and the models of Koch
and Ullman [29] and of Burt [7]. The selective tuning model includes some of the
elements of the Koch-Ullman model as described above; differences will be

layers of input
abstmction hierarchy

effective
receptive field inhibi
of selected unit ftory

attentional

in unattended case heam

"pass” zane "inhibit" zone

Fig. 2. The inhibitory attentional beam concept operating within a pyramid of visual computations.
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highlighted below. Burt’s model also includes the notion of top-down, hierarchical
pruning within a pyramid structure. However, Burt does not detail exactly how
the decisions are made and there is no relationship between his model and the
neurobiology of early vision.

2.1. A solution for the selection of spatial region of interest

Koch and Ullman’s WTA algorithm is central to all other major computational
models of biological visual attention. When it was designed, it seemed consistent
with the known timing of attentional shifts [50, 54]; however, this is no longer the
case. Remington and Pierce [45] show that distance has no effect on attention
shifts; there is no attentional gradient. They further point out a very important
constraint: efficient coordination with the saccadic eye movement system in
reading or visual search tasks would dictate rapid, time-invariant movements to
match saccade dynamics. More recently, Krose and Julesz [30] found no
proximity effect; they show that shifts of attention do not take time proportional
to the distance between items but rather are accomplished in constant time and
conclude that a parallel scheme is needed to find prospective locations which are
then checked by a slow serial process. Further, Koch and Ullman’s mechanism
does not immediately yield the kinds of attention-related receptive field changes
observed in areas such as V4 [35].

2.1.1. A new winner-take-all algorithm

A new WTA updating rule is presented whose properties seem better matched
to the current knowledge of the primate visual system. The model requires several
different types of computing units arranged in a pyramid. Interpretive units
compute the visual features. Gating units compute the WTA result across the
inputs of a particular interpretive unit and gate winning input through to the
interpretive units in the next feedforward layer of the pyramid. Gating control
units control the downward flow of selection through the pyramid and are
responsible for the signals which either activate or shut down the WTA processes.
Bias units provide top-down, task-related selection via multiplicative inhibition.
Fig. 3 gives the overall architecture that ties these basic units types together. A
grouping consisting of one interpretive unit, its associated gating control and bias
unit, the set of WTA gating units on the inputs of the interpretive unit and
associated connections is termed an assembly.

2.1.2. Form of the WTA computation

The notation to be used below is introduced; Fig. 3 should be used as a
supplement. Physical units are distinguished from their value by the use of a hat
(") where the hatted variable represents the unit and the same variable without
the hat represents the value of the unit. The first subscript gives the layer of the
hierarchy in which the unit is found; the second subscript gives the assembly in
which the unit is found; the third subscript, if present, represents an identifier
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Fig. 3. The detailed wiring within four assemblies spanning three layers in the visual processing
hierarchy is shown; see Section 2.1.2.

used to distinguish units within a set. Superscripts refer to time within the
iterations of a given WTA process. The input layer is layer 1 and the output layer
is layer L. Further:

® [, the interpretive unit in assembly k in layer /;

® G, the jth WTA gating unit, in assembly k in layer [ linking I, with

—~

I~ 1,j N
® ; , the gating control unit for the WTA over the inputs to I, ,;

® b, . the bias unit for [, ; ) )
® g, the real-valued weight applied to [,_, ; in the computation of [, ;;
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® 1, . a scale normalization factor;
® M, ,: the set of gating units for unit [, ,;
® %U.,,: the set of gating units in layer / + 1 making feedback connections to

&1k

® %, the set of bias units in layer / + 1 making feedback connections to
bI.k'

A common iterative formulation for a WTA {21] is:
ci=Cc'- 2 w,C', (1)

IEVi*k

where V is the set of units in the competition and the values of the units in the
WTA process (C; €V for all defined j) at time ¢ are given by C,. All units are
connected to all others and the relative amount of influence of unit / on unit & is
reflected by the weight w, .. All units decay in value with time; the process
terminates when all units but one have value of 0.0. In the new formulation of the
WTA for the selective tuning model, winning units maintain their actual response
strength while other units decay. In this way the instantaneous representation of
winners in the hierarchy always refiects the actual input. This is accomplished
using a simple observation: if the inhibitory signal is based on response differ-
ences, then an implicit but global ordering of response strengths is imposed on the
entire network on the basis of pairwise local information. The largest item will
thus not be inhibited at all, but will participate in inhibiting all other units. The
smallest unit will not inhibit any other units but will be inhibited by all. 4, ;
represents this contribution based on response differences. The contribution in
the WTA from unit / to unit j is set such that:

A {‘II &, xGl ki~ Dik,j ;,k%j , if0<6 <ql.k,iG;,kTi “qik,j ;.k}j > )

Lo, otherwise .

G ;j is the value of gating unit G, k,j at time ¢, such that 0= Gl - The
weighting, g, ¥ € R, of each input to the interpretive unit I, is included in order
to reflect the importance of each input to the interpretive computation. It would
not be necessary if it were the case that all inputs to a given interpretive unit were
equally weighted; this is not the case. If the largest valued input to the
computation of I, is weighted negatively in that computation, then it should not
be considered as a most salient input within the receptive field of I . Using the
q;,;; weights in the manner above ensures that the largest value must also be
positively weighted; it is the product of value and weight that is important to the
computation of contributions in the WTA. 0 is a threshold set to

Z
27+1

assuming that at least one of the values in the competition has value greater than
6 and that Z is their maximum possible value. This setting guarantees conver-
gence within at most y iterations (see below). The WTA stops once the gating
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units in the competition are partitioned into two classes: those with value zero,
and those with value greater than 6 but within 6 of each other (the winners).
Multiple winners are thus permitted under this definition. The term w,,C."' in
(1) above is replaced by 4, ;.

The second component of the new WTA rule is the signal for providing
top-down bias. bA,vk is the bias unit for /,, with real value 0.0 =< b, . =1.0 defined
by

by =é€rg:ifll,k {a} . (4)
By 1.4 is the set of bias units in layer / + 1 making feedback connections to bA,‘,(.
The nature of the bias computation is to inhibit any non-selected units allowing
the selected ones to pass through the pyramid without interference. For example,
if red items are being sought, the interpretive units which are selective for red
stimuli would be unaffected while all other color-selective units would be biased
against to some degree. The default value of bias units is 1.0; this value only
changes if some other value is inserted at the top of the pyramid due to task
information. Since it is assumed that the inhibitory effect is multiplicative, the
simplest policy is for bias units to compute the minimum over all top-down bias
signals received. The WTA is initialized at time ¢, by setting the values of each
gating unit to the output of the biased interpretive unit to which it is connected in
the layer below:

10 —
l,k,j‘bl—l,jnl—l,jll-x,j- (5)

to is the time at which a particular WTA competition begins. The normalization
factor is included here in order to make results of computations at different scales
directly comparable (see [13,32]). Also note that the computations of (5) are
performed on the first traversal of the pyramid (the bottom-up traversal).

The next important component of the new WTA rule is the control signal which
turns the selection process on and off. g, , is the gating control unit for the WTA
over the inputs to f,'k and has value defined by:

1, if > {a}>0,
gl,k = GEU ., & (6)

0, otherwise,

where the sum is computed after the networks involved have converged. §,,
provides top-down control of the WTA processes by selecting the path of the
beam’s pass zone depending on the winning WTA units in the next higher layer. If
the gating control unit has value one, then the WTA process is turned on;
otherwise it is turned off. This is implemented by multiplicatively modifying the
iterative rule so that if the WTA is off, all updated values are zero. In this way,
the gating units are affected but not the interpretive units; only the relevant
connections are closed down allowing the unit to participate in other computa-
tions as needed. The value of §, , is zero for all units during the first phase of the
process. During this first phase, the gating units (all the G,‘k_ ;) are open and the
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WTAs are all disabled so that the responses computed by the interpretive units
based on the stimulus in a bottom-up fashion can pass through the pyramid. Then
the value of ,, becomes one for all the units at the top layer turning on the
top-most WTA process. The results of this WTA process then determine the
values of g, , for the successively lower layers through the application of (6). As
the pruning of connections proceeds downwards, new results of interpretive unit
computations become available as their inputs are restricted. Time is allowed as
shown in Fig. 4 for the complete upwards propagation of the new results. After
this upwards propagation, a period of time is provided where the same path
through the pyramid cannot be active. This inhibition of the selected region and
pathway is a concept borrowed from Koch and Uliman [29]. Inhibition of return is
discussed further below.

Due to the time course of the gating control signals, they and in turn the units
of the pyramid as well, exhibit an oscillatory pattern in time. If attention can shift
every 20-50 ms or so (the time between shifts varies with experiment: Sagi and
Julesz [46] found some inspection times to be as short as 17 ms; Bergen and Julesz
[6] noted 50 ms), then this is the cycle time of the gating control signal as well.
Since gating control is set to 0.0 for part of each selection and to 1.0 for the
remainder, the signal is periodic in nature with a frequency of 20-50 Hz using
these shift timings. This may be considered as an alternative explanation for the
oscillations which motivate the temporal tagging model. This gating signal may be
considered as a sort of system clock to use a computational metaphor. However,
this time for attentional shifts seems to be controversial. For example, Duncan et
al. [19] claim that attentional dwell time in their visual search experiments on
humans is on the order of 250 ms. In the above experiments, the tasks differ and

i______one attentional fixation __ 3
i on {
s i
output layer q__.kM N I—é .

input layer

for one fixation period at this

time winning gating units shut off
r one %ix
point

Fig. 4. The gating control signals for each of a number of layers in a pyramid.
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have different time requirements. It is probably the case that attention can shift
quickly if needed, but can also hold fixation for longer time intervals if the task
requires it. In our model this is easily incorporated by permitting the period of the
top-level gating signals to be task controlled.

In order to enforce stability and so that no oscillations occur, the overall result
is rectified (negative values are set to zero) by passing the entire right side of Eq.
(1) through a rectifying function R such that

x, ifx>0,
Rix] = {0, otherwise . )

Each of the preceding functionalities, including the control signals and the WTA
action, are incorporated into a new updating rule given by:

t t
Gr ki~ R[Gl,k,j '3uciEMZ 4,0 ql,k] ®)

1k; 1—]

Performance issues resulting from the use of this rule are considered next.

2.1.3. Performance issues

Two theorems and their proofs are now given, the first regarding convergence
of a single WTA process and the second regarding convergence of a pyramid of
WTA processes. An analysis of the convergence properties of the WTA method is
also given.

Theorem 1. The WTA updating rule of (8) is guaranteed to converge for all inputs
under the definitions presented in Section 2.1.2.

Proof. Let I,c, . 4, be termed the contribution to a unit. Since the
contribution to unit i depends on a difference function, an ordering of units is
implicitly imposed depending on their response magnitude. In a given WTA
competition, unit j will inhibit unit i only if the value of unit j is larger than that of
unit i. Thus, the largest units (a unique maximum is not required) wil' have a
contribution of 0 and will remain unaffected by the iterative process. All other
units will have strictly positive contributions and thus will decay in magnitude or
remain at zero. The rectifying function guarantees that no unit receives an
updated value that is negative and thus oscillations cannot occur. The iterations
are terminated when a stable state is reached (no units change in magnitude). It is
thus trivially shown that the process is guaranteed to converge and locate the
largest items in the input set. O

It is important that the convergence properties be investigated. Although
multiple winning units are a feature of the method, in order to simplify the
discussion below and without any loss of generality, we assume unique valued
units. From the updating function, it is clear that the time to convergence depends
only on three values: the value of the largest unit, the magnitude of the second
largest unit and the parameter 6. The largest unit is not affected by the updating



J.K. Tsotsos et al. | Artificial Intelligence 78 (1995) 507-545 523

process at all. The largest unit is the only unit to inhibit the second largest unit.
The contribution term for all other units would be larger than for the second
largest because those units would be inhibited by all larger units. This, along with
the fact that they are smaller initially, means that they would reach the lower
threshold faster than the second largest unit. Convergence is achieved when all
units but one decay in value to @; therefore the time to convergence is determined
by the time it takes the second largest element to reach this value. This makes the
convergence time independent of the number of units in the WTA process. The
amount of inhibition for the first iteration of the updating rule for the second
largest unit I,, where the largest unit is 1,, is given by (8), simplifying for this
situation to:

L=2-1°, %)

I, =1 is constant. Convergence is achieved when I, <. At the kth iteration,
I3 =2*13 - (2* — 1)I,. Convergence will thus require log,((I, — 6 )/(I, — I3)) itera-
tions. There is no dependence on either topographic distance or numbers of
competitors, thus providing a much better match to experiments [30, 45]. This
relationship clearly shows that the more similar the values of the two items, the
slower the convergence (as in [18]).

A bound on this number of iterations is desirable. Arbitrarily small differences
between values are not allowed; the differences must be at least 8, so the
denominator of the logarithm can be no smaller than 6. I, can be no larger than
Z. Thus, the upper bound on the number of iterations is given by:

log, (_ZG_B) . (10)
For example, if Z=1000 and 6 is 10% of this maximum value, then the upper
bound on the number of iterations is 3.2, or in practice, 4. A lower bound can be
found as well; the fastest convergence that can be achieved is when the second
largest element is just greater than the threshold 6 and this will be denoted by 6 *;
the expression becomes:

I )
—_— = V=07 11
log, (757 = log,1") =0 an

where the superscript “+” means “just larger than”. Since iterations must be
performed in their entirety before decisions are made, the lower bound in practice
is 1 iteration.

If convergence is required within v iterations, then equating ¥ to the bound of
(10) gives the appropriate value of 6 that will guarantee the convergence:

__Z
T2 41

This tacitly assumes that I, >6. I, may not be large enough in some situations;
moreover a large theta may not be sensible given that it is a variance threshold for

6 (12)
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responses caused by the same physical stimulus. A ““gain” parameter will solve
this problem. Redefine the contribution to include a gain parameter A, A=1, so
that:

t t
Gl,k,j= R[Gl,k,] -Agl’kteMg y AII]/ql’k] (13)

In this case, at the kth iteration, /5 = (1+ A)*IJ — (1 + A)* — 1)I,. Convergence
will require log,, (I, —8)/(I, — I3)) iterations. Using the same argument as
above, if convergence is required within y iterations, then the following expres-
sion gives the appropriate value of 6 that will guarantee the convergence:

Z

0=(1+A)’+1'

(14)
In general, if the allowable variance is known and the maximum number of
permissible iterations is given, then the gain may be set as:

a=(Z59)7 s a9

It now remains to determine what the WTA network is guaranteed to find in a
pyramid of such processes.

Theorem 2: The WTA algorithm is guaranteed to find a path through a
pyramid of L layers such that it includes the largest-valued interpretive node in
the output layer (m,) and interpretive nodes m, 1s k < L, such that m, is the
largest-valued node within the support set of m, and where m_must be within
the central region of the input layer.

Proof. Each interpretive node of the pyramid provides a measure of fit to some
visual event or feature. The set of units providing feedforward connections is the
support set. It is known that in the input layer there is an annulus on the
boundary in which the computations have undefined value since there is
insufficient support data. This effect is compounded in successive layers of the
pyramid. The annulus of the input layer for which the following theorem does not
hold has width defined by

Lld -1
d, -1+ 2, +—,
1 et 2
where d, is an odd integer and is the diameter of the RF at layer i.

The proof is by induction on the number of layers of the pyramid. Theorem 1
proved that for a single layer the WTA is guaranteed to converge and to find the
maximum-valued elements in the WTA set. This is true regardless of the type of
computation which derived those values. The same single layer guarantees hold
throughout the pyramid.

There is an important reason for the restriction on the node which the method
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is guaranteed to find. Recall the discussion of the context and boundary effects of
Section 1.1. The absolute maximum value in the input layer is confounded by
these two characteristics of pyramid processing and would not be preserved under
any conditions. Thus, the WTA can only find the maximal values within a layer
and not the maximum values which are inputs to those layers. This seems to be
exactly what is required, however, if the unit operations are measures of fit for
particular features or events in the input.

Assume that for a pyramid of n layers the theorem is true. By the induction
principle, if it can be proved that the theorem holds for n + 1 layers (where the
(n+ 1)th layer is added to the pyramid on the input layer side), the proof is
complete for a pyramid with an arbitrary number of layers. Suppose that the
beam path includes node m, in the nth layer. The WTA process rooted at node
m, is guaranteed by Theorem 1 to find the largest-valued node in the added layer
in the support set of node m, and include it in the beam path. O

The new WTA greatly improves the signal-to-noise ratio of the visual process.
If the connections from the unselected items are inhibited leaving the selected
unit connections intact it is clear that signal-to-noise improvement is dramatic.
This bears resemblance to the results reported by Bashinski and Bacharach [5]
who found that events can be reported at a lower threshold with attention.

Finally, a rough comparison of this WTA algorithm with the Koch-Uliman
algorithm and a provably optimal one shows that this WTA not only can
outperform the Koch-Ullman method, but also achieves an efficiency that
approaches that of the provably optimal scheme for finding the maximum value of
a given set [62] in a biologically plausible manner. This optimal time complexity
for finding a maximum in a set of n elements using a set of p parallel processors is

2 -1
log, log, n — log, log, (71)) for %sp Sn_(n_z_l (16)

within some integer constant. The basic operation is a comparison between two
elements resulting in a decision of which is the greater. The algorithm works
equally well whether there is a unique or multiple maxima in the input set. Valiant
[62] points out that optimal complexity is only possible assuming a rather large
amount of overhead computation per time step. This overhead grows as log, p,
faster than the expression above and thus dominates asymptotically. It is
reasonable to assume that the overhead can be captured in constant time if p is
fixed. Also note that the number of two-element comparisons required to
completely determine the ordering of the set is 1n(n — 1); if there were this many
processors available, the result can be found in one time step.

It must be stressed that comparing the Koch-Ullman WTA, the WTA of this
paper and the optimal max-finding procedure is not possible in a direct fashion.
Each has a different definition of the amount of computation that must be
performed within a time interval and there are different multiplicative and
additive constants involved. The latter algorithms require significant pre-process-
ing as well; the hierarchy within which the WTA operates must first be defined.
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Finally, the time complexities are stated in different ways: Valiant’s is an
asymptotic worst-case complexity while the other two are upper bounds. Never-
theless, a few interesting conclusions can be drawn from the comparison.

The Koch-Ullman algorithm requires 2log, n operations to determine the
globally most salient item. The selective tuning WTA has an upper bound on the
number of time steps of log,((Z — 6)/6) from (10). 8 can be defined in terms of
Z, i.e., if 6 is some fraction ¢ of the value Z, this expression reduces to
log,((1~¢£)/¢) and is independent of the number of elements as well as the
maximum value of those elements. Within a competition, it is assumed that some
processing is associated with each connection in the WTA network equivalent to
the computation of Eq. (2). Thus n’ — n comparisons are performed per iteration;
this will not violate connectivity constraints as described earlier. In Valiant’s
terms, p =n’ —n. Finally, this expression gives the number of iterations per layer
of the pyramid; if the pyramid has L layers, then the overall number of iterations
is given by

L logz(l—g% . (17)

Koch and Ullman suggest a biologically plausible network of six layers and an
optic nerve size number of elements in a saliency map (n = 1,000,000). This yields
12 time steps for convergence. The Valiant algorithm for this size of input set
requires fewer than 4.3 time steps (as long as the number of processors is in the
range ;n<p <in(n—1)). In the selective tuning WTA, for a six-layer network,
the upper bound on convergence time is lower than that of Koch and Ullman for
all values of ¢ > 0.2, a reasonable decision threshold. The selective tuning WTA
algorithm is faster than the Valiant scheme for values of £ >0.38, again not an
unreasonable decision threshold (although the noise tolerance properties will
suffer). Note that each method has different processor demands and this accounts
for part of the conclusions.

2.2. Implementations and performance examples

Good experimental results using real and simulated images have been achieved
using an implementation of the model. Although the model is inherently a
parallel one requiring large numbers of processors and connections, the im-
plementation is essentially serial. In all cases, at least two feature qualities (scale
plus one or more feature types) are included in the saliency representation. A
simple method for arbitration among feature types is used, namely, another WTA
across feature dimensions. The implementation is integrated to control the
attentional performance of the TRISH stereo head [33].

Two types of images were used, real 8-bit gray scale digitized images and binary
simulated images. In each case the structure of the pyramid was different,
primarily because the nature of the visual information computed differed. These
details will appear with the examples; it should be clear that the choices of
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pyramid sizes and other structural parameters are quite arbitrary and do not in
any way impact the conclusions.

2.2.1. Scale normalization

If units represent more than one stimulus quality, say position, size, luminance,
wavelength, or edge contrast, then the competition must consider the interactions
among dimensions as well as the absolute magnitudes of response. For example,
suppose the definition of saliency is of the following form: the most salient visual
event is the one which is the brightest over the largest region of visual field.
Ambiguities will arise in the competition because units may have the same
response yet differ in size (as well as location).

A simple method is used to resolve this specific ambiguity and no behavioral
significance is claimed for this solution [13]. If a unit with a small RF has a
response of ¢, and a larger competing unit has a RF with response (¢ — ¢), then
for a sufficiently small ¢, we would like the larger RF to win over the smaller one.
To illustrate, consider a RF of size 3 X3 that has a response of 255, and a
competing RF of size 30 X 30 that has a response of 254. Since the latter unit
represents a visual event that is 100 times the size of the event that the former
unit represents, and is over 99% its strength, it seems reasonable to favor the
latter over the former.

This bias on RF size is accomplished by multiplying the responses of all units by
a normalizing factor that is a function of the size of the corresponding RF. A
normalization whose rate of change is greatest for small RFs, without weighting
very large RFs excessively is desired. In the experiments conducted, the following
empirically satisfying function is used:

a+1

F(x) P (18)
where x represents the number of basic elements (pixels) in the receptive field.
The number 1 in the numerator is a result of normalizing F(x) for x =0. The VX is
used to account for the area of the RF. This function may be used for linear
features by replacing vx with x. n, is the variable used in the formulation of the
WTA process to denote scale normalization. Note in (5) that both task bias and
scale normalization contribute to the determination of the strength of a particular
interpretive unit result. The interaction is strictly multiplicative. It was found
empirically that values of @ = 10 and 8 = 1.03 in (18) generally give good results
in most instances. A detailed analytical account of this issue appears in [32]; our
empirical function asymptotically approaches the optimal presented by Lindeberg
[32].

2.2.2. Luminance

In this example, salient items are those which are the brightest and largest
regions in the image [13]. The lowest level of the processing hierarchy is the
digitized image, and each successive level is a simple local average of the previous
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level. The image has size 256 x 256 pixels. The pyramid has five layers, including
the input layer. Rectangular receptive fields of a range of sizes were represented
with all combinations of sizes ranging from 6 to 50 pixels on a side. The layers of
the pyramid were of sizes (beginning with the input layer and proceeding
upwards): 256 x 256; 208 x 208; 144 x 144; 80 x 80; and 32 x 32. There is no
particular significance to these numbers; changes in sizes and indeed in numbers
of layers do not affect overall behavior of the algorithm. Thus at each location of
any layer, there are a large number of competing units receiving input from
different size receptive fields. Each unit computes the average of its input. The
result for the first attentional fixation in an intensity image of a toy boat is shown
in Fig. 5A while the scan path of fixations for the first few covert fixations is
shown in Fig. 5B.

2.2.3. Oriented edges

In the next example, a 128 x 128 pixel 8-bit gray scale image of a hand was used
as the input and the definition of salient items was changed. The most salient item
is the longest and highest contrast straight line [14]. Difference operators were
used to extract the edges from the input image; this choice was based on
simplicity and ease of computation. Four orientations are computed by applying
the appropriate difference template (0, 45, 90 and 135 degrees). Each orientation
is preserved by creating separate pyramids for each orientation, while still
maintaining a single overall beam. Each pyramid has five layers. Alternatively,
this may be considered as a single pyramid where at each location there is a
column of units, each unit representing a different orientation. The range of
receptive fields was 3 X3 to 35 x 35. The sizes of the layers were 128 x 128,
108 x 108, 80 x 80, 48 x 48 and 28 X 28. Within each orientation hierarchy, a
WTA process chooses the winning RF like in the intensity simulations. Then the
winners from each of these separate WTA competitions are input into an
additional WTA process that determines a single overall winner from among the
individual hierarchy winners. This overall winning RF determines which regions
of the next level of all orientation hierarchies are to compete. Fig. 5C illustrates
the scan path showing the movement of the pass zone on the input layer for
successive fixations.

2.2.4. Instantaneous optical flow patterns

In this experiment, simulated instantaneous full velocity optic flow patterns
were used. The goal was not to fully interpret the motion (i.e., extract motion
parameters); it was thought that this could be a fast method of localizing and
labeling salient motion patterns. Once localized, they can be examined in more
detail for motion parameters [31].

The images were small, 64 X 64 pixels, and the pyramid used four layers.
Templates were constructed to match against each of 16 types of motion pattern.
It should be clear that there is no claim that this set of motions is complete; it is,
however, a representative set of simple and complex motions. Goodness-of-fit
measures for how well a template explains a given subset of optic flow in the
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Fig. 5. The first selected region (luminance and scale) of the image is outlined in yellow in each layer
of the pyramid. Dark red highlights the beam’s pass zone, while the red shaded portions show the
inhibitory zone (not cumulative). B. Luminance salience—the first five fixations. C. Edge salience—
the first six fixations

image were computed using straightforward correlation and then the remainder of
the pyramid was constructed using local averages. The patterns fall into two
categories: motion of the environment (full field motions) and motion of objects
in the visual field. The types of flow patterns (color-coded in Fig. 6) in the first
category are: translate (Env.Trans.), clockwise rotate (Env.C.Rotate), counter-
clockwise rate (Env.AC.Rotate), clockwise rotate off-center (Rotate.EM.Cue),
recede off-center (Recede.EM.Cue), approach (Env.Approach) and recede
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YEnv. Trans HIE. Trans. HTE. Trans. 4 bj. Trans.

A Optical Flow

o (bj. Approach M Cbj. Recede

¥ shrink

C Winner Pattern

B bj. C. Rotate WCbj. AC. Rotate BMRotate EM. Cue gRecede EM. Cue
B Output Layer Representation

Fig. 6. Optic flow example: a single object approaching an observer. The overall map is all orange
(object approach); there are no competing stimuli and the approach is blurred over the entire output.
It is strongest only in the region corresponding to the object.

(Env.Recede). In each case, the environment is exhibiting this flow which is
induced by self-motion. Clockwise rotate off-center is a rotation of the environ-
ment about a pre-determined point that is not the center of the image, and recede
off-center is self-motion away from objects in the environment with focus of
expansion off the image center by a pre-determined amount. The types in the
second category are: leading edge translate (LE.Trans.), trailing edge translate
(TE.Trans.), object translate (Obj.Trans.), shrink (Shrink), dilate (Dilate),
approach (Obj.Approach), recede (Obj.Recede), clockwise rotate (Obj.C.Ro-

Optical Flow Winner Pattern Optical Flow ~ Winner Pattern
Fig. 7. Two more optic flow examples: A. A noisy field. B. An object approaching in a translating

environment.
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tate), and counter-clockwise rotate (Obj.AC.Rotate). In each case, subregions of
the image (hypothesized objects) are exhibiting this flow pattern. Test images
were created by selecting some combination of motion, selecting specific motion
parameters (size of object, velocity, etc.) and generating the appropriate flow
field. Successful tests were run on noise-free images as well as on noisy images
and using images with multiple, differently moving objects. Similar to the edge
example earlier, separate pyramids were maintained, one for each motion
pattern, and an overall winner was selected.

For display purposes, different colors are assigned to each of the flow patterns.
The integrated result of applying the WTA selection scheme over all the motion
patterns is represented by a color map with the same size as the top layer. For
each position in the color map, the color is that of the winning pattern which has
the strongest response over all the patterns within RFs centered at that position.
The color composition of the color map reflects the cause of the input optical
flow. The largest and strongest response, determined by running yet another
WTA on this map similar to the luminance example above, is the overall winner.

The model can correctly label and locate the most salient pattern when the
input is the optical flow of one of the stored single flow patterns. Fig. 6A shows
the input pattern for a single object in motion, approaching the camera. The
representations at the output layer of each of the 16 pyramids are shown in Fig.
6B, where black represents no response and white represents maximal response.
Small colored squares beneath each of the gray scale representations give the
color code for that type of motion. The best response is shown by the overall
winner pattern color (Fig. 6C) and the red square in the object approach
representation corresponding to the object in motion.

When 35% noise is added in the same input optical flow (35% of the image is
randomly set to some error value), the model can still correctly classify the
motion pattern (Fig. 7A). Another example is that of an object in motion with the
background exhibiting some other motion (Fig. 7B). The winner map clearly
shows an object approaching with a background in translation. There are several
small error patterns at the boundaries, a region where all motion algorithms seem
to have difficulty. If multiple objects are moving in different (single) motion
patterns, patterns are localized and labeled in order of salience sequentially.

It is not claimed that this is all there is to motion processing; rather, this simple
scheme appears to be sufficient to detect, localize and label regions where salient
motion is occurring so that further analysis may consider only that sub-image for
detailed inspection. The templates are consistent with stimuli found effective for
neurons in motion areas (such as MST) in monkey (e.g., [17]).

Note that the extension of this particular method and examples to the case of
texture fields is straightforward.

2.2.5. Task direction
The following set of examples show the effect of simple task tuning on the
attentional process. Although most nontrivial tasks would be more involved than
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shown in these examples, in combination, the different types of task guidance
demonstrated would have significant utility.

Feature direction
Three separate forms of task guidance are shown: for the boat image, bias

against a subregion of the image (b, , = 0.0 for units whose receptive fields are
within that region); for the hand image, bias against horizontal lines (b, , = 0.0 for
the horizontal line operators); and finally, for the hand image bias against
45-degree lines by 30% (b, , = 0.7 for the 45-degree line operators). The resulting
scan paths are shown in Figs. 8A, 8B and 8C respectively. The algorithm

Region to
be ignored

B "Ignore horizontal lines" C "Bias against 45 lines by 30% "

Fig. 8. A. The system is instructed to ignore the region enclosed in blue. The resulting scan path is
shown; compare with that of Fig. 5B. B. The second example of task guidance is to ignore edges of a
given orientation (horizontal) for the hand image. The scan path is shown; compare with that of Fig.
5C. C. 45-Degree lines are biased against. The scan path should be compared with Fig. 5C. One of the
45-degree lines (the first fixation) is so strong that a 30% bias has little effect.
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performs as expected. In order to clearly see the difference in scan paths, the
corresponding no-task case must be compared to the task-directed versions. Fig.
8A must be compared to Fig. 5B. The blue box is the region to be ignored and
the algorithm skips over the first salient region found in Fig. 5B. Fig. 8B must be
compared to Fig. 5C. Horizontal lines are completely ignored. Finally, Fig. 8C is
also compared to Fig. 5C as well as to Fig. 8B to see that not all of the 45-degree
lines are ignored. The first line found is sufficiently strong to overcome the bias.

It is important not to draw too strong a conclusion from these experiments. The
images are of a limited form (no color, no depth, no motion), and the interpretive
process as well as task guidance is simple. Nevertheless, the system behavior has
all of the right qualities and the results are encouraging for more sophisticated
task guidance.

Location cues

It is well known that a location cue can be very effective in speeding up
recognition if a target is actually present at that location; and if the target is not
present there, the wrong cue can slow down the recognition, both comparisons to
the uncued situations (see [2], for review). Thus, it is important that the model
include a method for pointing the inhibitory beam at a particular location. If the
beam is already set up before the stimulus appears, the time savings are clear: the
attended node at the output layer has as input only the stimulus at the cued
location with any other stimuli in its receptive field inhibited. Thus, the time to
compute the WTAs for each layer is avoided. If the target is not there, then all of
this computation must proceed as with no cue, but the time to check the cued
location has already been incurred. Thus, if the cue is wrong, the time for
recognition will be longer than if no cue is given.

How does the attentional system know where the cue is? When a cue is
presented visually, it must be attended even if not fixated. Knowing that it is a
location cue instructs the subject to simply not allow attention to shift even after
the cue a disappears. The large assumption is that a subject has such voluntary
control over that aspect of the attentional mechanism. Other algorithms [42, 47)
deal with location as well. Yet, in each case, their system is given positional
coordinates in a retinotopic reference frame in order to identify the region where
attention is to be centered. It seems highly unlikely that any such coordinates are
being passed around in the visual cortex. Rather, it is much more plausible that
attention is directed to locations which are referenced by the external world itself
(as Ballard [4] suggests for animate vision in general). In the case of all
experimental paradigms which employ a location cue, subjects are given the cues
visually as a brief flash or a sustained visual marker, and thus the location is given
with respect to the external world.

Abrupt onset and offset events

A well-known attention capture mechanism is a flashed cue [70]. Psycho-
physically, the observations include: (i) In visual search tasks with a target among
distractors: when the target is an abrupt onset, no response time (RT) versus
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display size effect is observed; otherwise, serial search is observed. (ii) Attention-
al capture can be overridden by top-down control if enough time is provided for
set-up and the cue is good (such as a location cue). In these cases, an abrupt onset
does not interrupt performance. (iii) If there are multiple onsets, all are tagged as
high priority for attention but only for first 100 ms or so; then they exhibit the
same priority as non-onset items. (iv) Onset in any representation has the same
effect (luminance, depth, motion and texture have been tested).

A simple algorithm for detecting and localizing abrupt image events at different
spatial and temporal scales is apparent [66]: (1) convolve images in a sequence
with on-center and off-center difference of Gaussians (DOGs) at several spatial
scales; (2) compute temporal differences over several scales; (3) if there is
sufficient change, signal an event (on or off); (4) normalize responses for scale;
(5) choose strongest response via WTA. Sufficient change means: For onset
events, a region of a given scale exhibits a sufficiently large increase in strength
over some period of time, and the change occurs within the center region of the
DOG operator. For offset events, a region of a given scale exhibits a decrease in
strength over some period of time, and the change occurs within the center region
of the DOG operator. There is no need for constraint on the new response for the
off events: if an object disappears, the new contrast at that position is zero or very
small. For a given location and scale,

i N(tz)—N(tl) Nc(tz)_Nc(tl)

> 6, and |N(t,)| > 6, and — >6,,
Lt L=t
then signal “on” ; (19)
F(t,) — F(¢ F(t,)—F.(t
g FOF@) o R@)-F@)
L-t =4
then signal “off” ; (20)

where N(z) is the response of an “on” unit at a given point at time ¢, F(z) is the
response of an “off” unit at a given point at time ¢, N(t) and F.(¢) are the
responses of the center portions of the receptive fields only, and thresholds are set
at percentages of the maximum responses of the relevant DOG operator for the
class of images investigated (see [66]).

The largest responses within a given scale are found first via WTA and then
across scale in order to find the globally most salient onset and offset. This has
been implemented and tested on real gray scale image sequences of blocks on a
black background using a luminance representation only, but at multiple spatial
and temporal scales. Spatial and temporal scale preferences are easily incorpo-
rated.

Fig. 9 depicts an example in which changes are caused by motions of objects.
The on events for this example are the moving of the two rectangular blocks and
the cylindrical block to their new positions. The off events are the disappearance
of the triangular biock and three other blocks moving away from their original
positions. Note that not all pixels at the new position of the cylindrical block are
classified as having an on event. This is because the new position of the cylindrical
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Frame 1 Frame 2

Input
image
sequence:

"on" events at 6 scales:

"off" events at 6 scales:

Winning onset/offset
events superimposed
on input images

Fig. 9. An example of several blocks moving among other stationary blocks. The most prominent on
event is at the new position of the rectangular block at the upper right (denoted by the red circle); the
winning off event is at the old position of the cylindrical block (denoted by the yellow block). Winning
center and surround regions of the DOGs are shown within each scale.

block partly overlaps with the former position of the rectangular block. Since the
intensity levels of the two objects are roughly the same, there is no change in
response at the overlap part. The same effect is observed when detecting off
events. We can also observe from this example that different events are detected
from operators of different sizes.

The algorithm works equally well for images where only luminance changes are
present, such as the spotlight from a flashlight which moves around a fixed scene.
Simulations using a temporal window other than 2 were also tried with the
expected results. For example, suppose the luminance of blocks is decreased
gradually and events are detected over a longer time course instead of a shorter
one. As the amount of light is decreased continuously for the whole scene, we can
expect that there will be off events only. Additional examples can be found in

[65].
2.3. The boundary problem and foveating saccades
The boundary problem requires a unique solution and analysis [15]. Although

previous solutions have concentrated on extending the edges of the input images
in a variety of ways [61], a different and more biologically plausible solution exists
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if it is recognized that the eyes which capture the image can move. Suppose that
instead of artificially altering the input layer size and contents, an independent
mechanism is provided which could detect peripheral salient items separately and
saccade to fixate them. To detect the most salient item in the input layer
peripheral annulus (described and quantified in Section 2.1.3), an independent
WTA whose inputs are only the biased-against units of the input layer is
executed. Then a simple algorithm emerges: (1) Compute both the overall most
salient item (call this the central winning item) and the independent annulus
salient item. (2) If they differ, compare the values of the two after compensating
for the processing which occurs through the pyramid; otherwise attend the
common item. (3) If the annulus item is more salient than the central item, move
the eye to fixate the annulus winner; otherwise the central item is the one
attended.

This is not a biologically implausible solution; foveating saccades have been
previously described which appear to have similar function [26,67]. These
saccades are elicited in response to a visual stimulus in the periphery (differences
most apparent with 10 degrees eccentricity or more) where the exact location of
the stimulus is unpredictable. The saccade results in the approximate foveation of
the stimulus. Hallett [26] and Whittaker and Cummings [67] hypothesized that a
separate mechanism must be present to drive these special saccades.

The realization of the algorithm is mostly straightforward. There are two issues
that are worth some discussion. The first is how to determine the amount of
compensation in step (2) above. The boundary problem arises because peripheral
stimuli are weighted less through the pyramid than central ones. The impulse
response for a hypothetical pyramid shown in Fig. 1E demonstrates this. The
figure also gives the solution to the compensation issue. Once a peripheral
stimulus has been localized by the independent WTA, its position relative to the
impulse response can be easily found. The value of that curve at that position
gives the relative weighting through the pyramid for that position. The compen-
sating factor then is the maximum weighting in the pyramid (that for a central
item) divided by the weighting at the selected position. This method will apply for
pyramids where weights are applied in a linear fashion and for peripheral stimuli
that are small in spatial extent. For nonlinear pyramids, a more complex scheme
is needed which may involve a family of impulse response curves indexed by the
value of the peripheral stimulus. For stimuli with large spatial extent, the
weighting will be different depending on position within the stimulus. In this case,
different compensations, computed in the manner described for each position,
will be applied across the stimulus.

The second issue deals with inhibition of return. In the original Koch—Ullman
formulation an inhibitory step was included once an item was attended so that
attention may shift to the next most salient item. All models seem to have
reached the same conclusion on this point. If however the covert system is linked
with the overt system a new dimension is added to the inhibition. Not only must
locations within an image be inhibited but also locations outside the image. When
the eyes move to attend to a peripheral item, previously attended items may not
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be present in the new image. Subsequent movement of the eyes may bring those
previously attended locations back into view: should they be attended again? In
fact, there are many cases where, if no action is taken, the eyes can oscillate
perpetually between two or three locations. There is little guidance from
behavioral experiments on this point and it is probably the case that task
requirements and some kind of internal spatial working memory of what has been
seen must play a role.

Fig. 10A shows a typical blocks world real image with the camera view outlined
in green; the foveating saccade mechanism is turned off. The first fixation (based
on luminance and scale saliency only as described in Section 2.2.2) is correctly on
the central block, and successive fixations move around the scene without any
camera motion. They do so incorrectly; the second most salient object in this case
happens to be the last one found in this sequence. When the independent
foveating saccade mechanism is turned on, the second most salient item is
detected by the independent WTA in the periphery and it competes with the
winner found by the central process. The peripheral item wins, a new camera
fixation location is chosen (the centroid of the winning item), the camera moves
acquiring the new image (the green rectangle moves in the second fixation of Fig.
10B), and attention is now fixated on the winning item which is centered in the

Scanpath without
foveating saccades

First Fixation Second Fixation Third Fixation

B Scanpath with foveating saccades

Fig. 10. A. A sequence of fixations without the foveating saccades process. The blue square outlines
the cumulative unbiased region. B. The sequence of fixations in the same scene with the foveating
saccade scheme. The green box outlines the extent of the visual field and the blue box the extent of
the central unbiased region.
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new image. The third fixation is now on an item not seen in the first image; note
that the first item fixated (in the first fixation) is inhibited and not re-attended
even though it is the strongest in the visual field. If oscillations between attended
locations are to be prevented, an inhibition based on the object rather than on
image coordinates is required (object-based inhibition of return as Gibson and
Egeth [22] describe). The current implementation includes such a crude spatial
map with temporally-decaying inhibition of attended locations. This demonstrates
an important heretofore unexplored computational connection between covert
and overt attentional fixations. Foveating saccades not only lead to the solution to
one of the information flow problems, but also can play an important role in the
exploration of the visual world.

3. Relationship to neurobiology of attention and other models

This section provides detailed discussions driven by the results of several key
experimental works in visual attention. Any model of attention with claims on
biological plausibility must be able to explain these findings. In all cases, it is
assumed that the neurons examined experimentally correspond to the interpretive
units of the selective tuning model.

Moran and Desimone [35] discovered that single neurons in trained monkeys as
early as in area V4 (but not in V1) can be tuned so that separate stimuli within the
same receptive field can be individually attended in a dynamic and task-specific
manner. They claim that unwanted information is filtered from the receptive fields
of neurons in extrastriate cortex as a result of selective attention on either
stimulus location and/or stimulus quality almost as if the receptive field has
contracted around the attended stimulus. The attenuation was quite pronounced
in V4, somewhat smaller in IT, and not found in V1.

The experiments and observations described in that paper arising from the
setup of their figures 1A and 1B are now addressed. In the figures below, five
separate set-ups are shown A four-level hierarchy is used; for convenience only,
call the layers V1, V2, V4 and IT. Each unit is connected to 7 other units in the
pyramid—the exact choice does not matter. Again for simplicity, assume that
effective (green) stimuli are effective regardless where they appear in a unit’s
receptive field. The configurations of input stimuli correspond to experiments in
the Moran and Desimone paper.

In each figure, the tick marks below the input layer denote the extent of the
receptive field for the neuron being recorded, marked by the arrow. In Fig. 11A,
no attentional cue is provided and there is only a single stimulus. This is the
situation when one is searching for cells that respond strongly to stimuli and is
mapping out their receptive fields before conducting the attentional experiment.
Note that even if the input layer contains a single stimulus, the units activated
within the pass zone of the beam in the higher layers have a width larger than one
unit. This is due to the property of the WTA that finds groups of units whose
response is within the error tolerance and labels the group as winner. This
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redundancy is not a feature of any other model and may play important roles in
ensuring that processing is redundant and thus noise and fault-tolerant. It is not
known which units Moran and Desimone actually recorded in relationship to the
hierarchical structure. One particular V4 unit was chosen in these examples
because it permits the stimuli to be arranged at roughly equal distances both
inside and outside the RF as required later on.

Both an effective and an ineffective stimulus are within the chosen RF as shown
in Fig. 11B and it is clear that the chosen neuron responds well. This is the
performance when there is no task as well as when the effective item is attended.
The connections from the ineffective stimulus to the neuron being recorded are
inhibited. In Fig. 11C the ineffective stimulus is attended within the chosen
neuron and as in the experiments, the chosen neuron does not fire well. This was
the major surprise in the experiments of Moran and Desimone. Even though the
effective stimulus was still within the neuron’s receptive field, it did not cause the
neuron to fire. In the model, the connections from the effective stimulus to the
neuron recorded are inhibited; however, other V4 neurons do receive input and if
the recording probe were moved would find good responses outside the beam
structure.

The ineffective stimulus is moved outside the RF for Fig. 11D so that the
distance between effective and ineffective stimuli remains the same. When the
effective stimulus is attended, the selected neuron fires well. Finally, the
ineffective stimulus placed outside the RF is now attended as shown in Fig. 11E.
The selected neuron still fires well.

This explanation seems to fit Moran and Desimone’s observations nicely and
does not deviate from them. However, in order to experimentally verify this
explanation properly, an entire pathway must be tested; that is, the entire route
from V1 through to IT must be recorded simultaneously, including its breadth
across each area—under the kinds of conditions Moran and Desimone use.
Further, the distance between effective and ineffective stimuli must be varied
since it is clear that a large enough distance might overcome any interactions
between subpyramids activated by individual stimuli. Moran and Desimone do
not sufficiently detail the experiment in terms of the relationships among the
levels, the spread of the areas activated, and the units recorded in order to rule
out this explanation.

The conclusion that can be drawn from this illustration using the Moran and
Desimone experimental setup is that distance between attended stimulus and
receptive field being studied matters for this model. If the attended stimulus is
near but not in the receptive field studied, the inhibitory effect of attention on the
recorded neuron should be large. If it is far, the effect should disappear, and in
between the inhibitory effect of attention will gradually decrease with increasing
distance. This should be clear from the figures above. This corresponds very
closely to the kind of activity observed in visual-movement neurons in the frontal
eye fields when tested with visual search tasks that include distractors [48]. Schall
and Hanes [48] found that neural activity peaked when the target was in the
response field and was suppressed when the target was beside but not distant from
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Fig. 11. These figures show the information routing within a hypothetical visual pyramid for situations
corresponding to the experiments in Moran and Desimone [35].

this field. The magnitude of these effects are also affected by the position of the
neuron within the hierarchy. Schall and Hanes hypothesized that this might be
due to a lateral inhibition mechanism; the selective tuning model is an alternative
explanation. There is insufficient information to accomplish such a task-specific
inhibition if only lateral connections are considered.

Motter [37] concluded that the topographic representation of the neural activity
in area V4 highlights potential candidates for matching to targets while minimizing
the impact of any background items. In other words, the computations which
create this representation seem to maximize signal-to-noise ratios for the features
which are relevant to the task. Neural activity was attenuated when the stimulus
did not match a cue, independent of spatial location, but was about twice as large
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as the attenuated value if the stimulus and cue did match. He used color and
luminance as features. Interestingly, he found that neural activity was not affected
due to the cueing conditions prior to presentation of stimulus arrays. This is
consistent with a model which de-emphasizes connections which are not of
interest. In [38] he goes one step further and concludes that the attentional
control system seems to be able to “shut down™ the synaptic impact of all but one
of many color inputs. This too is consistent with the selective tuning model and
was suggested by Tsotsos [57] as an important search optimization. Finally,
Motter suggests that a sequential combination of the two processes of a full field
pre-attentive focal attentive selection based on features which identifies candidate
targets, followed by a spatially restrictive focal attentive process which localizes
targets, would be an interesting explanation of both his and Moran and
Desimone’s results; this is exactly the concept initially sketched out by Tsotsos
{57] and embodied in the selective tuning model presented here.

The routing, temporal tagging and selective tuning models have much in
common in terms of their performance. For example, each of the models offers a
believable explanation for the Moran—Desimone [35] observations. Each can
provide accounts of a variety of human visual search experiments in that several
search processes can be simulated. However, a number of important open
questions remain which may help to differentiate the models from one another.

The Olshausen et al. model assumes that spatial relationships must be
preserved (in the topographic sense) while the temporal tagging and selective
tuning models do not. These latter models permit spatial abstraction while the
former does not, i.e., single units in IT seem to represent complex objects (as
observed by Tanaka et al. [52]) as opposed to pixel-like retinal image copies.
Spatial abstraction is a major contributor to the reduction of computational
complexity [57]. Note that the image preservation of Olshausen et al. also makes
no real improvement in signai-to-noise ratio of the computation; their model in
fact preserves the noise.

Miller et al. [34] observed suppression of response in IT neurons in a matching
task which occurs within 10 ms of response onset. They conclude that the source
of this suppression must be within or before IT. Chelazzi et al. [8] in a different
matching task for IT neurons observed a first spike after 60—80 ms, 100-120 ms
for full strength and 130-200 ms for full inhibitory attentional effect. Both of
these works support a top-down version of attention and recognition. The routing
and tagging models are bottom-up: only the attended signals ever reach the top.
The tuning model relies on the initial signals to reach the top where they are used
to guide further processing.

Although until very recently, it was generally thought that attentional effects
were not seen earlier than in V4 neurons (but see [24]), Motter has provided
evidence to the contrary [36]. This was predicted in the initial description of the
selective tuning model in [57]. It should not be surprising that attention and task
requirements might affect very early levels of visual processing. In audition, it has
been found that attentive processes can modify the responses of even the earliest
of sensory cells [25, 43]. Using an experimental paradigm that involved competing
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stimuli and directed attention, Motter showed that attentional effects are
observed in V1, V2 as well as V4 neurons when targets were presented outside the
receptive field of the neuron being recorded. Distance was an important variable;
this is the reason for the apparent difference between these results and those of
Moran and Desimone [35]. The effect varies depending on the number of
competing stimuli and usually manifested itself as a reduction in response if
attention is directed away from the recorded neuron. There was no effect for
single stimulus displays. These experiments point to a context dependent view of
attentional processing. The selective tuning model is a top-down model, and such
effects arise naturally. The routing and tagging models are bottom-up models and
it is not obvious how they may account for these results. The Niebur et al. model
exhibits no attentional effects before area V4.

4. Conclusions

A model based on the concept of selective tuning has been presented as an
explanation for aspects of visual attention. The overriding goal is to provide a
computational explanation to primate visual attentional performance; yet, the
computational utility of the resulting method for robot vision is evident. It
provides for a solution to the problems of selection in an image, information
routing through the visual processing hierarchy and task-specific attentional bias.
There are several key characteristics which distinguish the model from its major
competitors:

® The timing and convergence characteristics of the new WTA provide a much

better match to the behavioral observations than previous WTAs, the WTA
is near-optimal in its convergence properties.

® The model makes strong predictions regarding the micro-circuitry of visual

cortex and visual search performance.

¢ The model includes a first link to the eye movement system via the foveating

saccade mechanism. A link to eye movements is a characteristic which must
be present in any attention model but does not appear in the other major
models.

® The model has been implemented and is used for solving real attentional

problems in controlling a robotic vision system.

Overall, the match to the neurobiology of attention is very good; although the
other models also demonstrate good matches in different ways. Further ex-
perimentation that is guided by this and other computational models is required
to help differentiate the models with respect to biological plausibility.
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