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1 Introduction

The research described in this paper addresses the task of efficiently searching for a given 3D object in
a given 3D environment. The “searcher” is a mobile robotic platform equipped with a camera and, if the
environment configuration is not known, a method of calculating depth, like stereo or laser range finder.
In general, this task consists of three subtasks. The first subtask is the selection of the sensing parameters
so as to bring potential targets into the field of view of the sensor. This is the sensor planning problem
for object search, and it is the main concern of this document. The second subtask is the manipulation of
the hardware so that the sensing operators can reach the state specified by the planner. The third subtask
involves searching for the target within the image. This is the object recognition and localization problem,
which attracts a lot of attention within the computer vision community.

Sensor planning for object search is very important if a robot is to interact intelligently and effectively
with its environment. Garvey [3] first considered this and proposed the idea of indirect search for the target.
Wixson et al. [7] present a mathematical model of search efliciency and analyze the efficiency of indirect
search and conclude that indirect search can improve efficiency in many situations. Connell et al. [2] construct
a robot that roams an area searching for and collecting soda cans. Although these works involve the task
of object search, none of them give an explicit algorithm to control the state parameters of the camera by
taking both the search agent’s knowledge about the target distribution and the ability of the recognition
algorithm into the consideration.

This paper formalizes the sensor planning task for object search, analyzes the task at the complexity
level and proposes a practical sensor planning strategy. It decomposes the huge space of possible sensing
actions into a finite set of actions that must be considered, thus greatly simplifying the sensor planning task.
Finally, experimental results are presented.

2 Problem Formulation

It is important to examine different aspects of object search individually, to study their relationship and to
integrate them into a whole search system.

The searcher model is based on the ARK robot [5], which is a mobile platform equipped with a special
sensor: the Laser Eye [4]. The Laser Eye is mounted on a robotic head with pan and tilt capabilities. It
consists of a camera with controllable focal length (zoom), a laser range-finder and a mirror. The mirror is
used to ensure collinearity of effective optical axes of the camera lens and the range finder. The state of the
searcher is uniquely determined by 7 parameters (2., ye, zc, p, t, w, h). Where (z., y¢, 2c) is the position of the
camera center, (p,?) is the direction of the camera viewing axis (p is the amount of pan 0 < p < 2, ¢ 1s the
amount of tilt 0 <1 < ). w, h are the width and height of the solid viewing angle of the camera.

An operation f = f(z., ¥, zc,p,t,w, h,a) is an action of the searcher within the region 2. Where a is
the recognition algorithm used to detect the target. An operation f entails: take a perspective projection

* The second author is a Fellow of the Canadian Institute for Advanced Research. The authors would like to thank
the reviewers for their valuable suggestions. They are also grateful to Dr. Dave Wilkes, Dr. Piotr Jasiobedzki,
Victor Lee, and Eric R. Harley for their comments.



image according to the camera configuration of f and then search the image using the recognition algorithm
a.

The search region {2 can be in any form and it is assumed that we know the boundary of §2 exactly but
we do not know its internal configuration. In practice, we tessellate the region §2 into a series of elements ¢;,
2=, ci and ¢;[)c; = 0 for i # j. c, is the region outside £2.

The target distribution can be specified by a probability distribution function p. p(c;,t) gives the proba-
bility that the center of the target is within cube ¢; at time ¢. Note, we use p(c,,t) to represent the probability
that the target is outside the search region at time ¢.

The detection function on §2 is a function b, such that b(c;, f) gives the conditional probability of detecting
the target given that the center of the target is located within ¢; and the operation is f. It is obvious that
the probability of detecting the target by applying action f is given by P(f) = 3 _I_, p(ci, t¢)b(c;, f), where
¢ 1s the time just before f is applied.

The reason that the term f¢ is introduced in the calculation of P(f) is that the probability distribution
needs to be updated whenever an action fails. By using Bayes’ formula, we can get the following updating
rule:

p(c‘-'nif)(l % b(ciaf))
P(Co,te) + 25, P(cj, 1) (1 — b(c, )

plci tey)

where i=1,....n,0.
The cost to(f) gives the total time needed to (1)manipulate the hardware to the status specified by f;
(2)take a picture; (3)updating the environment and registering the space; (4)run the recognition algorithm.
Let Oy be the set of all the possible operations that can be applied. The effort allocation F = {f;, ..., f;}
gives the ordered set of operations applied in the search, where f; € Og. The probability of detecting the
target by this allocation is:

k=1
P[F] = P(f:) + [1 — P(R))|P(f2) + ...+ { [[[1 - P(£:)]} P(£x)

t5—3l

The total cost for applying this allocation is (following [4]): T[F] = 5, to(f:).
Suppose K is the total time that can be allowed in the search, then the task of sensor planning for object
search can be defined as finding an allocation F C Og, which satisfies T'(F) < K and maximizes P[F].

3 Theoretical Analysis

In this section, we analysis the sensor planning task for object search at the complexity level.

We first list some properties of the sensor planning task. Proofs are omitted (refer to [8] for detail).

Suppose 2 = |JI_, ¢i, Op = {f{,f3,...,15}. For any operation f € Oy, we define its influence range as
2(f) = {c | b(c,f) # 0}. Its complement form is: 2(f) = 2 — {c | b(c, f) # 0}.

For any effort allocation F = {f;,...,f; | fi € On}. The initial probability distribution is denoted as
pl%cy), plcs), . . ., P (cn ), P (c,). After the application of the operation f1, the distribution is denoted
by pi(c1), pM(ca), . . ., pM(cn), pmgco). Generally, after the application of the operation f;, the distribution
is denoted by pll(c;), pl(ca), ..., pll(ca), P(c,), where 1 < i < q. Let P(f;) represent the probability of
detecting the target by applying the action f; with respect to the allocation F. Then of course we have
P(f;) = 3.7_, pli=H(c;)b(c;, £). Let PIO)(f;) represents the probability of detecting the target by applying
the action f; when there is no action been applied before, then we have PL(f;) = 3°7_, pl%(c;)b(c;, fi).

Lemma 1. For allocation F = {fi,...,f; | fi € Op}, we have

Bl (s pl(e)ta(c)ta(c) - . -ti(c)
(e R ) R ()

where ‘
(@) = { 1—-Db(ef;) if c € 2(F;)

1 otherwise B=1,. 0k



Lemma 2 For the given allocation F = {fy,...,fq}, we have

PF)= Y POE)+(-1)# Y [ Y pY(ob(e,£,)b(c & }]
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Lemma 3 For a given allocation F = {fy,...,f,}, P[F]is not influenced by the order of the applied actions.
That is to say: P[F] is symmetric about actions fi, ..., f;.

Lemma 4 For an allocation F = {fy,...,fq}, if we restrict the available actions such that there is no cube
belongs to any two action ranges: 2(f;) (] £2(f;) = ¢, if ¢ # j, then P[F] can be calculated by the following:

P(F) = i PLOI(£)

i=1

Now, we prove that the sensor planning task for object search is NP-complete. First, the maximization
problem is changed into the equivalent decision problem.

INSTANCE: A search region £2 = |JI_, ¢;, a finite set Op = {f1*,f2*,...,fn*} (the set of all possible
operations that can be applied), an expected probability function P[F'] as described in (2) and a cost function
T[F'] as described in (3) for an effort allocation F'. Where F' = {fy, ..., fi | f; € 0o} is the ordered set of
operations applied in the search. An environmental updating rule as described in (1), a cost constraint K
and an expected probability goal M.

QUESTION: Is there an effort allocation F such that T[F] < K and P[F] > M
It is obvious that the above problem belongs to N P. In the following, we use proof by restriction to prove
that the object search task belongs to the NP-complete class.

Theorem 1 The sensor planning for object search task described in section 4.1 is NP-Complete.

Proof:

We prove the theorem by restriction.

Actually we already known that KNAPSACK problem is NP-Complete. We will restrict the object
search task into KNAPSACK by allowing instances in which any two operations in Op = {f1*,£2*,..., "}
do not have common action region. This is to say that £2(f) (") 22(f;) = ¢ for any i # j.

After this restriction, by combining Lemma 3 and Lemma 4, the task becomes

INSTANCE: A search region 2 = |JI_, ¢;, a finite set Oy = {f1",£2%,...,fn"} (the set of all passible
operations that can be applied), an expected probability function P[F'] = Ele P[“](fi) (from Lemma 4)
and a cost function T[F'] = Ele t(f;) for an effort allocation F . Where F' = {fi,....,fx | fi € Op} is the
set of operations applied in the search. (Note, here we do not have updating rule and the order of actions
does not matter from Lemma 3). A cost constraint K and an expected probability goal M.




QUESTION: Is there an effort allocation F such that T[F] < K and P[F]> M

Obviously the above problem is equivalent to the KNAPSACK problem. Thus, the task of sensor
planning for object search is NP-Complete. O.

Since the sensor planning problem is NP-complete and usually the number of the available candidate
actions is large, it is necessary to relax the original problem. Instead of looking for an algorithm that always
generates an optimal solution, we will simply use heuristics that will generate a feasible solution for the
original problem. Since the calculation of the detection probability for a given operation is time consuming,
1t is not practical to use complex strategies. Here we use a greedy strategy. The greedy method suggests that
one can devise an algorithm which works in stages, considering one input at a time. At each stage, based on
some optimization measure, the next candidate is selected and is included into the partial solution so far.
Suppose we have already executed k (k > 1) actions Fi = {fi,...,fi}. We now want to find the next action
fiy1 to execute, with the hope that our strategy of finding the next action may lead to an approximate
solution for the object search task. Suppose P[F,] is the expected probability of detecting the target by
allocation Fy. T[F] is the cost of allocation F,.

When we execute a next action f, the effort allocation becomes For1 = {fi,...,f;,f}. The expected
probability of detecting the target is P[Fg41] = P[F,] + Ap(f), where Ap(f) = {ITj=.[1 - P(£)] } x P(£).
The total cost becomes T[Fy11] = T[Fy] + Ar(f), where Ap(f) = t(f). Our strategy for selecting the

next action is: the next action fqy; should be selected that maximizes the term %ﬁ%. Since the term

{ IT5_1[1 = 2% plei, tg)b(es, )] } is fixed no matter what the next action f is selected, our strategy
becomes: the next action fq41 should be selected that maximizes the term

E(f) it Z?:} P(::i(.ft)f)b(c,-,f)

In some situations, the simple greedy strategy may even generate the optimal answers as stated in Lemma

9.

Lemma 5: Suppose the available operations Og = {fy,f;, .. ., fm} satisfy:
(1) t(f) = ¢(f;), 1 < 7,5 < m.
(2) ()N 02(E) =¢,1 <4,5 <m,i#j.
Then, the above greedy strategy generates the optimal answer.

4 Detection Function

The reference detection function b((6o,do, 1), < a,wo, ko >) gives the probability of detecting the target
when the target is at (8o, do, lo) relative to the camera and the camera angle size is < wp, hg >. Normally,
we only need to record the detection function values of < wg, hg >. The detection function values of other
angle sizes can be found by the following transformation (for detail, see [8]):

= tan(%)tan(%) . tan(%2). = il
= W, 6y = arctan[tan(ﬁ)m%ﬂ-)—], dy = arctan[tan(§) tan(%) ]

In general, when we need to find b(c,f), we can first calculate the relevant b((8,4,1),< a,w,h >), then
transform it into the known b((6o, do, ), < a, wo, ho >) to obtain the detection function value.

5 Where to Look Next

For a given robot position and a given recognition algorithm, there are many possible viewing angle sizes.
However, the whole search region can be examined with high probability of detection using only a small
number of them. For a given angle size, the probability of successfully recognizing the target is high only
when the target is within a certain range of distance. This range is called the effective range for the given
angle size. Our purpose here is to select those angles whose effective ranges will cover the entire depth D of
the search region and at the same time there will be no overlap of their effective ranges. Suppose that the
biggest viewing angle for the camera is wg x ho and its effective range is [Ny, Fo]. Then the necessary angle
sizes and the corresponding effective ranges are:



%9)]; = 2arcian[(%)itan(h?0)] N; = Fg(-&)"—l F= Fo(&)"
0

No.;
i = Maaretd =)
w arctan|( Fo) an( o N

nD
Wherelﬁiﬁ[%i—g{%—lj.

For each angle size derived above, there are infinite number of viewing directions that can be considered.
We have designed an algorithm that can generate only directions such that their union can cover the whole
viewing sphere without overlap. Only the actions with the viewing angle sizes and the corresponding direc-
tions obtained by the above method are taken as the candidate actions. So, we have decomposed the huge
space of possible sensing actions into a finite set of actions that must be tried. Finally, we can use E(f) to
select among them for the best viewing angle size and direction.

After the selected action is applied, if the target is not detected, we need to update the probability
distribution and select a new action. When the benefit of the new action is too low, the robot is required to
change its position.

6 Where to Move Next

The goal of the “where to move next” task is to select the next robot position such that, at the new position,
the camera can examine those parts of the region that have high probability of presence of the target but
which are occluded if viewed from the previous positions. In order to perform this task, first we need to decide
which candidate positions the robot can reach, then, we need to know which one is the most beneficial
among these reachable positions. In order to simplify the navigation problem (our primary task is object
search, not navigation), we limit the movement of the robot from the current position to the next position
to be on straight lines.

We have developed an algorithm that can decide which positions the robot can reach from the current
position. To select the next robot position from among these reachable candidate positions, we need to know
the approximate unoccluded region that can be seen by the camera with respect to each reachable candidate
position. The space around the center of the camera can be divided into a set of solid angles. Each solid
angle is associated with a radius which is the length of an emitting line along the direction of the central axis
of the solid angle from the origin. The unoccluded region around the camera center can thus be represented
by the union of these solid angles. This representation is called a sensed sphere. The expected sensed sphere
SS, refers to the sensed sphere that can be constructed at the reachable candidate positions. SS. can be
calculated by using the boundary of the search region and the solidity property of the cubes in the region
(see Figure 1 for a 2D illustration). Each candidate position is associated with an expected sensed sphere.
For each SS,, we can calculate the probability of presence of the target by summing up the probabilities of
all the cubes that are within SSe: . 55, P(ci). We then select the position whose corresponding expected
sensed sphere has the maximum probability of presence of the target as the next robot position.

(b) (c) (d)

Fig.1.: 2D illustration of the calculation of the expected sensed sphere. (a) The environment, B is the
robot’s current position, A is the candidate position. The shaded area are occupied by solid obstacles. (b)
The sensed sphere constructed by laser at the first position A. (c) The solid cubes generated based on results
of (b). (d) The expected sensed sphere calculated by just taking the boundary of the searching region into
consideration. (e) The expected sensed sphere at the candidate position A.

After the robot moves to the next position, it will begin the “where to look next” process again to search
for the target.
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7 Experimental Results

Fig.2.: A real experiment performed in our lab with the ARK robot.

Experiments are performed in our lab using the ARK robot (Figure 2(a)). The search region is a part of
our lab. Figure 2(b) is the top view of the region, Figure 2(c) is the image of the region taken from point
G. The task is to search for a white baseball within this region. Before the search process, we give the table
top B, table top C, and the floor region D high probability of presence (Figure (b)). The real position of
the baseball is within the region D. Initially, the robot is at Py of Figure (b). Figure 2(d)(e)(f)(g) is the
top four images taken by the head. The first action examines table C, the second and third actions examine
table B. The fourth action simply points upward and none of the specified region is examined. No action is
selected to check region D, because D is occluded by the office wall. Since the probability of detecting the
target by the fourth action is very low, the robot drives to the next position P, (Figure 2(b)). P is selected
by the “where to move next” algorithm. At the new position, the robot begin the search process again. The
first action detects the target (Figure 2(h)). Figure 2(i)(j)(k) is the image analysis result, where the target
is found (Figure 2(k)).
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8 Conclusion

In this paper, we study the problem of sensor planning for object search from both the aspect of theory
and that of practical implementation. By introducing the concept of a detection function for the object
recognition algorithm and the concept of a probability distribution for the target within the search region,
we formulate the sensor planning task as an optimization problem: the goal is to maximize the probability
of detecting the target within a given time constraint. By analyzing the formulation of the problem, we
obtain some important properties of this task and find that this task is NP-complete in general. In order to
make the problem tractable, we propose to use the greedy strategy, and point out that under some special
conditions this strategy may generate an optimal answer. By considering the detection ability of operations,
we are able to decompose the enormous space of possible sensing actions into a limited finite set of actions
that must be tried, thus greatly reducing the complexity in the action selection process. Our theory has
been applied using the ARK robot and the Laser Eye. Experiments so far have been successful as a proof
of concept. In addition to the real experiments, we also performed simulation objective experiments with
probability analysis (see [8] for details). One class of simulation experiments is used to compare the efficiency
of our strategy with the Non-Planning strategy. The experimental results show that the number of actions
needed to reach the detection limit for our strategy is much smaller than that for Non-planning strategy.
This illustrates that the planning strategy is more efficient. One thing need to note here is that the initial
target distribution has a great influence on the performance of our sensor planning system. The reason is
that the probability distribution is used to guide the sensor planning process. The more accurate is our
knowledge about the initial distribution, the more efficient is our algorithm. This observation is verified by
the various experiments performed in our lab (please refer to [8] for details). When the robot is allowed to
move, we must consider the inaccuracy of the robot movement. In this paper, we assume that landmarks
are available to locate the robot so as to make the robot position error within a certain range. It is quite
interesting to study the issue of object search when the robot location is not bounded within a certain range.
Other future research directions include the design of a search strategy when the target is able to move and
the design of a search strategy when several robots are available.
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