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Abstract

This paper describes a methodology for the
classification of time-varying phenomena and
discusses several experiments that demonstrate as-
pects of its performance. The key idea is that the
scheme is a knowledge-based "expert” system, using
a knowledge base (KB) of time-varying concepts to
drive the control structure. This control structure is
based on feedback concepts [1] but expands on them
so that the semantic organizational components of
the knowledge base are intimately tied to the control
scheme. The basic mechanism has been described in
[2]. and will only be briefly described below. We will
concentrate on the characteristics of the scheme, its
successes and failures, and examples of its operation
in this paper.

Iniroduction

Recently, there has been a substantial
amount of research into solutions for the correspon-
dence problem for time-varying imagery [3], [4], [5].
This problem may be stated as follows: given an ob-
ject A in one image, and a successive image, deter-
mine which of the objects in the successive image
corresponds to object A so that the resultant motion
characteristics are compatible with the motion histo-
ry and capabilities of object A. In each of these
efforts, the researchers identified the cruecial open
problem in the computer analysis of time-varying
imagery is that of motion recognition or
classification. We wish to propose a methodology for
tackling this problem.

Our system, called ALVEN, is a knowledge-
based expert system for human left ventricular per-
formance assessment. Each knowledge unit in the KB
(knowledge base) defines a particular motion concept
('upwards", "contract”, "move", "extend", ete.) using
a frame-based representational formalism designed
to accomodate the semantic components necessary
for motion description [8]. The frames are organized
using the IS-A (class/sub-class) and PART-OF
(part/sub-part) primitives with additional relation-
ships between frames provided by temporal and simi-
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larity (characterisitics of mutual exclusiveness
between frames) connections. The similarity connec-
tions are of prime importance here because they
define the time-course of differences between two
motion concepts, and therefore provide a mechanism
for choosing alternate hypotheses depending on the
matching failures of a given hypothesis. Left ventric-
ular motion concepts are defined in terms of simpler
general motion concepts, each one being represented
as a slot in the motion frame, with constraints
between slots providing additional spatial and tem-
poral relationships. These motion definitions were in-
itially derived from text books and from discussions
with the cardiologists at our unit (Toronto General
Hospital). Experimentation is providing more refined
versions of these definitions.

The paradigms of competition and co-
operation among hypotheses and hypothesize-and-
test form the basis of our recognition control struc-
ture. The key feature of the contrpl structure is that
it is driven by the organization of the knowledge base,
that is, by the primitive relations between knowledge
units. Hypotheses are ranked on the basis of cer-
tainty factors. Each hypothesis, when activated, re-
ceives an initial certainty factor equal to that of the
hypothesis that activates it. A modified relaxation
process is then used to update the certainty factors.
The relaxation process is based on "conceptual adja-
cency” that specifies which hypotheses are rompeti-
tors and which ones are complementary and in what
respect. The compatibilities between hypotheses
thal are necessary for the RLP (relaxation labelling
process) are derived in a dynamic fashion, depending
on which conceptual adjacencies are present between
hypotheses that are active during the course of the
input image sequence. The best hypotheses (highest
ranked) are used to derive the expectations for the
next image.

A scheme similar to, but not as sophisticat-
ed as [3], is used for the vision aspects of processing,
that is, the use of expectations to guide the search
for objects in Lhe image and. determine their
correspondencies to the previous image. Changes
are described in terms of localion changes ol poinls,
length changes of axes and perimeters, and area
changes . These primitive kineses provide an inter-
mediate representation for relating quantitative
changes to qualitative ones.



This low level data drives the activation of
hypotheses that attempt to describe the exhibited
motions. The kineses for a particular object are
matched against the hypothesized motions, and
matching failures between expected and actual
kineses are recorded. These failures are representad

in terms of exception frames which contain any infor-
mation necessary so that proper selection can be
made of alternate hypotheses. This selection is made
via thc similarity links which are present in the hy-
potheses. The activation of more specialized hy-
potheses proceeds along the IS-A axes in the KB,
while motions that are aggregates of simpler motions
are activated via the PART-OF links.

An Example

The basic control structure has been imple-
mented and the early stages of testing and perfor-
mance analysis have proven quite successful.
Currently, films taken at 30 or 80 images per second
of tantalum markers, implanted into the myoeardium
of the left ventricle during open heart surgery, are
being analyzed. The contraction and relaxation pat-
terns of a typical left ventricle are shown in figures 1
and 2 respectively. In this patient, the anterior
(right) wall is hypokinetic (exhibits less than normal
motion, i.e., less extent of motion, but no exhibited
anomalies in the direction of motion) and the
remainder of the left ventricle is normal, according
to the radiologists reports.

The knowledge base of motion concepts
currently includes descriptive terms such as “in-
wards”, "outwards", "contract”, "expand", "extend",
“lengthen”, "shorten", "uniform contraction”, ""uni-
form expansion’, "asynchrony', "dyskinesis", and
many lower level terms such as "leftwards”, "right-
wards”, "upwards”, "downwards", "translate”, "ap-
proach”, "recede”, "no motion”, "area change", "'no
area change', etc. as well as other left ventricular
specific concepts. The example motions in Figures 1
and 2 are interesting for the following reason. The
standard definition of a uniform contraction (or re-
laxation) motion pattern used by cardiclogists at our
unit, and therefore the one currently represented in
our KB, is that all markers in the left ventricular wall
move inwards {or outwards for relaxation), and nor-
mal contraction (relaxation) implies a uniform con-
traction (relaxation) with each marlker exhibiting ap-
proximately the same extent of motion, during the
whole phase. So one would expect, if ALVEN functions
properly, that the frame embodying the moftion
definition for uniformitity would be instantiated,
while the one for normal motion would not be. On
analysis of this film by ALVEN, it was revealed, and
later verified by manual analysis, that no "uniform"
motion of the type described above was present. In
fact, the left ventricle exhibited some paradoxical
motion (wrong direction with respect to the left ven-
tricular phase) in addition to hypokinesis. {The actu-
al vulpul is too voluminous to include here: for each
of the 11 markers and for the left ventricle as a
whole, there are between 10 and 30 instances of mo-
tion descriptive terms.) This is an example of where
the qualitative definition used by the cardiologists
who simply view the film in order to analyze it, was
demonstrated to be inadequate at a ouantitative lev-
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el. Clearly, since cardiclogists are quite capable of
diagnosing heart disease properly, there is a more
abstract level of processing that they do for these
films, but which they perhaps have difficulty in arti-
culating. This has lead us to the inclusion of aggrega-
tions of marker motions, so that several markers are
grouped into segments. At the segment level, the un-
iformity "seen' by the radiologist was also recognized
by ALVEN, as well as the hypokinesis, and several in-
stances of asynchrony (non-uniform onset of motion).
Therefore, for this example, ALVEN's analysis was
shown to be consistent, yet more complete than, the
radiclogist's report. We are working on several more
such films in an attempt to further refine the motion
definitions in our XB.

Characteristics of the Updating Scheme

An important component of KB expert sys-
tems is the "hypothesis scoring function” that is
present in virtually all such systems. This function is
usually tailored for the application, is based at least
in part on Bayesian criteria and for the most part, is
very difficult to anelyze or to extend to other applica-
tions. We believe that an important next step in the
construction of expert systems is the inclusion of a
scoring scheme whose performance can be analyzed
in "enginieering" terms. By this we mean that a set of
standards must be put forth so that one scoring
scheme may be compared to another in a meaningful
way. Only in this way, can the system’s limitations,
successes, and possible extensions be really under-
stood. We will propose a set of attributes of updating
schemes for time-varying event analysis and then dis-
cuss the performance of our scheme with respect to
those attributes,

As described in [2], the updating scheme is
based on relaxation labelling [7]. Each iteration of
the RLP represents a single image pair of the image
sequence, and compatibilities are dynamically deter-
mined depending on the semantic relationships
present between their corresponding frames in the
KB. These semantic relationships include temporal
constraints, global constraints (IS-A), local con-
straints {(PART-OF) and similarity (mutual exclusion).

With respect to this updating function, we
have conducted a series of experiments in order to
study its characteristics. The intent was to see what
relationships are present among the following attri-
butes of the updating process with respect to a par-
ticular domain:

a) the number of active, competing hypotheses;

b) the certainty thresholds for hypothesis in-
stantiation and deletion;

c) the scene sampling rate;

d} the semantic relationships between hy-
potheses;

e) the image sequence noise level ("temporal”
noise); and,

f) the duration of the shortest event defined in
the KH, and thus, the shortest event that should be
recognized by the system.

The experiments were carried out according
to the following criteria:




a) The trials are run using a sequence. of ran-
dom numbers to represent matching successes and
failures, and are adjusted for noise levels. For exam-
ple, if there is a 10% noise level, then any random
number below 0.1 is considered to be a matching
failure for the correct hypothesis, while the same
range is used for matching successes for the in-
correct ones. The range of random numbers is 0.0 to
1.0.

b) Each data point is the average time value re-
quired for instantiation of the correct hypothesis ob-
tained over thirty trials.

c) The decision threshold, that is, the certainty
value that must be achieved before a particular hy-
pothesis is instantiated is related to the number of
hypotheses in the following manner. On examination
of the relationship between certainty and time for
two competing hypotheses, the resultant curves
strongly resemble exponentials [2]. For this reason,
the notion of a "time constant” from electronics was
borrowed for our purposes and defined as the time at
which the certainty of a hypothesis reaches

1yefi—o-typ L
(1~F) (1-e *)+N

which simplifies to:

0.368

0.632+ N

where N is the number of competing hypotheses for a
single object's motion. We shall see also, below, how
changing this threshold aflects the updating
scheme's performance. The deletion threshold is
defined by:

e=!

N

We will present results from three such ex-
periments. The first experiment, which also ap-
peared in [2] and is included here for completeness
and comparison purposes with the remaining ones,
examined the relationship among the number of com-
peting: hypotheses, the number of inter-image
descriptions needed before a decision can be made,
and temporal noise.

l'emporal noise is the analog of static noise
in time. Static noise is the term used to dencte the
degree of uncertainty in the precise intensity value of
a particular point in an image. If the image has a
large amount of static noise, then there is a high un-
certainty in the characteristics of a particular pie-
ture element, and therefore, there is a high uncer-
tainty in the data produced by the image analysis
component. in a computer vision system in ferms of
relationships between intensity values (for example,
gradients). Temporal noise describes the degree of
unecertainty of a particular event occurring at a
specific time instant, i.e., the characteristics of the
time instant in terms of which events are present or
absent. In our formulation, a large of amount of tem-
poral noise will mean that there is a correspondingly
large amount of uncertainty in the nature of the

changes that the image analysis component '"ob-
serves” at a particular time instant, i.e., the presence
or absence of change or the amount of change.

In this first experiment, the only semantic
relationships that play a part are "similarity" and
"PART-OF", and only one hypothesis of the competing
set is true. As can be seen in Figure 3, a family of
curves is produced that satisfies our intuitive notions
of what should be cccurring. These notions include:

a) the more temporal noise there is, the greater
the number of images that must be examined before
a decision can be made,

b) at the 50% noise level there is no information
in the signal,

c) the greater the number of competirg hy-
potheses, the more images that must be examined in
order Lo discriminate from among them.

An additional interesting fact is that the
minimum number of inter-image descriptions needed
for a decision in any case is 2. Under the conditions
in the experiment, this implies that no motion could
be recognized unless it appeared in at least three im-
ages. We shall see below that this is a characteristic
of the decision threshold, and that in certain cases,
this can be improved. However, this is a valuable pro-
perty for our classification scheme Lo possess: we

have the ability to control the response of the sys-
tem. This provides us with a handle on the "focus"
problem present in so many "expert” systems in the
face of extraneous or erroneous data.

Response of a focus mechanism based on
feedback is not instantaneocus - there is an inherent
delay. Past expert systems, regardless of their
domain of application, have attempted to provide a
completely updated view of the analysis of the prob-
lem deomain at each instant during processing.
Therefore, any errors in the input data would be com-
pletely integrated as if they were valid data, rather
than waiting to see if the trend is indeed that which is
suggested by the data. The focus shculd not shitt
abruptly in a temporal classification scheme: it
should only change if the stimulus dictating the
change is present over a significant period of time.
Such time periods are clearly problem dependent.
Our relaxation process accumulates the evidence of
the matching history of a hypothesis, and thus, it is
very difficult for an isolated error event to negate a
large positive history of successful matching (or, for
Lhal maller, a history of matching failures).

Another interesting observation ecan be
made from this graph. If there are, for example, 5
competing hypotheses, under 10% noise conditions,

‘then the system must examine at least 10 inter-

image descriptions (11 images) in order to discrim-
inate from among them. This means that if the mo-
tion concepts represented by the hypotheses have
expected minimum duration D, then the sampling
rate of the film must be at least 11/D in images per
second. This can be generalized to the following rela-
tionship:

i+1)
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This relationship ties together the minimum required
scene sampling rate for proper classification, the
number of images required for classification from the
graph for each set of competing hypotheses, and, the
shortest expected duration for that set of hy-
potheses. This relationship is important because it
places a constraint on the data presented to our mo-
tion classifier: enly if this is satisfied will the shortest
event in the KB be recognized properly. Scene sam-
pling rate is clearly an important consideration in the
design of a classifier for time-varying events, just as
it is in the reproduction of a time-varying signal. In
the case of signal reproduction, using the standard
definition of the Nyquist rate, one must sample the
signal at least at a rate of twice the maximum fre-
quency present, or in other words, 2 divided by the
minumum waveform "period" or duration for periodic
signals since frequency is the inverse of peried. Our
relationship also has this same form, replacing the
constant 2 by a value that can be extracted from the
figure, (greater than or equal to 2). We are interest-
ed in classification and not in simple reproduction:
however,this similarity is quite satisfying conceptual-
ly.

In our second experiment, we investigated
the effect of the IS-A relationship on the competing
hypotheses of the first experiment. Here, all the
competing hypotheses had the same IS-A parent (see
Figure 4a), i.e., the same global constraints, and this
constraint is satisfied in the image sequence. Thus,
the IS-A constraint signifies "complementary” hy-
potheses as opposed to the similarity relationship
that specifies "competing” hypotheses. The results
are shown in Figure 5. Note the sharp diflerence in
slope of the curves between this figure and Figure 3,
except for the 50% noise case (as is proper). The
effect of the IS-A relationship significantly speeds up
the decision time for large numbers of hypotheses
and when noise is present. This verifies our expecta-
tions. Knowledge can be structured by providing
descriptions at varying levels of abstraction, from
coarse to detailed. Feedback can then be present
between levels, with the coarse descriptions placing
strong, more global constraints on the detlailed
descriptions, thus assisting in the removal of isolated
noise stimuli. So, the IS-A relationship not only pro-
vides a conceptual benefit from the point of view of
knowledge organization, but also provides perfor-
mance benefits. In addition, if none of the IS-A sons
matches the data in the image sequence, so Lhal no
decision can be made from amongst those hy-
potheses, but the IS-A parent matches the data, a
conceptual descriplion could still be provided at a
more abstracl level. This would further enhance the
"intelligent” behaviour of our system in that it does
not just give up if no descriptive term in the KB at
that level is appropriate, but instead, it provides a
more general view of the motions.

Let us further investigate the IS-A relation-
ship. Suppose two levels of IS-A ancestors are con-
sidered as in Figure 4b. In this case, and in agree-
ment with our expectations, no significant change
from the previous case was observed. This structure
does not change the nature of the competition at the
bottom level and thus no change should be seen.
Thus, the addition of ancestors in the IS-A hicrarchy
is "free" - we gain in conceptualization, and de not
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pay a price in terms of performance

Suppose that the structure of the IS-A
hierarchy is changed to that in Figure 4c. In this
case, there are two levels of IS-A, and both levels ex-
hibit competition amongst IS-A siblings. The results
of this experiment are shown in Figure 8. The slopes
of the curves are again less than those of Figure 3,
but not by as much as in Figure 5. The situation here
becomes rather complex for explanation at an intui-
tive level. In effect, we have entire "branches" of the
hierarchy in competition with each other, with each
level affecting the other. The greatly beneficial
effects of the I5-A constraint, as in the first experi-
ment with IS-A, apply only for the top level of this
hierarchy and are partially negated by the straight
competition present in the second level. The top lev-
el of 1S-A assists in discrimination, as well as re-
inforcing IS-A sibling hypotheses, while the lower level
only re-inforces IS-A sibling hypotheses. 'These
effects cause the additional time delay observed in
comparing the cases in Figures 5 and 8.

Summarizing the conclusions of these ex-
periments, we see that:

a) 1S-A provides a practical conceptual tool for
knowledge organizing that is to be used for recogni-
ticn.

b) The number of images of data required for
classification is decreased by the imposition of the
global constraints provided by the 1S-A relationship.

¢) Knowledge should be structured along IS-A in
such a way so that it reflects the fact that competi-
tion amongst I5-A "branches" does not lead to as good
performance results as does competition amongst
18-A siblings.

In a previous paragraph, motivation was
given for the selection of the decision threshold.
Suppose that this is now changed. If we decrease the
parameter k in the expression

(1-3)*(1-e D+

from its value of 1.0 (as used for the previous experi-
ments), we should observe that, obviously, we can
make decisions faster . We repeated the first experi-
ment for varying values of k (0.8, 0.8, 0.7, 0.8, 0.5),
but without noise, and observed that the lower limit
of 2 inter-image descriptions remains at 2 until k be-
comes 0.8 when it falls to 1. This is clearly also the
absolute limit for motion. We must be careful, howev-
er, in the use of a threshold such as this. In exchange
for a faster response, we sacrifice our stable and
non-erratic focus of attention. Only in cases where
there is no extraneous or erroneous data should such
a low certainty threshold be used. In addition, we
would expect that for large amounts of temporal
noise, lowering the decision threshold may degrade
performance to such a degree so that the updating
scheme is rendered useless. Determination of the

limits on temporal noise with respect to decision
threshold is a goal of a future experiment.




Conclusions

Experimentation is a powerful tool, used ex-
tensively throughout the scientific world. Artificial in-
telligence researchers introduce complex schemes
for the solution of difficult tasks, and for the most
part, a clear understanding of these complex
schemes can only be obtained via experimentation
and performance analysis, and not only by the
demonstration of a few examples. In this paper, a
classification scheme for time-varying events has
been briefly described and several of its characteris-
tics have been presented. We believe that our experi-
mentation has demonstrated that IS-A is a powerful
structuring tool for knowledge and that gains can be
bad both conceptually and computationally.
Although our system, ALVEN, has successfully han-
dled several image sequences, both of human left
ventricles and of moving dots, we believe that the
results of these experiments provide much stronger
statements on the appropriateness and performance
of our methoedelogy than do examples. Several attri-
butes of motion classification schemes were present-
ed, however, analysis of our scheme is not yet com-
plete with respect to all of them. Research is con-
tinuing particularly for the temporal constraints
present in the knowledge base.
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