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Abstract

The main contribution of this research is an extensive analysis
of the noise sensitivity inherent in the motion and structure problem.
We report results of an average and worst case error analysis for four
types of image velocity input: full and normal image velocities and
full and normal sets of image velocity and its derivatives. (These
derivatives are simply the coefficients of a Taylor series expansion of
image velocity about some point in space and time.) The main
issues we address in this paper are: just how sensitive is motion and
structure in the presence of noisy input, or alternately, how accurate
do we need image velocity information, how much and what type of
input data is needed and under what circamstances is motion and
structure feasible? That is, when can we be sure that a motion and
structure computation will produce usable results? We base our
answers on a numerical error analysis we conduct for a large number
of motions.

1.1 The Problem

In this paper we outline a motion and structure algorithm that
uses time-varying image velocity information to compute the motion
of a monocular observer moving relative to a stationary 3-D planar
surface under perspective projection. Due to the depth-speed ambi-
guity experienced by a monocular observer, his translation U and thy
3-D coordinates of environmental points on the planar surface, P,
cannot be recovered. We can only compute @, the depth scaled
observer translation and ¢, the normalized surface gradient of the 3-
D planar surface. Since the rotational component of image velocity is
indepegdent of 3-D depth we can fully recover the observer’s rota-
tion, ®. To determine these motion and structure parameters we
derive nonlinear equations relating image velocity and its derivatives
at some image point and time, Y(P“,¢") to the underlying motion
and structure parameters at another image point and time, %( ,t).
Hence, we are able to use time-varying image velocity information
in the computation of motion and structure. This is in sharp contrast
with most previous approaches to motion and structure (see [Barron
84,88] and below for references) where image velocity information
is measured at one time only. As we shall see below the use of time-
varying image velocity information can often reduce error sensitivity
in motion and structure calculations.

1.2 Literature Survey

The most common approach to monocular reconstruction
involves solving (generally nonlinear) systems of equations relating
image velocity (or image displacement) to a set of motion and struc-
ture parameters ([Longuet-Higgins 81], [Tsai et al 82], [Tsai and
Huang 84], [Prazdny 79], [Roach and Aggarwal 80], [Webb and
Aggarwal 81], [Fang and Huang 84ab], [Buxton et al 84],
[Dreschler and Nagel 821, [Lawton 83]). Some of the issues that arise
for these algorithms are the need for good initial guesses of the solu-
tions, the possibility of multiple solutions and the need for accurate
input. The latter is by far the most important issue if the motion and
structure approach is to be judged a success.

A second approach to reconstruction involves solving nonlinear
systerns of equations relating local image velocity information (one
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image velocity and its 1% and 2* order spatial derivatives) to the
underlying motion and structure parameters ([Longuet-Higgins and
Prazdny 80] and [Waxman and Ullman 83,85]). Waxman and Wohn
[84,85] propose that these derivatives be found by their Velocity
Functional Method which comnsists of solving linear systems of equa-
tions, where each equation specifies the normal component of image
velocity on a moving non-occluding contour in terms of a Taylor
series expansion of the x and y components of image velocity. More
recently, [Subbarao 86] and [Waxman et al 871 have proposed closed
form solutions for motion and structure. These algorithms basically
involve solving a cubic equation and a set of decoupled nonlinear
equations.

Only recently, have researchers begun to address the use of
temporal information, such as temporal derivatives, in reconstruction
([Subbarao 861, [Bandyopadhyay and Aloimonos 85]). We note that
others’ use of temporal derivative information and our use of time-
varying image velocity infortnation differ in one important respect:
we measure our information, including spatial and temporal deriva-
tive information at many different times rather than at one just one
time,

It is somewhat disappointing that almost none of these recon-
struction techniques have been successfully applied to flow fields
calculated from realistic scenes. Primarily, the problem is the
difficulty in computing accurate flow fields. There has been little or
no error analysis in previous monocular reconstruction work,
although some researchers, such as [Waxman and Ullman 83,85],
[Buxton et al 84], and [Subbarao 86] have begun to consider the
inherent sensitivity of their algorithms to random noise in the input.
See [Barron 84,88] for a more detailed survey of motion and struc-
ture algorithms and their problems.

1.3 Assumptions

In order to relate a spatio-temporal distribution of image velo-
cities to the motion and structure parameters at some image point we
need to make some assumptions:

(a) The use of projective transformations requires the assumption of
rigidity; objects are assumed to be rigid. This ensures that the image
velocity of an object’s point is due entirely to the point motion with
respect to the observer and not due to changes in the object’s shape.

There is much psychological evidence, for example, [Gibson 57] and
[Ullman 79] to support the premise that humans have a tendency to
use the rigidity assumption to analyze world scenes.

(b) The 3-D surfaces of objects can be described locally as a plane.
The local planarity assumption means curved surfaces are treated as
collections of adjacent planes.

(c) The observer rotates with a constant angular velocity for some
small time interval. Webb and Aggarwal [81] call this the fixed axis
assumption.

(d) The spatio-temporal distribution of image velocity results from
3-D points on the same planar surface. We call this the same surface
assumption.

(e) The observer’s type of mction is known. The known motion
type assumption is necessary for relating @values on a planar surface
over time. We consider two types of observer motion in this paper,
although we emphasize that our treatment can be generalized to other



types of observer motion as well. Type 1 motion involves the
observer translating with constant speed while he rotates his line of
sight with constant angular speed. Type 2 motion involves the
observer moving with constant translational and angular speed.
Given these motion types it is possible to derive equations relating
both full and normal image velocity and their derivatives at one
image location and time to the motion and structure parameters at
another point and time.

The use of the local planarity and fixed axis assumptions means
that the point-to point correspondence problem does not have to be
solved, i.e. we do not have to use velocities of the same 3-D points
at different time intervals, as it is now mathematically possible to
relate image velocities measured at any point and time on a 3-D
planar surface to the motion and structure parameters of any other
point on the planar surface at any other time (where these assump-
tions are reasonably satisfied) . Other researchers, such as [Kana-
tani 85], have also advocated a correspondence-less approach. The
computation of image velocity may require solving the correspon-
dence problem although there is a group of techniques based on the
relationship between spatial and temporal grayvalue distributions,
for example, [Horn and Schunck 8171 and [Heeger 87], for determin-
ing image velocity without the need to compute correspondence.

The main concern of this paper is how accurate must the time-
varying image velocity input be? Some preliminary results were
presented in [Barron et al 87b]. Since the noise sensitivity of motion
and structure is inherent in the actual nature of the problem and not
in the type of solution technique used we believe other motion and
structure algorithms concerned with passive navigation will exhibit
noise sensitivity behaviour compatible with our results.

2 The Algorithm and Solution Technique

The algorithm presented in this paper involves solving non-
linear system of equations that relate a spatio-temporal distribution
of image velocity to a set of motion and structure parameters at some
image point at a particular time. Newton’s method is used to solve
the equations. Hence, we need to compute a Jacobian matrix, J.
Furthermore, an initial guess to the actual solution is needed to start
the convergence calculation. Because we are solving nonlinear sys-
tem of equations we need to be concerned about the uniqueness of
any solution obtained. It has been shown that at one time there are at
most 2 solutions (for planar surfaces) [Hay 66] and that they are dual
[Waxman and Ullman 83,85} @, Furthermore, [Hay 66] and {Sub-
barao and Waxman 85] have shown uniqueness over time.

3 The Sensitivity Analysis

It is well known in the Computer Vision community that
motion and structure is very sensitive to noisy input. The problem is
further compounded by the fact that image velocity may not be
entirely due to the 3-D velocity field [Verr and Poggio 87] as varia-
tion in the image brightness patterns can be due to other phenomena
as well, such as changes in lighting conditions and specular points.
As a results of these problems, some authors, for example [Thomp-
son and Kearney 86] and [Verri and Poggio 87] argue against the
quantitative use of image velocity information. In this paper the
discrepancy between the measured image motion and the image
velocity field is considered as another source of input error.

Recently, [Subbarao 86] and [Waxman et al 87], have
presented closed form solutions to the motion and structure (at one
time) even if the surface is nonplanar. As Subbarao [86] notes, any
such algorithm’s error behaviour can be predicted analytcally.
Hence, a numerical analysis is not needed as it is redundant. How-
ever, since we are solving motion and structure using spatio-
temporal image velocity data the equations we have to solve are
highly nonlinear and it is doubtful that they can be decoupled.
Hence, an analytic analysis seems intractable so we instead conduct
a numerical analysis.

Previous error analysis has consisted almost entirely of running

(1) Of course, we must still be able to solve surface correspondence, i.e. we must be able to
group together all image velocities distributed locally in space and time that belong to the same
planar surface. See [Adiv 84] for one approach to this problem.
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particular motion and structure algorithms with random noise in the
input, for example [Waxman and Ullman 83,85]. In this paper we
present average and worst case error results for both minimal and
least squares input. Rather than compute the percent output error
given X% input error we compute error amplification factors: given a
certain size input error _What is the size of the output error? If Af is
the input error and As is the output error than the L, error
amplification factor is simply
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(the solution) then X% input error causes pY % output error.

3.1 What Constitutes a Feasible Motion and Structure Computa-
tion?

At this point we state the criteria by which we judge whether a
motion and structure computation is viable. We believe a feasible
motion and structure algorithm should consistently produce worst
case error amplification factors of 3 or less. For Y=1, 10% worst
case error in f would then produce at most 30% error in 3 for a p
value of 3. We have chosen 10% as the upper bound for measure-
ment error; we believe image velocity data can be measured to
within this accuracy. [Heeger 87] presented some encouraging
results in this regard for the measurement of image velocities. Still
30% output error is not that useful, except to give a general idea
about the motion. For an autonomous vehicle we probably need p<1
if the computed motion and structure parameters are useful. As well,
we desire a robust calculation: the condition number of the Jacobian,
J, should be small, in the thousands or less, at most. Lastly, we note
that the use of worst case input in our investigation is important: if
we can show that motion and structure is feasible for worst case
input error then it is also feasible for all types of other error. Worst
case error will seldom occur in the real world.

3.2 SVD Analysis: Computing Average and Worst Case Input
Error

, where?is the input vector and ¥is the output vector

Given a Jacobian J,,x,, m2n we can compute its Singular
Value Decomposition (SVD) as

T = U pisinDosin Visn (3.2-1)

where U and V are unitary matrices and D is a diagonal matrix.
Given the SVD of J we can compute worst case SVD error
amplification factors as simply the inverse of the largest diagonal
element of D. If d; is that element then U”¢; gives the worst case
error direction. We note that this is actuallx € WOrISt Case error
direction for the linear system of equations Jh=f at one iteration (the
last using the correct ¥ values) and is only an approximation for the
nonlinear system in general: the smaller the input error, the smaller
the nonlinear effects and the better the approximation.

We can also conduct average case error analysis if we make
enough random error nonlinear simulations. We can compute aver-
age case SVD error amplification factors as
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where J7 is the pseudoinverse of J and #; is a random unit vector.
The largest random error amplification factor should approach worst
case error amplificaton results.

Even though worst case SVD error is only an approximation to
the actual nonlinear worst case error of a nonlinear system of equa-
tions it is still much worse than random (average) case error for most
motion and structure setups. As well, SVD analysis of J allows us to
predict average and worst case performance for a nonlinear system
(2) Not only do the two sets of motion and structure parameters specify the same flow field but

the duality equations (see [Barron et al 87a], [Bamron 88]) allow either one to be specified
analytically in terms of the other.



of equations without performing nonlinear simulation.

We can analyze the feasibility of motion and structure using
full image velocities, normal image velocities, full Taylor series
coefficients and normal Taylor series coefficients; we compute the
appropriate J for each type of input. We can also estimate Taylor
series coefficients from image velocities. SVD analysis of the
corresponding J allows us to compare error amplification behaviour
with the J computed for measured Taylor series coefficients.

In order to compare worst case predicted SVD error
amplification factors with nonlinear simulation results we compute
the worst case error direction as described above and then add X%
relative worst case error to the input by scaling the worst case error
so that the image velocity or Taylor series coefficient pair with the
largest ratio of error size to the magnitude of the pair has X% error;
hence all other pairs have <X % error in them. In the case of normal
image velocities and Taylor series coefficients we compute X % rela-
tive error by scaling the error vector so that the largest ratio of error
to normal magnitude is X%.

3.3 Computing Initial Guess Error

We add random error to the correct solution 7o obtain the ini-
tial guess sy required to start the convergence calculation in non-
linear simulation. We compute X % initial guess error in¥by simply
adding X % L, random error for each of &, o and  separately. This
means that if one set of parameters is much larger than another, the
latter’s initial guess error is not dominated by the larger set of param-
eters.

3.4 Experimental Motions and Surfaces

In choosing what motion and structure parameters we should
investigate we were guided by two principles: they should be realis-
tic given our assumptions or they should have been previously
reported in other work.

Table 3.4-1 shows the parameters for eight realistic motions
(and their duals) that we have devised. We show the 0 values as
unnormalized to keep them as simple integers. When ©+(0,0,0) we
can analyze the motions for both type 1 and type 2 observer motion;
hence motions S and 7 are type 1 mqtion while motions 6 and 8 are
type 2 motion. The solution point Y,=(20,20)® is the image point
where is computed. If Y, were changed from (20,20) to (0,0) then
motions D3, D4, D7 and D8 are singular as_?#O,(),O). Motions 1-4
are analyzed assuming pure translation (i.e. ®=(0,0,0) is known). We
can analyze motions 2-4 assuming general motion as well. However,
motion 1 is singular when general motion is assumed regardless of
the times the inputs are measured at. Motions 5 and 6 are also singu-
lar if all the input is obtained at time O but can be analyzed when the
input is measured over time.

The second set of motion and structure parameters we consider
are Waxman and Ullman’s planar motions [83,85]. Table 3.4-2
shows the 5 motions (labelled W6 to W10 to correspond to examples
6 to 10 in [Waxman and Ullman 83]) and their duals, DW6 to
DW10. These are not realistic everyday motions one might expect
an autonomous vehicle to undergo. We analyze these motions at
time O only and use Y;=(0,0), as Waxman and Ullman did. Note that
motions DW7 and DW9 are singular as @p=(0,0,0). For all the
motions described in Tables 3.4-1 and 3.4-2, X5 is 2000.

We examine motion and structure for various environmental
setups. The quantities that describe the environmental setup include
i, the solution point, the spatial extent and the temporal extent.
We compute the spatial extent of a set of image points where the
input is measured at as the diagonal angle of the smallest rectangle
containing all the image points. We compute the temporal extent,
0-¢, of a set of image points where the inputs are measured at as the
times 0, ¢/3, 2¢/3 and ¢ for full image velocity or Taylor series
coefficient input and as the times 0, ¢/7, 2¢/7, 3t/7, 4¢/7, S5t/17, 6¢/7

(3) Given f=1 and that the minimum/maximum horizontal/vertical coordinates of the image
are 1Y2f if we assume a 256X256 pixel image coordinate system ¥,=(20,20) in pixels
corresponds to 7,:(0.078125,0.078125,1) in f units. We use pixel image locations in this
paper because these can be expressed as simple integers and are more intuitive.

Table 3.4-1 Original and Dual Solutions When YF(ZO, 20)
Motion g ?}) Motion
2=(0,0,0.496976) | Wp=(0,0,0.496976)

1 G=(0,0,1) =(0,0,1) D1
©=(0,0,0) 0p=(0,0,0)
7_2}(0,0,0.496976) Up=(0.460963,0,0.460963)

2 O=(10,1) =(0,0,1) D2
©=(0,0,0) ©p=(0,-0463768,0)

Z=(o,o.496976,0) W)=(0,0,0.038826)

3 G=(0,0,1) 0p=(0,1,0) D3
©=(0,0,0) ®p=(-0.5,0,0)
7-(0,0.496976,0) | 7p=(0.036013,0,0.036013)

4 ~(1,0,1) =(0,1,0) D3
0=(0,0,0) Wp=(-0.463768,0,0.463768)
Z=(0,0,0.496976) Wp=(0,0,0.496976)

56 | G=00,1) =(0,0,1) D5,D6
©=(0,02,0) ®p=(0,02,0)
Z=(0,0.496976.0) Wp=(0.036013,0,0.036013)
78 | a=(L01) =(0,1,0) D7,D8
0=(0.2,0,0) Bp=(-0.263768,0,0.463768)
Table 3.4-2 Waxman and Ullman's Planar Motions and Their Duals AtZ#0,0)
Motion K _.s:;) Motion
2=(654) p=(404)
w6 ~(-1,0,1) Gp=(-15,1.25,-1) DW6
©=(3,2,1) Op=(-24,6)
U=(6,50) Wp=(00,0)
W7 | 0=(-10:1) Ap=(12,1,0) DW7
®=(32,1) Wp=(-2,3,6)
#=(12.3) Wp=(3,63)
W8 | G=(-12:1) Cp=(-0.333,-0.667,-1) DW3
©=(4,5,6) Wp=(8,3,6)
2=(1,2,0) i§)=(o,o,0)
s u
W9 | Ge(-12D) Cp=(1,2.0) DW9
®=(4,5,6) Op=(2,6,6)
2654) Up=(004)
w10 ~(0,0,-1) Op=(-1.5,1.25:1) DW10
®=(3,2,1) Wp=(-2.8,1)

and ¢ for normal image velocity or Taylor series coefficient input.

4 Experimental Results

We present qualitative rather than quantitative results here;
complete numerical results are in [Barron 88]. We consider both
minimal (the least amount of data needed to recover motion and
structure) and least squares input.

4.1 Using Minimal Input

In this section we investigate the use of minimal full/normal
image velocity or Taylor series coefficients data in the computation
of motion and structure. The two main questions we are concerned
with are "How sensitive is the computation to noisy input?” and
"Can anything be done to reduce the noise sensitivity?".

4.1.1 Using Minimal Image Velocity Input

Since four image velocities constitute minimal input for gen-
eral motion we meagure each image velocity at the four corners of a
square centered at Y, at each of the four times specified by the tem-
poral extent ., For each motion, we use a temporal extent O— where
t is varied from 0 to 1 for motions 1-4, 7 and 8 and 0.3 to 1 for
otions 5 and 6. For motions W6-DW10 ¢ is fixed at 0. If
=(20,20) the spatial extent is 30.5% while if it is (0,0) the spatial
extent is 30.9°.
(4) If pure translation is assumed we only need 2%z image velocities. In this case we let the LU

decomposition of J choose the 2%z image velocities to be used in the motion and structure
computation.

653



Average and worst case SVD results show that the computation
of motion and structure is untenable. Indeed, even if the feasibility
criterion of a maximum worst case error amplification factor of 3
were increased to 10 most of the motions are still not viable. Worst
case error amplification factors ranged from a low of 7 to a high of
317 for motions 1-8 and from 3.4 to 36 for motions W6-DW10.
Some of the motions, especially motion 5 had average and worst
case error amplification factors in the 100’s! However, we are able
to make two important observations:

(1) The worst case error amplification factors observed from the
SVD analysis and the corresponding nonlinear simulations showed
good agreement: the SVD amplification factors are good predictors
for nonlinear simulation behaviour. We used 0% to 1.4% relative
worst case image velocity error (because of the high error
amplification factors, larger input error usually did not allow conver-
gence) and 0% initial guess error in the nonlinear simulations.

(2) In general, worst case error amplification factors were at least 2-3
times higher than average case error amplification factors. However,
the maximum of the random error amplification factors used in the
computation of an average case error amplification factor for a par-
ticular motion was quite close to the worst case error amplification
factor for that motion. Worst case error often occurred for minimal
input. It seems that worst case analysis should be an important
feature of any sensitivity analysis.

The second question we posed, "Can anything be done to
reduce the noise sensitivity?" can be answered more positively. In
particular, we demonstrate that time helps. As the temporal extent is
increased, the average and worst case error amplification factors
decrease for most of the motions. As well, increasing the spatial
extent helps for all motions. Indeed, for some of the motions a spa-
tial extent of 70° (the full image plane) yield error amplification fac-
tors less than 3 (or, more commonly, in the 4-6 range).

We are able to report numerous other results:

(1) Worst case error amplification factors for full image velocities
are only slightly larger than worst case difference error amplification
factors where error is added to the image velocity differences only:
worst case error is almost entirely due to error in the image velocity
differences. This means large image velocity mean error can be han-
dled with ease. Some types of autonomous vehicle motion, for exam-
ple, hitting a rut in a road, introduce this type of error into the image
velocity input.

(2) It is reasonable to question the validity of our algorithm’s under-
lying assumptions. As Thompson and Kearney [86, p17] comment:

"Unrealistic assumptions are only justifiable when it can
be shown that useful answers can be obtained in realistic
situations despite violations in the assumptions”.

We test violation of _tpe planarity, rigidity and same surface assump-
tions by perturbing o values in one of three ways: (a) by measuring
the image velocities on two halves of a hinged surface, (b) by
.measuring tl_13 image velocities on a spherical surface and (c) by per-
turbing the o values randomly. We test violation gf the fixed axis
assumption by adding randomly generated error to @ at each time an
image velocity is measured at while we test violation of the constant
observer translation assumptions by adding random error to Rand X4
at each time an image velocity is measured. We perform nonlinear
simulation, using assumption error scaled to be the same size as
worst case image velocity error. The results show that the assump-
tion error amplification factors are usually significantly less than
worst case error amplification factors. It seems that we should be
more concerned with image velocity accuracy rather than with viola-
tion of the algorithm’s underlying assumptions.

(3) We consider several situations where computing a restricted set
of motion and structure may be realistic. One, in particular, is if an
autonomous vehicle’s environment is restricted to the corridors of a
building. In this case, 45, ®; and @3 are known to be zero. Hence,
there are only five independent motion and structure parameters in
the general case and only four when pure transiation is assumed. Of
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course, the planarity assumption is satisfied for most of the vehicle’s
environment as it is primarily composed of walls, floors and ceilings.
We examined motions 1-2 and 5-6 under the assumption of planar
translation, vertical rotation. Using the minimal amount of image
velocity data needed yields worst case error amplification factors
(from 16 to 220) that are actually larger than those observed in the
initial sensitivity for the corresponding general motions. However,
using all four image velocities resulted in lower worst case error
amplification factors than for the corresponding general motions. In
this and other cases (see [Barron 88]), knowing something about the
motion made the motion and structure calculation more viable
(although not necessarily feasible).

(4) The last set of results that we report for minimal image velocity
input is the effect of the initial guess on the output. In particular we
demonstrate the following properties of our algorithm:

(a) For 0% image velocity error we are able to solve motion and
structure for large initial guess error, up to 100% and more. More
interestingly, we observed the presence of multiple (nondual) solu-
tions for motions 5-7. These multiple solutions produced flow fields
distinct from those for the original solution but both sets of flow
fields shared four common image velocities at the image locations
and times where the input was measured at. Examples of multiple
solutions are reported in [Barron et al 87a] and [Barron 88].

(b) We also observed the presence of dual solutions for motions W6,
W8, W10 and 2. No multiple solutions were observed for these
motions; it is unlikely that two distinct nonsingular flow fields would
have four common image velocities. Again 0% image velocity error
and up to 100% initial guess error was used in the nonlinear simula-
tions.

(¢) Finally, we performed nonlinear simulation, varying worst case
image velocity error from 0% to 1.4% for fixed initial guess errors of
50% and 100%. For most solved runs we observed that image velo-
city and initial guess error are independent of each other. The other
solved runs produced multiple solutions in the presence of nonzero
image velocity error; these solutions are due to the initial guess error
as discussed above in (a).

4.1.2 Using Minimal Normal Image Velocity Input

The recovery of motion and structure from eight normal image
velocities measured at eight times is also possible {or from five nor-
mal image velocities measured at five times if pure translation is
assumed) provided that the flow field exhibits enought structure.
Waxman and Ullman [83,85] call this the "aperture problem in the
large” versus the usual "aperture problem in the small” {Marr and
Ullman 81]. We measure eight normal image velocities, ¥,, at the
four corners of a square and the four midpoints of the square’s sides.
The normal image velocity data is generated in one of two ways:
either by alternately using the horizontal and vertical components of
the full image velocity at each of the eight image points and times or
by computing eight unit random vectors, n and then computing
V,=(¥ n)n for the image velocity values, V, measured at each of the
eight image points and times.

Again, we perform SVD analysis and nonlinear simulation for
all 16 motions and find good correlation between predicted and

observed worst case error amplification factors. Typically, normal
image velocity error amplification factors are about twice as large as
the corresponding error amplification factors for full image velocity
input when the same spatio-temporal extent is used.

As in the previous section we also observed multiple solutions
(two distinct sets of eight normal image velocity flow fields shared
eight common normal image velocities) for motions 1-2 and 5-8.
Dual solutions were found for motions 7-8 and W6, W8 and W10
when the temporal extent is 0-0. Full details are in [Barron 88].

4.1.3 Using Minimal Taylor Series Coefficient Input

In this section we report results obtained using minimal Taylor
series coefficient input. We can use either
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to compute motion and structure. At any single time, g, fully
specifies the flow field (see [Waxman and Ullman 83,85] and [Bar-
ron 88]). F, coefficients estimated from a single image velocity field
are identical to those measured from the image intensity data at the
same time. As well, we note that we can measure the g, coefficients
in time and we can measure g at one time if we wish.

The first observation we make is that small image velocity
error corresponds to much larger Taylor series coefficient error. This
means that the error amplification factors resulting from the use of
Taylor series coefficient input will be considerably smaller than from
the use of image velocity input.

Nonlinear simulation results for estimated and measured Tay-
lor series coefficients agree reasonably well with predicted SVD
error amplification factors. Unfortunately, except for isolated cases,
the computation of motion and structure is still not feasible for
minimal Taylor series coefficient input. These isolated cases consist
of about half the runs for motions 1-2, all runs for motions 3-4, about
a quarter of the runs for motions 7-8 and a few of Waxman and
Ullman’s planar motions. These solved cases usually occurred for a
spatial extent of 0% and a temporal extent of 0-z, 0<r<1, when

v Ex
dy1dy2 ot
was used. Even though minimal Taylor series coefficient input is still
not feasible it is much more encouraging than minimal image velo-
city input,

‘We define estimation error as the difference between estimated
and actual Taylor series coefficients for a particular spatio-temporal
extent (the spatial extent is always nonzero). For larger temporal
extents this error can be quite large as the estimated and measured

was used and for large spatio-temporal extents when
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estimation errors of up to 40%. The error amplification factors were
about 1-2 but could be as high as 5. Of course, estimation error is not
WOTISt case error.

A comparison of the worst case error amplification factors that

result when — or ——az—v)——-
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much larger or much smaller than the other ¥,

differ significantly. Indeed, we obtain nonlinear convergence for

is used show that generally :.’yiay— is
10Y2

was usually either
B i
Al dy2

-———— is much

dy19y2

smaller that i? and, as a result of being closer to the size of the

coefficients. The one exception is motion 5 where

other coefficients, produces slightly smaller worst case error

amplification factors than

o’

In the case of measured Taylor series coefficients we can col-
lect all data at one image point and time (as suggested by [Longuet-
Higgins and Prazdny 81] or [Waxman and Ullman 83,85]) or at four
image points and times. Typically, the use of g, at one point and
time produced the best results. Using g} measured for small spatio-
temporal extents yields the largest error amplification factors but
these are significantly reduced for larger spatio-temporal extents, 2
can also be used for nonzero spatio-temporal extents, producing
much better results than obeerved from the uga of 5. Lastly, we did
not observe any multiple solutions even when 100% initial guess
error was used, although all runs solved.
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4.1.4 Using Minimal Normal Taylor Series Coefficient Input

We measure normal (horizontal/vertical and random) Taylor
series coefficients at the same times and image point offsets as in the
normal image velocity case. A set of normal Taylor series

coefficients consists of two normal coefficients for each of ¥, a—"—
V1

9y ot dy1dy2

between predicted and observed worst case error amplification fac-
tors for minimal input data. Error amplification factors range from
1.7 to 552 for random normal Taylor series coefficient data and from
5 to 780 for horizontal/vertical normal Taylor series coefficient data.
We also observed the presence of multiple solutions for motions 1, 5,
6 and 7 and dual solutions for some of Waxman and Ullman’s planar
motions.

4.2 Using Least Squares Input

As we have seem above, motion and structure is not feasible
for minimal input. In this section we report the results of our investi-
gation when least squares input is used. The relevant question here is
“How much least squares input is needed to obtain a feasible motion
and structure calculation?”. Many researchers, for example Waxman
and Ullman [83,85] have suggested that the use of least squares input
can produce acceptable error amplification factors. A second related
question is "With what kind of input and how much of it is needed?".

n

and or As before, there is a good correlation

The main tool used in our analysis of least squares input is
SVD analysis. We compute average and worst case error
amplification factors for varicus amounts of least squares input for
full and normal image velocity and full and normal Taylor series
coefficients. We construct least squares input by using multiple sets
of minimal input data in our experiments, One advantage of using
time-varying input is that it is easier to collect the volume of data
needed for a feasible motion and structure calculation over a period
on time rather than at one time only. Lastly, we emphasize that all
the experimental results presented in section 4.1 for minimal input
also hold for least squares input as well. Hence, increasing the tem-
poral extent for least squares image velocity data will result in lower
error amplification factors for rost of the 16 motions.

4.2.1 Using Least Squares Image Velocity Input

In this and the next section we use a solution point ?::(0,0).
We investigate least squares using 3, 6 and 24 sets of image velocity
data. (Each set of image velocity consists of four image velocities.)
The image points are distributed within the same spatio-temporal
extents as used for minimal input (see [Barron 88] for details). 24
sets of image velocity means we use 96 image velocities in total (we
compute J97,5). We believe this is an upper limit on the number of
image velocities we can realistically hope to measure for a single
surface patch over a small range of times.

While the use of least squares image velocity data is helpful in
reducing worst case error amplification factors it still does not make
motion and structure computations feasible in general, although
motions 3, 4 and DW10 which arc now feasible. It would seem that
the tradeoff of obtaining a worst case error amplification factor of 3
or less and the necessary increase in the amount of data and the spa-
tial and temporal extents of the measurements required is ynreason-
able. Using more than 100 image velocities, a larger spatial extent
than 30.9 degrees (already about 1/5 of the image) or a larger tem-
poral extent (the underlying assumptions such as local planarity and
the fixed axis assumption may be violated) is not realistic for most
motions. On the other hand, average SVD amplification results for
24 sets of image velocities are most encouraging; all motions except
motion 5 can be solved (it is solved when the temporal extent
exceeds 0-0.5). In fact, except for motion 5 average case error
amplification factors ranged from 0.1 to 1. If we examine the eight
error amplification factors that racult from the SUD of J we see that
only one (or sometimes two) of the factors are large, the others are
often around 1 or less. It seems that worst case error directions



occupy only a small part of the overall error direction space. This
suggests that average error analysis rather than worst case error
analysis may be a more appropriate type of analysis for least squares
image velocity input. This is an important observation: all regsearch-
ers, including [Waxman and Uliman 83,85], [Waxman and Wohn
84,85], [Subbarao 86], {Bandyopadhyay 86] and others, used random
noise in the input to their motion and structure algorithms.

4.2.2 Using Least Squares Normal Image Velocity Input

As in the minimal input case we use two types of normal image
velocity data: horizontal/vertical and random. One reason to use nor-
mal image velocities directly in the computation of motion and struc-
ture is because it is easier to measure normal rather than full image
velocity data from most image sequences (due to the aperture prob-
lem [Marr and Ullman 81]). Another of our goals in using normal
image velocity data was to test the Velocity Functional Method
[Waxman and Wohn 84,85]. The Velocity Functional Method was
introduced as a way of computing the "observables” from a normal
image velocity field. These observables were then used in the subse-
quent motion and structure calculation. We carried the investigation
one step further: we are interested in computing motion and structure
directly from least squares normal image velocity input. This com-
bines the Velocity Functional Method and the motion and structure
computation from the "observables” into a single computation. We
found that even when 96 normal image velocities were used the
motion and structure computation was only feasible for motions 3, 4
and DW10. We obtained worst case error amplifications of about
10-20 for Waxman and Ullman’s motions (with the exception of
motion DW10 which exhibited an error amplification less than 2)
when 96 normal image velocities were used. However when average
SVD analysis was performed the error amplification ranged from 0.1
to 2 or less for all motions, except motion 5 (where the average error
amplification ranged from just over 2 to just under 14). Waxman and
Wohn report 5% output error given 10% random input error for typi-
cal runs. (Depending on the L4 of the input and output vectors this is
equivalent to an error amplification factor ranging from 0.5 and 2.0.)
Hence, their results agree quite well with our predictions.

4.2.3 Using Least Squares Taylor Series Coefficient Input

The use of worst case least squares Taylor series coefficient
data allows motion and structure to be solved for all the motions
except motion 5. We use two point formulations when computing
motion and structure from actual Taylor series coefficients: the first
is the same as for the least squares image velocity data and the
second measures each set of Taylor series coefficients at a particular
image point and time. The same spatio-temporal extents are used for
both point formulations. Estimated Taylor series coefficients are
computed using image velocities measured at the first point formula-
tion. Complete details are in [Barron 88]. The error amplification
factors for the two point formulations are very similar. All motions,
with the exception of motion 5, are feasible using only 6 sets of Tay-
lor series coefficients, a reasonable amount of data to measure, espe-
cially in time. Motion 5 can be solved if average case error is present
in the input. It seems that actual Taylor series coefficients are a bit
better than estimated Taylor series coefficients: the worst case error
amplifications are slightly smaller and various actual Taylor series
coefficient pairs can be measured at a large number of spatial-
temporal extents or complete sets can be measured at individual
image locations and times. At the beginning of Section 4.1.3 we
described the relationship between error in a minimal image velocity
set and its corresponding estimated Taylor series coefficients. Small
image velocity error corresponds to much larger Taylor series
coefficient error. Hence, it is not surprising that Taylor series
coefficients are more robust than image velocities for motion and
structure computations when there is noise in the input. The prob-
lem of image velocity computation has been addressed by many
researchers (see Section 1 for references) without overwhelming suc-
cess. We suggest that a better approach might be to measure actual
Taylor series coefficients directly from the raw time-varying data.
The design of spatio-temporal filters to perform this task seems
appropriate.

4.2.4 Using Least Squares Normal Taylor Series Coefficient
Input

Again, because of the aperture problem it will be easier to
measure normal Taylor series coefficients rather than full Taylor
series coefficients. With the exception of motion 5, these can be
solved for worst case input error provided all 96 normal Taylor series
coefficients are used. This includes both horizontal/vertical and ran-
dom normal Taylor coefficient series data measured for both point
formulations. Motion 5 can be solved if average Taylor series
coefficient error is used. Since the spatio-temporal filters that would
measure this type of data would do so locally we believe that this
type of data is the most practical for motion and structure calcula-
tions.

4.3 The Stability of Motion and Structure

We have observed that error amplification factors decrease for
increasing spatio-temporal extents. In addition, as the amount of
input data is increased not only is the error amplification reduced but
the condition number also decreases. This means that least squares
motion and structure computations become both more feasible and
more robust than the same calculation from a minimal set of input
data. Thus, our feasibility criteria is more likely to be satisfied with
larger amounts of input data.

5 Conclusions
The main contributions of this research are:

(1) We have formulated a motion and structure algorithm that use
full/normal image velocity data and full/normal Taylor series
coefficient data as its input. Measuring this input over time usually
results in lower sensitivity to input error, allows us to analyze some
motions that are singular at one time and allows us to collect larger
amounts of input data for a least squares calculation.

(2) We have conducted an extensive sensitivity analysis for both
minimal and least squares input for the four types of input for aver-
age and worst case error. We found that:

(a) Motion and structure can be feasibly recovered in the average
case if full/normal least squares image velocity data is used.

(b) Motion and structure can be feasibly recovered in the worst case
if full/normal least squares Taylor series coefficient data is used.

Indeed, since most of the motions exhibit p values less than 1 for
these average or worst case results we conclude that the motion and
structure paradigm is suitable for autonomous vehicle navigation.
This is in sharp contrast to the popular belief in the Computer Vision
community that motion and structure is not suitable for such an
application because of its sensitivity to noisy input. Further, we
recommend the following: use normal Taylor series coefficient data
measured over time to compute motion and structure, The design of
filters to measure this normal data locally from an image sequence is
advocated as an area of future research, We have also devised a
binocular motion and structure algorithm [Barron et al 87¢] that uses
time-varying image velocity from a binocular image sequence but
have yet to perform a sensitivity analysis.

Bibliography

Adiv G., "Determining 3-D Motion and Structure from Optical
Flow Generated by Several Moving Objects”, COINS Technical
Report 84-07, University of Massachusetts, April, 1984.

Bandyopadhyay A. and J. Aloimonos, "Perception of Rigid
Motion from Spatio-Temporal Derivatives of Optical Flow”, TR-
157, Dept. of Computer Science, University of Rochester, N.Y.,
March 1985.

Bandyopadhyay A. "A Computational Study of Rigid Motion
Perception”, PhD Thesis, TR-211, Dept. of Computer Science,
University of Rochester, Dec. 1986.

Barron, J.L., "A Survey of Approaches for Determining Optic
Flow, Environmental Layout and Egomotion”, RBCV-TR-84-5,
Dept. of Computer Science, University of Toronto, November, 1984,

656



Barron, J.L., "Computing Motion and Structure From Time-
Varying Image Velocity Information”, PhD thesis, June, 1988, Dept.
of Computer Science, University of Toronto. (also RBCV-TR-88-
24, Dept. of Computer Science, University of Toronto, August,
1988.)

Barron J.L., A.D, Jepson and J.K. Tsotsos, "Determination of
Egomotion and Environmental Layout From Noisy Time-Varying
Image Velocity in Monocular Image Sequences”, 4* Intl. Confer-
ence on Image Analysis and Processing, Sicily, Italy, Sept. 1987.

Barron J.L., A.D. Jepson and J.K. Tsotsos, "The Sensitivity of
Motion and Structure Computations”, AAAL, 1987, pp700-705.

Barron JL., AD. Jepson and J.K. Tsotsos, "Determining
Egomotion and Environmental Layout From Noisy Time-Varying
Image Velocity in Binocular Image Sequences”, IJCAl, August,
1987, pp822-825.

Bruss A.R. and Hom B.K.P., "Passive Navigation", CVGIP
(formally CGIP), Vol. 21, 1983, pp3-20.

Buxton B.F, H. Buxton, Murray D.W. and Williams N.S., "3-
D Solutions to the Aperture Problem", in Advances in Artificial
Intelligence, T. O’Shea (editor), Elsevier Science Publishers B.V.
(North Holland), 1984, pp631-640.

Dreschler L.S. and Nagel H.-H., "Volumetric Model and 3-D
Trajectory of a Moving Car Derived from Monocular TV-Frame
Sequences of a Street Scene”, CGIP 20, 1982, pp199-228.

Fang J.-Q. and Huang T.S., "Solving Three-Dimensional
Small-Rotation Motion Equations: Uniqueness, Algorithms and
Numerical Results", CYGIP 26, 1984, pp183-206.

Fang J.-Q. and Huang T.S., "Some Experiments on Estimating
the 3-D Motion Parameters of a Rigid Body from Two Consecutive
Image Frames", PAMI, Vol.6, No.5, 1984, pp545-554.

Gibson J.J., "Optical Motions and Transformations as Stimuli
for Visual Perception”, Psychological Review, Vol. 64, No. 5, 1957,
pp288-295.

Hay J. C., "Optical Motions and Space Perception: An Exten-
sion of Gibson’s Analysis", Psychological Review, Vol. 73, No. 6,
1966, pp550-565.

Heeger D.J., "Optical Flow from Spatiotemporal Filters",
ICCV, 1987, pp181-190.

Horn B.K.P. and Schunck B.G., "Determining Optical Flow",
AI'17, 1981, pp185-203.

Kanatani K, "Structure from Motion without Correspondence:
General Principle”, IJCAI, 1985, 886-888.

Lawton D.T., "Processing Translational Motion Sequences”,
CGIP22, ppl116-144.

Longuet-Higgins H.C., "A Computer Algorithm for Recon-
structing a Scene from Two Projections:, Nature 293, Sept., 1981,
pp133-135.

Longuet-Higgens H.C. and K. Prazdny, "The Interpretation of a
Moving Image", Proc. Royal Society of London, B208, 1980,
pp385-397.

Marr D. and Ullman S., "Directional Selectivity and its Use in
Early Visual Processing”, Proc. Royal Society of London, B211,
1981, pp151-180.

Prazdny K., "Motion and Structure From Optical Flow", IICAI,
1979, pp702-704.

Roach J.W. and Aggarwal J.K., "Determining the Movement of
Objects from a Sequence of Images”, PAMI, Vol. 2, No. 6, Nov.,,
1980, pp554-562.

Subbarao M. and Waxman A.M,, "On the Uniqueness of Image
Flow Solutions for Planar Surfaces in Motion", CAR-TR-114 (CS-
TR-1485), Center for Automation Research, University of Maryland,
1985. (Also, 34 Workshop on Computer Vision: Representation and
Control, 1985.)

Subbarao M., "Interpretation of Visual Motion: A Computa-
tional Study”, CAR-TR-221, Center for Automation Research,
University of Maryland, PhD Thesis, Sept., 1986.

Thompson W.B. and Kearmey J.K., "Inexact Vision", Proc.
Workshop on Motion: Representation and Analysis, May 7-9, 1986,
ppl5-21.

Tsai R.Y., Huang T.S. and Zhu W.-L., "Estimating Three-
Dimensional Motion Parameters of a Rigid Planar Patch II: Singnlar
Value Decomposition" IEEE Trans. on Acoustics, Speech and Signal
Processing, Vol. 30, No. 4, August, 1982, pp525-534.

Tsai R.Y. and Huang T.S., "Uniqueness and Estimation of
Three-Dimensional Motion Parameters of Rigid Objects with Curved
Surfaces", IEEE PAMI, Vol. 6, No. 1, 1984, pp13-27.

Ullman S., The Interpretation of Visual Motion, MIT Press,
Cambridge, MA., 1979,

Verri A. and Poggio T., "Against Quantitative Optical Flow",
ICCV, 1987, pp171-180.

Waxman A.M. and Ullman S., "Surface Structure and 3-D
Motion from Image Flow: A Kinematic Analysis”, CAR-TR-24,
Center for Automation Research, University of Maryland, Oct.,
1983.

Waxman A.M. and Ullman S., "Surface Structure and Three-
Dimensional Motion From Image Flow Kinematics", Intl. Journal of
Robotics Research, Vol. 4, No. 3, Fall, 1985, pp72-94.

Waxman A.M. and Wohn K., "Contour Evolution, Neighbour-
hood Deformation and Global Image Flow: Planar Surfaces in
Motion", CAR-TR-58, Center for Automation Research, University
of Maryland, April, 1984. (Also in Intl. Journal of Robotic Vision,
Vol. 4, No. 3, Fall, 1985, pp95-108.)

Waxman A.M., Kamgar-Parsi B. and Subbarao M., "Closed-
Form Solutions to Image Flow Equations", ICCV, 1987, pp12-24.

Webb J.A. and Aggarwal JK. "Visually Interpreting the
Motion of Objects in Space”, IEEE Computer, Aug., 1981, pp40-46.

657



