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Finding the k Shortest Paths in Parallel1

E. Ruppert2

Abstract. A concurrent-read exclusive-write PRAM algorithm is developed to find thek shortest paths
between pairs of vertices in an edge-weighted directed graph. Repetitions of vertices along the paths are
allowed. The algorithm computes an implicit representation of thek shortest paths to a given destination vertex
from every vertex of a graph withn vertices andm edges, usingO(m+nk log2 k)work andO(log3 k log∗ k+
logn(log logk+ log∗ n)) time, assuming that a shortest path tree rooted at the destination is pre-computed. The
paths themselves can be extracted from the implicit representation inO(logk+ logn) time, andO(n logn+L)
work, whereL is the total length of the output.
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1. Introduction. The problem of finding shortest paths in an edge-weighted graph is
an important and well-studied problem in computer science. The more general problem
of computing thek shortest paths between vertices of a graph also has a long history and
many applications to a diverse range of problems. Many optimization problems may be
formulated as the computation of a shortest path between two vertices in a graph. Often,
thek best solutions to the optimization problem may then be found by computing the
k shortest paths between the two vertices. A method for computing thek best solutions
to an optimization problem may be useful if some constraints on the feasible solutions
are difficult to specify formally. In this case, one can enumerate a number of the best
solutions to the simpler problem obtained by omitting the difficult constraints, and then
choose from among them a solution that satisfies the additional constraints. Knowledge
of thek best solutions to an optimization problem can also be helpful when determining
whether the optimal solution is sensitive to small changes in the input. If one of the best
solutions is very different from the optimal solution but has a cost that is only slightly
sub-optimal, it is likely that minor modifications to the problem instance would cause
the sub-optimal solution to become optimal.

Sequential algorithms which compute thek best solutions to an optimization problem
first compute an optimal solution using a standard algorithm. A number of candidates
for the second best solution are then generated by modifying the optimal solution, and
the algorithm outputs the best candidate as the second best solution to the problem. In
general, thekth best solution is chosen from a set of candidates, each one a modification
of one of the bestk− 1 solutions. It seems that this approach cannot be used directly to
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obtain parallel algorithms with running times that are polylogarithmic ink, since the best
k− 1 solutions must be known before the algorithm can compute thekth best solution.
A different technique is used here to produce a parallel algorithm for thek shortest paths
problem with a running time that is polylogarithmic ink, and in the size of the problem
instance.

A parallel algorithm is developed in Section 3 to compute thek shortest paths to
a given vertext from every vertex of an edge-weighted directed graph. It is assumed
that the weights on the edges are positive, but the algorithm can easily be adapted to
handle negative edge weights, as long as there are no negative cycles in the graph. The
algorithm runs on a concurrent-read exclusive-write (CREW) PRAM. (See Karp and
Ramachandran’s survey [15] for definitions of PRAM models.) The algorithm finds the
k shortest paths tot from every vertex inO(log3 k log∗ k+ logn log logk+ logd log∗ d)
time usingO(m+ nk log2 k) work, whered is the maximum outdegree of any vertex
in the graph, assuming that the shortest path tot from every other vertex is given.
The algorithm computes an implicit representation of the paths, from which the paths
themselves can be extracted in parallel using the techniques described in Section 3.2.
New parallel algorithms for the weighted selection problem and the problem of selecting
thekth smallest element in a matrix with sorted columns, which are used as subroutines,
are outlined in Section 3.3. Some applications of thek shortest paths algorithm are
described in Section 4.

Previous work. Dijkstra’s sequential algorithm computes the shortest path to a given
destination vertex from every other vertex inO(m+ n logn) time [12]. In parallel, the
shortest path between each pair of vertices can be found using a min/sum transitive
closure computation inO(log2 n) time and O(n3 logn) work on an EREW PRAM
[18]. More complicated implementations of the transitive closure computation run in
O(log2 n) time usingo(n3) work on the EREW PRAM and inO(logn log logn) time
on the CRCW PRAM [13]. There are no known polylogarithmic-time PRAM algorithms
that find the shortest path from one particular vertex to another using less work than the
all-pairs algorithm. This transitive closure bottleneck is not avoided by the algorithm
presented here: the complexity bounds on the algorithm describe the amount of additional
time and work to compute thek shortest paths, once the shortest paths are known.

The problem of finding thek shortest paths in sequential models of computation was
discussed as early as 1959 by Hoffman and Pavley [14]. Fox presents an algorithm that
can be implemented to run inO(m+ kn logn) time [9]. Eppstein’s recent sequential
algorithm [7] is a significant improvement. It computes an implicit representation of the
k shortest paths for a given source and destination inO(m + n logn + k) time. The
k shortest paths to a given destination from every vertex in the graph can be found,
using Eppstein’s algorithm, inO(m+ n logn+ nk) time. The paths themselves can be
extracted from the implicit representation in time proportional to the number of edges
in the paths. A brief description of Eppstein’s algorithm is given in Section 2.1. Kumar
and Ghosh [17] independently developed a CREW PRAM algorithm for the all-pairs
version of thek shortest paths problem. Their algorithm is an adaptation of the transitive
closure algorithm for computing all-pairs shortest paths. They claim that the algorithm
finds thek shortest simple paths, but repeated vertices may appear on the paths that they
compute. There are some problems with their algorithm and their complexity analysis,
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but it appears that they can be fixed so that the algorithm runs inO((logn + logk)4)
time, performingO(n3k2(logk+ logn)+ n3(logk+ logn)3) work.

Sequential algorithms have been developed for other variations of thek shortest paths
problem. Yen [24] gives an algorithm for the more difficult problem of finding thek
shortest simple paths inO(kn3) time. Katoh et al. [16] describe anO(kn2) algorithm to
find thek shortest simple paths in an undirected graph.

2. Preliminaries. Let G = (V, E) be a directed graph withn vertices andm edges,
where each edge(u, v) of E has a non-negative weightw(u, v). The weight of a path
in G is simply the sum of the weights of the edges that make up the path. The distance
from vertexs to vertext , dist(s, t), is defined to be the weight of the path froms to
t that minimizes this sum. A path that achieves this distance is a shortest path froms
to t .

The problem of finding thek shortest paths from vertexs to vertext is to find a setP
of k s-t paths such that the weight of any path inP is no larger than the weight of anys-t
path not inP. There may be several paths inP with the same weight. If there are fewer
thank distinct paths froms to t , the solution setP should consist of alls-t paths. Here,
paths are not restricted to being simple; a vertex may appear more than once on a path.

Let T be a tree with roott that is a subgraph ofG and is constructed so that the
(unique) path inT to t from any vertexv is a shortestv-t path inG. The treeT is called
a shortest path tree ofG rooted att . The edges of the graph which do not appear inT
are called non-tree edges. Any path from a fixed vertexs to vertext can be represented
by the sequence of non-tree edges along the path. For example, in the graph shown in
Figure 1(a), edges ofT are shown as solid lines, and non-tree edges are shown as broken
lines. In this graph, the paths−→ c −→ a −→ f −→ b −→ t could be represented
by the sequence of non-tree edges,〈(s, c), (a, f )〉; the rest of the path can be filled in by
following the edges ofT . If p is any path, let sidetracks(p) be the sequence of non-tree
edges that occur along the pathp.

Fig. 1.An example graph. (a) Solid edges form the treeT . (b) Values ofδ are shown for non-tree edges.
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For each edge(u, v) ∈ E, one can define a measureδ(u, v) of the extra distance
added to the weight of a path fromu to t if the edge(u, v) is used instead of taking the
optimal path fromu to t :

δ(u, v) = w(u, v)+ dist(v, t)− dist(u, t).

The following lemma describes some properties of this measure.

LEMMA 1 [7].

(i) δ(u, v) ≥ 0 for all (u, v) ∈ E.
(ii) δ(u, v) = 0 for all (u, v) ∈ T .

(iii) For any path p from s to t,

weight(p) = dist(s, t)+
∑

(u,v)∈p

δ(u, v) = dist(s, t)+
∑

(u,v)∈ sidetracks(p)

δ(u, v).

To find thek shortest paths froms to t , it is therefore sufficient to find the pathsp
which yield thek smallest values ofδ(p) =∑(u,v)∈p δ(u, v). If δ is viewed as a weight
function on the edges ofG, a general instance of thek shortest paths problem has now
been transformed into an instance where the distance to vertext from any other vertex
is 0. From now on, the weight functionδ will be used instead ofw.

2.1. Eppstein’s Sequential Algorithm. Eppstein’s sequential algorithm [7] computes
an implicit representation of thek shortest paths. Each path’s sidetracks sequence is
represented as a modification of the sidetracks of a shorter path. Candidates for thekth
shortest path are obtained from one of the shortestk−1 paths either by adding a non-tree
edge to the sidetracks sequence or by replacing the last non-tree edge by another one.
The algorithm constructs a new weighted directed graphG′ in which each path starting
at a fixed vertexs′ (and ending at any other vertex) corresponds to ans-t path ofG. This
correspondence is bijective and weight-preserving, so thek shortests-t paths ofG can
be found by computing thek shortest paths that begin ats′ in G′, using Frederickson’s
algorithm [10]. It is possible that thei th shortest path is obtained by adding a non-tree
edge to the(i −1)th shortest path (for 2≤ i ≤ k), so it appears that Eppstein’s algorithm
cannot be directly implemented in parallel with a running time that is polylogarithmic
in k.

3. A Parallel Algorithm to Compute the k Shortest Paths. The k shortest paths
problem will be solved in stages. During thei th stage, paths with at most 2i non-tree
edges are considered and thek shortest of these paths tot from each vertex are computed.
The following lemma shows thatdlogke stages will be sufficient. (All logarithms have
base 2.)

LEMMA 2. There is a solution to the k shortest paths problem in which each path has
at most k− 1 non-tree edges.
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PROOF. Suppose there is a solution set that contains a pathp with at leastk non-tree
edges. Consider the paths fromv to t whose sequences of non-tree edges are prefixes
of the sequence sidetracks(p), where the prefixes are of length 0,1,2, . . . , k− 1. There
arek such paths, and each one has weight no greater than the weight ofp, sinceδ is
non-negative. So, the set of these paths is a correct solution to the problem, and each
path has at mostk− 1 non-tree edges.

The list of edges that make up each path will not be explicitly computed in each stage.
Instead, each path is represented by a binary tree structure whose leaves represent the
non-tree edges along the path. Thei th stage constructs the implicit representations of
paths by concatenating the sidetracks sequence of two paths that have been computed
in previous stages. The result of such a concatenation is stored in the data structure
by creating a new node, which will be the root of the tree representing the path, and
setting its children pointers to point to the roots of the two smaller paths. Thus, the
tree structures representing different paths may share common sub-trees, and the trees
constructed during thei th stage have height at mosti . Some additional information will
be stored in each node of the tree structures to allow the the computations to be performed
efficiently.

3.1. The Data Structure Used by the Algorithm. Let Ai
v be an array that will store the

root nodes of the tree structures that represent thek shortest paths fromv to t that have
at most 2i non-tree edges. If there are fewer thank such paths, some of the entries in the
array will be nil. Elements of the arrayAi

v will be formed by concatenating the sequences
of non-tree edges of two paths with at most 2i−1 non-tree edges each.

Each array element stores the following information about the pathp that it represents:

• pointers to the two previously computed paths whose sidetracks sequences were con-
catenated to formp, unlessp contains only a single non-tree edge, in which case this
edge is stored instead,
• the weight of the path (with respect to the weight functionδ),
• the number of non-tree edges along the path,
• num, the number of edges on the path up to and including the last non-tree edge, and
• the head of the last non-tree edge on the path (this could be nil if all edges along the

path are inT).

In the next section a parallel algorithm is given for extracting thek shortest paths
from this implicit representation. This is done by allocating processors to traverse the
leaves of the tree structures that represent the paths to obtain the sidetracks sequences
and filling in the rest of the edges along the paths by traversing branches of the treeT .
The actual construction of the data structure is described in Section 3.3.

3.2. Extracting Information from the Data Structure. First, some preprocessing is done
to the shortest path tree,T . Each vertex uses pointer jumping to locate a pointer to its
ancestor 2i levels above itself, fori = 1,2, . . . , dlog(n− 1)e. Some of these pointers
may be nil. This is done so that portions of thek shortest paths that are made up exclusively
of tree edges can be traversed quickly. This computation is done indlog(n− 1)e steps:
during thei th step, each vertex finds the ancestor 2i levels above itself by following
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two pointers computed in the previous step. This computation usesO(logn) time and
O(n logn) work.

Suppose that thej th shortest path fromv to t containsl j edges. Thek shortest
paths fromv to t can then be explicitly stored one after another in an arrayP of size
L =∑k

j=1 l j . The starting location of each path in the arrayP can be found by performing
a prefix sum (see [15]) onl1, . . . , lk.

SupposeL/log(kn) processors are available. Each processor is assigned the task of
filling in a block of the output arrayP of length log(kn). To begin filling in its block of
the array, the processor first determines which path it should be working on by doing a
binary search of the prefix sums ofl1, . . . , lk. The processor then follows the pointers
in the tree data structure that represents the path, starting from the root and going to the
appropriate leaf to find the first edge it must write intoP. At each node, the num field
gives the number of edges in the sub-path represented by the sub-tree rooted at that node,
so that the processor can determine whether to go left or right at each node on its way to
the leaf. When it reaches a leaf, the processor begins filling in entries ofP sequentially.
The portion ofP that the processor must compute is made up of segments of branches
of T , separated by non-tree edges. The processor can perform a linear traversal of the
branches ofT , copying the edges intoP one by one. Whenever the processor reaches
the end of a segment of tree edges, it traverses the tree data structure that represents
the path, to the next leaf, which represents the next non-tree edge on the path. Once the
non-tree edge has been entered intoP, the processor can again start copying a segment
of a branch ofT into P.

If the first edge that the processor is required to enter intoP is in the middle of a
segment of tree edges in the path, the processor can jump to the correct point inT in
O(logn) time using the ancestor pointers computed during the preprocessing ofT . If a
processor finishes entering one of thek shortest paths intoP, it starts working on the next
one. The total time to compute the output arrayP, including the time to preprocessT , is
O(logn+ log(kn)) = O(logk+ logn) and the total work performed isO(n logn+ L).
Thek shortest paths tot from every vertexv can be extracted inO(logk + logn) time
usingO(n logn+L total)work, whereL total is the total length of the output for all starting
verticesv, since the preprocessing ofT need only be done once.

In fact, some properties of the paths can be computed without explicitly listing the
edges in the path, as observed by Eppstein [7]. Suppose each edge in the graph is assigned
a value from a semi-group, and the value of a path is defined as the product of the values
of the edges along the path. If the associative semi-group operation can be evaluated in
constant time by a single processor, the values of thek shortest paths can be computed
in the same way as the num field of the data structure, without affecting the performance
bounds.

3.3. Building the Data Structure. The following preliminary lemma describes a version
of the common technique of parallel tree contraction which will be used during the
construction of the data structure.

LEMMA 3 (Tree Contraction). Let M be a monoid with an associative binary operation
that can be computed in O(S) time and O(W) work on an EREW PRAM. Let T be a
tree whose n vertices are labelled by elements of M. Let mv be the result of combining
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the labels on the path from vertexv to the root using the binary operation. Then mv
can be computed for every vertexv in O(Slogn) time and O(Wn) work on an EREW
PRAM.

PROOF. Reid-Miller et al. [19, page 163] describe how tree contraction can be used to
compute the valuesmv for binary trees, if the monoid is the set of natural numbers with
the associative operationx · y = max(x, y) and identity 0. However, their technique
will work for any monoid. Their algorithm can be adapted to work for non-binary trees
by replacing each vertex that hasc > 2 children by a binary tree withc − 1 internal
nodes whose leaves are the children of the original vertex. The newly created nodes are
labelled by the identity element ofM . This modification of the algorithm does not affect
the asymptotic running time or work.

The data structure will be constructed in stages. Stagei of the algorithm will compute
Ai
v for each vertexv using the arrays computed in the previous stage.
The construction ofA0

v is described first. The first entry ofA0
v will be the path from

v to t in T . It has weight 0 and contains no non-tree edges. The rest of the paths in
A0
v will each contain exactly one non-tree edge, so the tail of each of these edges must

lie on the path fromv to t in the treeT . Thus, A0
v can be computed by finding the

k− 1 shortest non-tree edges (with respect toδ) whose tails are on the path fromv to t
in T .

First, thek − 1 shortest non-tree edges whose tails are at vertexv are selected, for
each vertexv in the graph. This can be done usingO(logdv log∗ dv) time andO(dv)
work, wheredv is the outdegree ofv, using Cole’s selection algorithm [5]. In total, this
requiresO(logd log∗ d) time andO(m) work, whered is the maximum outdegree of
any vertex in the graph. In addition,O(logn) time andO(n)work is used to allocate the
appropriate number of processors to each vertex using a prefix sum computation. Cole’s
parallel merge sort [6] can be used to sort thek− 1 smallest edges out of each vertex in
O(logk) time usingn(k− 1) processors.

Lemma 3 can then be used to compute the array of thek shortest edges whose tails
are on the path from each vertexv to the destinationt . Here, the labels of the nodes are
sorted arrays ofk edges. The binary operation on the labels is performed by merging the
two sorted arrays, and then taking the first half of the resulting array. Ties between edge
weights can be broken according to some arbitrary lexicographic order on the edges.
Each merge step can be performed inO(log logk) time andO(k) work using Borodin
and Hopcroft’s merging algorithm [1], so the tree contraction takesO(logn log logk)
time andO(nk) work in total.

The num fields of the paths found during stage 0 can be filled in as follows. First, the
depth of each vertex inT is computed using Lemma 3. Here, the label associated with
each node is 1, except for the root, which has label 0, and the binary operation is addition.
This computation usesO(logn) time andO(n) work. The value of num for any path
from v to t found during stage 0 of the algorithm can then be computed easily: if(x, y)
is the (only) non-tree edge on the path, the value of num is depth(v)− depth(x)+ 1.

Stage 0 of the algorithm usesO(logd log∗ d + logk + logn log logk) time in total,
and performsO(m+ nk logk) work.
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Now, the computation ofAi
v, for i > 0, is described. The candidate paths for in-

clusion in Ai
v are those paths whose sidetracks sequence is obtained by concatenating

sidetracks(p1) and sidetracks(p2), wherep1 is a path in the arrayAi−1
v , p2 is a path in

Ai−1
w , andw is the head of the last non-tree edge ofp1. Any sidetracks sequence formed

in this way represents a legal path, since there is a path inT from the head of the last
non-tree edge ofp1 to the tail of the first non-tree edge inp2. For example, in the graph
of Figure 1, combining the pathsp1 = g−→ s−→ c −→ a −→ t and p2 = c −→
a −→ f −→ b −→ t produces the pathg−→ s−→ c −→ a −→ f −→ b −→ t .

Pathsp1 containingl non-tree edges will be combined only with pathsp2 which have
eitherl or l − 1 non-tree edges. This ensures that each path considered is distinct, since
any sequence of non-tree edges can be divided into such a pairp1, p2 in exactly one
way. In fact, it is sufficient to consider only those pairs which, when concatenated, yield
a path that has more than 2i−1 non-tree edges, since thek shortest paths with at most
2i−1 non-tree edges are already known.

From among these candidates, together with the paths inAi−1
v , the shortestk are

chosen to be the entries inAi
v. To prove that this algorithm solves the problem correctly,

it is helpful to define a total ordering≺v on the paths fromv to t so that an invariant
describing the contents ofAi

v can be stated precisely. Paths are ordered by weight, and
ties are broken in favour of the path with fewer non-tree edges. If two paths fromv to
t have the same weight and the same number of non-tree edges, then the lexicographic
order of the sidetracks sequences is used to break the tie. This total ordering is used to
select thek shortest paths for inclusion inAi

v.

LEMMA 4. The paths in Aiv are the k smallest paths(with respect to the order≺v) with
at most2i non-tree edges. If there are fewer than k such paths, all of them appear in Aiv.

PROOF. The computation ofA0
v described above ensures that the invariant is true for

i = 0.
Assume that the invariant is true fori − 1. Let p be any path fromv to t with l p

non-tree edges, where 2i−1 < l p ≤ 2i . Let p1 be the portion ofp up to and including
thedl p/2eth non-tree edge. Letw be the last vertex onp1, and letp2 be the remaining
portion of p from w to t . Let p3 be the path fromw to t consisting only of tree edges.
The pathsp1 p3 and p2 each have at most 2i−1 non-tree edges.

Supposep is one of thek smallest paths (with respect to≺v) from v to t with at
most 2i non-tree edges. To prove the invariant, it is sufficient to show thatp1 p3 appears
in Ai−1

v and p2 appears inAi−1
w , sincep will then be among the paths considered for

inclusion inAi
v.

Supposep1 p3 does not appear inAi−1
v . By the inductive hypothesis, there arek paths

fromv to t that are smaller thanp1 p3 (with respect to≺v), each with at most 2i−1 non-tree
edges. However,p1 p3 ≺v p1 p2 = p, sincep3 has no non-tree edges. This contradicts
the fact thatp is among thek smallest paths fromv to t with at most 2i non-tree edges.
So, p1 p3 must be inAi−1

v .
Now supposep2 does not appear inAi−1

w . Then there arek paths fromw to t , each
with at most 2i−1 non-tree edges, satisfyingr1 ≺w r2 ≺w · · · ≺w rk ≺w p2. However,
this implies thatp1r1 ≺v p1r2 ≺v · · · ≺v p1rk ≺v p1 p2 = p (by the definition of the
orders≺v and≺w). This is a contradiction, sop2 must be inAi−1

w .
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It follows from Lemmata 2 and 4 thatAdlogke
v will contain thek shortest paths fromv

to t . In the rest of this section, the implementation of the computation ofAi
v on a CREW

PRAM is described, and the analysis of the performance of the algorithm is completed.
Using the notation introduced in the previous proof, the weight of the path formed by

combiningp1 andp2 is just the sum of the weights ofp1 andp2, since the weight of each
tree edge is 0. The num field is filled in similarly. Suppose that the paths ofAi−1

v are sorted
according to the number of non-tree edges in the path, with ties broken in accordance
with the ordering≺v. Then the candidates for inclusion inAi

v can be found by combining
each pathp1 havingl non-tree edges inAi−1

v with the paths in two contiguous sub-arrays
of Ai−1

w : the portions containing paths havingl or l − 1 non-tree edges. Each sub-array
will already be sorted by≺w, so the paths that result from combining the pathp1 with the
elements of the sub-array will be sorted according to≺v. Thus, the problem of picking
the shortestk paths is now equivalent to selecting thek shortest paths from a set of
2k+1 sorted arrays of paths, each with at mostk elements (one of the arrays isAi−1

v , and
there are two arrays for each pathp1 in Ai−1

v whose elements are obtained by combining
p1 with other paths). If the arrays are considered to be the columns of ak × (2k + 1)
matrix, the computation ofAi

v amounts to the selection of thek smallest elements from a
matrix with sorted columns. If ties between two paths with the same weight that appear
in different columns are broken in favour of the element in the leftmost column, the
elements selected will be thek smallest with respect to the ordering≺v.

Frederickson and Johnson’s sequential algorithm for selection in a matrix with sorted
columns [11] can be adapted to find the requiredk paths usingO(log2 k log∗ k) time and
O(k)work. The following lemma describes a parallel implementation of their algorithm
for more general inputs.

LEMMA 5. Let k≤ n. There is an EREW PRAM algorithm that selects the kth smallest
element of an m× n matrix with sorted columns using O(logn log∗ n+ log min(m, k)
logk log∗ k+ logk log logk) time and O(n) work.

PROOF. Frederickson and Johnson’s algorithm works by discarding elements that are
not among thek smallest elements in the array until onlyO(k) elements remain, at
which time thekth smallest element can be selected directly. The elements that have
not yet been discarded are calledactive. Let k′ be the smallest power of two that is at
leastk. The algorithm first performs 1+ min(logk′, blogmc) iterations of a loop: for
i = 1,2,4,8, . . . , it selects the(k′/ i )th smallest active element,ei , of row i and re-
indexes the columns so thatei appears in columnk′/ i and all smaller active elements in
row i appear to the left ofei . There arei (k′/ i ) ≥ k elements above and to the left ofei ,
all of which are at mostei . Thus, the elements below and to the right ofei , which are at
leastei , may be discarded. Elements are not actually removed from the array; instead, the
algorithm simply updates a variable that stores the row index of the last active element
in the column. See Figure 2 for an illustration of the algorithm whenm = 10, n = 18
andk′ = 16. Elements discarded by this loop are shaded.

Cole’s selection algorithm [5] is used to select the elementei and a prefix sum com-
putation is used to re-index the columns of the matrix. The first iteration of the loop is
performed inO(logn log∗ n) time andO(n) work. When the algorithm works on row
i > 1, the row will contain(2k′/ i )−1 active elements, so the iteration can be completed
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Fig. 2.Selection in a matrix with sorted columns.

in O(log(k′/ i ) log∗(k′/ i )) time, performingO(k′/ i )work. The entire loop can therefore
be completed inO(logn log∗ n+ log min(m, k) logk log∗ k) time andO(n+k) = O(n)
work.

Now, let Q be the set of active elements in the rows that were considered by the loop.
These are the circled elements in Figure 2. The active elements of the array are partitioned
into O(k′) sets. Each set is a contiguous block of a column that contains exactly one
element ofQ as its smallest element. This partition is indicated by broken lines in
Figure 2. Each element ofQ is assigned a weight equal to the size of its block. Lemma 6,
below, is used to select the smallest element,q∗, of Q such that

∑
q∈Q,q≤q∗ weight(q) ≥

2k′. This is done inO(logk log logk) time andO(k) work. Those sets that contain an
element ofQ that is larger thanq∗ are discarded. Since each set’s weight is at mostk′,
the number of active elements remaining is at least 2k′ and less than 3k′ = O(k). In any
column at least half of the elements that remain active are less than or equal toq∗: if
the last element ofQ in the column that remains active appears in row 2j , then at most
2 j − 1 of the active elements in the column are greater thanq∗. Thus, at least 2k′/2≥ k
of the active elements are smaller thanq∗. No element smaller thanq∗ is discarded in
this step, so thek smallest elements in the array remain active.

Cole’s selection algorithm can now be used to select thekth smallest element directly
from the remainingO(k) active elements inO(logk log∗ k) time andO(k) work.

LEMMA 6. Suppose[x1, . . . , xn] is an unsorted array of n distinct integers. A non-
negative integer weightwi is associated with each element xi . Given a number K, one
can compute x∗ = min{xi |

∑
xj≤xi

wj ≥ K } using O(logn log logn) time and O(n)
work on an EREW PRAM.

PROOF. Vishkin’s parallel algorithm to select thekth smallest element of an unsorted
array [23] can be adapted to provide the proof of this lemma. Vishkin’s algorithm parti-
tions the array of elements into groups and finds the mediana of the medians of these
groups. To reduce the size of the problem, the algorithm then discards either those el-
ements smaller thana if the number of such elements is less thank, or those elements
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larger thana, otherwise. The weighted selection algorithm is similar, except for the
method of choosing elements to discard. If the total weight of the elements less thana
is less thanK , the algorithm discards them, and otherwise discards the elements greater
thana. The resources required by the weighted selection algorithm are the same as for
Vishkin’s algorithm.

A more detailed discussion of parallel algorithms for the weighted selection problem
and the problem of selecting an element from a matrix with sorted columns may be found
in [20].

Once thek elements ofAi
v are found using the algorithm of Lemma 5, they can be

sorted inO(logk) time andO(k logk) work using Cole’s parallel merge sort [6]. The
i th stage of the algorithm that computes the arraysAi

v (for all verticesv) therefore uses
O(log2 k log∗ k) time andO(nk logk) work.

When thedlogke stages of thek shortest paths algorithm have been completed, thek
shortest paths are stored implicitly in the data structure. This completes the proof of the
following theorem.

THEOREM7. Let G be a directed graph with n vertices, m edges. Let d be the maximum
outdegree of any vertex. Given the tree of shortest paths rooted at the destination vertex t,
an implicit representation of the k shortest paths to t from every vertex can be computed
on a CREW PRAM using O(log3 k log∗ k+logn log logk+logd log∗ d) time and O(m+
nk log2 k) work.

As described in Section 3.2, the paths can be explicitly listed usingO(logk+ logn)
time andO(n logn+ L) work, whereL is the length of the output.

The parallel algorithm developed here will also work on weighted directed multi-
graphs. The performance bounds proven above still apply unchanged. If some of the
edge weights are negative, the algorithm will still work, provided there is no cycle in
the graph whose total weight is negative. Lemma 1 still applies in this case. There-
fore, the transformation used to reduce a general problem instance to one with non-
negative edge weights (defined byδ), where the distance to vertext from any other
vertex is 0, also applies to graphs with negative edge weights that have no negative
cycles.

4. Applications. Two applications of thek shortest paths problem will now be de-
scribed. More detailed descriptions of these applications may be found in [20].

The Viterbi decoding problem is to estimate the state sequence of a discrete-time
Markov process, given noisy observations of its state transitions. This problem has
applications in communications (see [8]). The list Viterbi decoding problem is to compute
thek state sequences that are most likely to have occurred, given a particular sequence of
observations. Sequential algorithms exist that construct a weighted directed acyclic graph
in which each path between two fixed vertices describes a possible state sequence [8]. The
weight of the path corresponding to a state sequence is equal to the conditional probability
that it occurred, given the observations. Sequential algorithms for the list Viterbi problem
have appeared previously [21], [22], and a straightforward parallel implementation was
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described by Seshadri and Sundberg [21]. The parallelk shortest paths algorithm can
be applied to this graph to solve the list Viterbi decoding problem on a CREW PRAM
usingO(log2 s+ log(sT) log logk+ log3 k logk) time andO(s3T + sT klog2 k) work,
wheres is the size of the state space of the Markov process andT is the length of the
observation sequence. This is the first parallel algorithm for this problem that runs in
polylogarithmic time.

The quickest path problem [4] is a generalization of the shortest path problem. It
is used to model the problem of transmitting data through a computer network. Each
edge of a directed graph is assigned a positive capacity and a non-negative latency. The
capacityc(p) of a pathp is defined to be the minimum capacity of any edge on the path.
The latencyl (p) is the sum of the latencies of the edges ofp. The time to transmitσ
bits of data along a pathp is l (p)+σ/c(p). Thek quickest paths problem is to compute
thek paths that require the least time to transmit a given amount of data between a given
pair of vertices. If all edge capacities are equal, the problem reduces to thek shortest
paths problem. Sub-paths of quickest paths need not be quickest paths themselves, so the
approaches used to solve shortest path problems are not directly applicable to quickest
path problems. Sequential algorithms for thek quickest paths problem have been studied
previously [2], [3], [20]. The problem can be solved by first finding thek shortest paths
(with respect to latency) that have capacity at leastc, for each edge capacityc, and
then choosing from among them thek paths that have the shortest overall transmission
time [3]. Repeated use of the parallelk shortest paths algorithm yields a CREW PRAM
implementation of this approach that finds thek quickest paths to a given destination
vertex t from every vertexv. For ann-node graph withm edges andr distinct edge
capacities, the parallel algorithm runs inO(log2 n logr + log3 k+ logn log logk) time
usingO(n2m logn logr + rnk log2 k) work.
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