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Finding the k Shortest Paths in Parallet
E. Ruppert

Abstract. A concurrent-read exclusive-write PRAM algorithm is developed to findktlskortest paths
between pairs of vertices in an edge-weighted directed graph. Repetitions of vertices along the paths are
allowed. The algorithm computes an implicit representation ok teortest paths to a given destination vertex

from every vertex of a graph withvertices andn edges, usin@ (m-+ nklog? k) work andO(log® k log* k -+

logn(log logk+log* n)) time, assuming that a shortest path tree rooted at the destination is pre-computed. The
paths themselves can be extracted from the implicit representat@iog k+log n) time, andO(nlogn+L)

work, whereL is the total length of the output.
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1. Introduction. The problem of finding shortest paths in an edge-weighted graph is
an important and well-studied problem in computer science. The more general problem
of computing thek shortest paths between vertices of a graph also has a long history and
many applications to a diverse range of problems. Many optimization problems may be
formulated as the computation of a shortest path between two vertices in a graph. Often,
thek best solutions to the optimization problem may then be found by computing the
k shortest paths between the two vertices. A method for computinighlest solutions
to an optimization problem may be useful if some constraints on the feasible solutions
are difficult to specify formally. In this case, one can enumerate a number of the best
solutions to the simpler problem obtained by omitting the difficult constraints, and then
choose from among them a solution that satisfies the additional constraints. Knowledge
of thek best solutions to an optimization problem can also be helpful when determining
whether the optimal solution is sensitive to small changes in the input. If one of the best
solutions is very different from the optimal solution but has a cost that is only slightly
sub-optimal, it is likely that minor modifications to the problem instance would cause
the sub-optimal solution to become optimal.

Sequential algorithms which compute thest solutions to an optimization problem
first compute an optimal solution using a standard algorithm. A number of candidates
for the second best solution are then generated by modifying the optimal solution, and
the algorithm outputs the best candidate as the second best solution to the problem. In
general, thé&th best solution is chosen from a set of candidates, each one a modification
of one of the best — 1 solutions. It seems that this approach cannot be used directly to
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obtain parallel algorithms with running times that are polylogarithmig gince the best
k — 1 solutions must be known before the algorithm can computk&tthbest solution.
A different technique is used here to produce a parallel algorithm fdc shertest paths
problem with a running time that is polylogarithmicknand in the size of the problem
instance.

A parallel algorithm is developed in Section 3 to compute kh&hortest paths to
a given vertex from every vertex of an edge-weighted directed graph. It is assumed
that the weights on the edges are positive, but the algorithm can easily be adapted to
handle negative edge weights, as long as there are no negative cycles in the graph. The
algorithm runs on a concurrent-read exclusive-write (CREW) PRAM. (See Karp and
Ramachandran’s survey [15] for definitions of PRAM models.) The algorithm finds the
k shortest paths tbfrom every vertex irO (log® k log* k + logn log logk + log d log* d)
time usingO(m + nklog? k) work, whered is the maximum outdegree of any vertex
in the graph, assuming that the shortest patl foom every other vertex is given.
The algorithm computes an implicit representation of the paths, from which the paths
themselves can be extracted in parallel using the techniques described in Section 3.2.
New parallel algorithms for the weighted selection problem and the problem of selecting
thekth smallest element in a matrix with sorted columns, which are used as subroutines,
are outlined in Section 3.3. Some applications of ithehortest paths algorithm are
described in Section 4.

Previous work Dijkstra’s sequential algorithm computes the shortest path to a given
destination vertex from every other vertex@(m + nlogn) time [12]. In parallel, the
shortest path between each pair of vertices can be found using /aumrtransitive
closure computation irD(log?n) time and O(n3logn) work on an EREW PRAM

[18]. More complicated implementations of the transitive closure computation run in
O(Iog2 n) time usingo(n®) work on the EREW PRAM and i®(lognloglogn) time

onthe CRCW PRAM [13]. There are no known polylogarithmic-time PRAM algorithms
that find the shortest path from one particular vertex to another using less work than the
all-pairs algorithm. This transitive closure bottleneck is not avoided by the algorithm
presented here: the complexity bounds on the algorithm describe the amount of additional
time and work to compute theshortest paths, once the shortest paths are known.

The problem of finding th& shortest paths in sequential models of computation was
discussed as early as 1959 by Hoffman and Pavley [14]. Fox presents an algorithm that
can be implemented to run i®(m + knlogn) time [9]. Eppstein’s recent sequential
algorithm [7] is a significant improvement. It computes an implicit representation of the
k shortest paths for a given source and destinatio®{m + nlogn + k) time. The
k shortest paths to a given destination from every vertex in the graph can be found,
using Eppstein’s algorithm, i®(m + nlogn + nk) time. The paths themselves can be
extracted from the implicit representation in time proportional to the number of edges
in the paths. A brief description of Eppstein’s algorithm is given in Section 2.1. Kumar
and Ghosh [17] independently developed a CREW PRAM algorithm for the all-pairs
version of thek shortest paths problem. Their algorithm is an adaptation of the transitive
closure algorithm for computing all-pairs shortest paths. They claim that the algorithm
finds thek shortest simple paths, but repeated vertices may appear on the paths that they
compute. There are some problems with their algorithm and their complexity analysis,
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but it appears that they can be fixed so that the algorithm ru@(itogn + logk)%)
time, performingO(n®k?(logk + logn) + n3(logk + logn)3) work.

Sequential algorithms have been developed for other variations b&thartest paths
problem. Yen [24] gives an algorithm for the more difficult problem of finding khe
shortest simple paths i@ (kn®) time. Katoh et al. [16] describe ad(kn?) algorithm to
find thek shortest simple paths in an undirected graph.

2. Preliminaries. LetG = (V, E) be a directed graph with vertices andn edges,
where each edgel, v) of E has a non-negative weight(u, v). The weight of a path
in G is simply the sum of the weights of the edges that make up the path. The distance
from vertexs to vertext, dist(s, t), is defined to be the weight of the path fr@o
t that minimizes this sum. A path that achieves this distance is a shortest patk from
tot.
The problem of finding th& shortest paths from vertesto vertext is to find a sef®
of k st paths such that the weight of any pattfins no larger than the weight of asyt
path notinP. There may be several pathsiwith the same weight. If there are fewer
thank distinct paths frons to t, the solution seP should consist of ak-t paths. Here,
paths are not restricted to being simple; a vertex may appear more than once on a path.
Let T be a tree with root that is a subgraph o6 and is constructed so that the
(unique) path inT tot from any vertex is a shortest-t path inG. The treeT is called
a shortest path tree @ rooted att. The edges of the graph which do not appear in
are called non-tree edges. Any path from a fixed vestixvertext can be represented
by the sequence of non-tree edges along the path. For example, in the graph shown in
Figure 1(a), edges df are shown as solid lines, and non-tree edges are shown as broken
lines. In this graph, the path—— ¢ — a — f — b — t could be represented
by the sequence of non-tree edggs, ¢), (a, f)); the rest of the path can be filled in by
following the edges of . If pis any path, let sidetrackp) be the sequence of non-tree
edges that occur along the path

@ b

Fig. 1. An example graph. (a) Solid edges form the ffe€b) Values ofs are shown for non-tree edges.
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For each edgéu, v) € E, one can define a measutéu, v) of the extra distance
added to the weight of a path fromto t if the edge(u, v) is used instead of taking the
optimal path fronu to t:

5(u, v) = w(u, v) + dist(v, t) — dist(u, t).
The following lemma describes some properties of this measure.

LEMMA 1 [7].

() 8(u,v) > 0forall (u,v) € E.
(i) 8(u,v) =0forall (u,v) eT.
(iiiy For any path p from s to,t

weight(p) = dist(s, t) + Y 8(u, v) = dist(s, t) + > 8(U, v).

(u,v)ep (u,v)e sidetracks(p)

To find thek shortest paths from to t, it is therefore sufficient to find the paths
which yield thek smallest values aof(p) = Z(u,u)ep 8(u, v). If § is viewed as a weight
function on the edges @, a general instance of theshortest paths problem has now
been transformed into an instance where the distance to vefiten any other vertex
is 0. From now on, the weight functighwill be used instead af.

2.1. Eppstein’s Sequential Algorithm Eppstein’s sequential algorithm [7] computes
an implicit representation of thle shortest paths. Each path’s sidetracks sequence is
represented as a modification of the sidetracks of a shorter path. Candidatesktbr the
shortest path are obtained from one of the shoktest paths either by adding a non-tree
edge to the sidetracks sequence or by replacing the last non-tree edge by another one.
The algorithm constructs a new weighted directed gi@pim which each path starting

at a fixed vertex’ (and ending at any other vertex) corresponds te-apath ofG. This
correspondence is bijective and weight-preserving, s& #t@rtess-t paths ofG can

be found by computing thie shortest paths that begingitin G’, using Frederickson’s
algorithm [10]. It is possible that thie¢h shortest path is obtained by adding a non-tree
edge to thei — 1)th shortest path (for 2 i < k), so it appears that Eppstein’s algorithm
cannot be directly implemented in parallel with a running time that is polylogarithmic
ink.

3. A Parallel Algorithm to Compute the k Shortest Paths. The k shortest paths
problem will be solved in stages. During thi stage, paths with at most Bon-tree
edges are considered and kehortest of these pathsttérom each vertex are computed.
The following lemma shows thatogk] stages will be sufficient. (All logarithms have
base 2.)

LEMMA 2. There is a solution to the k shortest paths problem in which each path has
at most k— 1 non-tree edges
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PROOF Suppose there is a solution set that contains a patfith at leastk non-tree
edges. Consider the paths framo t whose sequences of non-tree edges are prefixes
of the sequence sidetracks, where the prefixes are of lengthl) 2, ...,k — 1. There

arek such paths, and each one has weight no greater than the weighsiices is
non-negative. So, the set of these paths is a correct solution to the problem, and each
path has at mo$t — 1 non-tree edges. O

The list of edges that make up each path will not be explicitly computed in each stage.
Instead, each path is represented by a binary tree structure whose leaves represent the
non-tree edges along the path. Tiltle stage constructs the implicit representations of
paths by concatenating the sidetracks sequence of two paths that have been computed
in previous stages. The result of such a concatenation is stored in the data structure
by creating a new node, which will be the root of the tree representing the path, and
setting its children pointers to point to the roots of the two smaller paths. Thus, the
tree structures representing different paths may share common sub-trees, and the trees
constructed during thigh stage have height at mastSome additional information will
be stored in each node of the tree structures to allow the the computations to be performed
efficiently.

3.1. The Data Structure Used by the AlgorithmLet Al be an array that will store the
root nodes of the tree structures that represenk $teortest paths from to t that have
at most 2 non-tree edges. If there are fewer thasuch paths, some of the entries in the
array will be nil. Elements of the arra§/, will be formed by concatenating the sequences
of non-tree edges of two paths with at most'2non-tree edges each.

Each array element stores the following information about thepttht it represents:

e pointers to the two previously computed paths whose sidetracks sequences were con-
catenated to fornp, unlessp contains only a single non-tree edge, in which case this
edge is stored instead,

the weight of the path (with respect to the weight functipn

the number of non-tree edges along the path,

num, the number of edges on the path up to and including the last non-tree edge, and
the head of the last non-tree edge on the path (this could be nil if all edges along the
path are inT).

In the next section a parallel algorithm is given for extracting krehortest paths
from this implicit representation. This is done by allocating processors to traverse the
leaves of the tree structures that represent the paths to obtain the sidetracks sequences
and filling in the rest of the edges along the paths by traversing branches of tfie tree
The actual construction of the data structure is described in Section 3.3.

3.2. Extracting Information from the Data Structure First, some preprocessing is done
to the shortest path tre&, Each vertex uses pointer jumping to locate a pointer to its
ancestor 2levels above itself, for = 1, 2, ..., [log(n — 1)]. Some of these pointers
may be nil. Thisis done so that portions of k&hortest paths that are made up exclusively
of tree edges can be traversed quickly. This computation is dofledtn — 1)] steps:
during theith step, each vertex finds the ancestbte®els above itself by following
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two pointers computed in the previous step. This computation @gksy n) time and
O(nlogn) work.

Suppose that thgth shortest path fromy to t containsl; edges. Thek shortest
paths fromv to t can then be explicitly stored one after another in an aRayf size
L= Z}‘zl ;. The starting location of each path in the arRagan be found by performing
a prefix sum (see [15]) o, ..., k.

Supposel /log(kn) processors are available. Each processor is assigned the task of
filling in a block of the output array? of length logkn). To begin filling in its block of
the array, the processor first determines which path it should be working on by doing a
binary search of the prefix sumslaf . .., Ix. The processor then follows the pointers
in the tree data structure that represents the path, starting from the root and going to the
appropriate leaf to find the first edge it must write irRoAt each node, the num field
gives the number of edges in the sub-path represented by the sub-tree rooted at that node,
so that the processor can determine whether to go left or right at each node on its way to
the leaf. When it reaches a leaf, the processor begins filling in entriesetjuentially.

The portion ofP that the processor must compute is made up of segments of branches
of T, separated by non-tree edges. The processor can perform a linear traversal of the
branches off, copying the edges int® one by one. Whenever the processor reaches

the end of a segment of tree edges, it traverses the tree data structure that represents
the path, to the next leaf, which represents the next non-tree edge on the path. Once the
non-tree edge has been entered iRtdahe processor can again start copying a segment

of a branch ofT into P.

If the first edge that the processor is required to enter ihis in the middle of a
segment of tree edges in the path, the processor can jump to the correct pbiimt in
O(logn) time using the ancestor pointers computed during the preprocessingfat
processor finishes entering one of kghortest paths intB, it starts working on the next
one. The total time to compute the output arRyincluding the time to preproceds is
O(logn +log(kn)) = O(logk + logn) and the total work performed @(nlogn+L).

Thek shortest paths tbfrom every vertex can be extracted i (logk + logn) time
usingO (nlogn+ Ligta) Work, wherel 1oty is the total length of the output for all starting
verticesv, since the preprocessing ®fneed only be done once.

In fact, some properties of the paths can be computed without explicitly listing the
edgesinthe path, as observed by Eppstein [7]. Suppose each edge in the graphis assigned
a value from a semi-group, and the value of a path is defined as the product of the values
of the edges along the path. If the associative semi-group operation can be evaluated in
constant time by a single processor, the values oktblieortest paths can be computed
in the same way as the num field of the data structure, without affecting the performance
bounds.

3.3. Building the Data Structure The following preliminary lemma describes a version
of the common technique of parallel tree contraction which will be used during the
construction of the data structure.

LEmMMA 3 (Tree Contraction). Let M be a monoid with an associative binary operation
that can be computed in @) time and QW) work on an EREW PRAM.et T be a
tree whose n vertices are labelled by elements of_&t m, be the result of combining
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the labels on the path from vertexto the root using the binary operatiomhen m
can be computed for every vertexn O(Slogn) time and QW n) work on an EREW
PRAM

Proor Reid-Miller et al. [19, page 163] describe how tree contraction can be used to
compute the valuem, for binary trees, if the monoid is the set of natural numbers with
the associative operation- y = max(x, y) and identity 0. However, their technique

will work for any monoid. Their algorithm can be adapted to work for non-binary trees
by replacing each vertex that has> 2 children by a binary tree with — 1 internal

nodes whose leaves are the children of the original vertex. The newly created nodes are
labelled by the identity element . This modification of the algorithm does not affect

the asymptotic running time or work. O

The data structure will be constructed in stages. Stagthe algorithm will compute
Al for each vertex using the arrays computed in the previous stage.

The construction of\? is described first. The first entry @ will be the path from
vtotin T. It has weight O and contains no non-tree edges. The rest of the paths in
AC will each contain exactly one non-tree edge, so the tail of each of these edges must
lie on the path fromw to t in the treeT. Thus, A° can be computed by finding the
k — 1 shortest non-tree edges (with respecat)tavhose tails are on the path fromrto t
inT.

First, thek — 1 shortest non-tree edges whose tails are at vertane selected, for
each vertex in the graph. This can be done usififlogd, log* d,) time andO(d,)
work, whered, is the outdegree af, using Cole’s selection algorithm [5]. In total, this
requiresO(logd log* d) time andO(m) work, whered is the maximum outdegree of
any vertex in the graph. In additio®,(log n) time andO(n) work is used to allocate the
appropriate number of processors to each vertex using a prefix sum computation. Cole’s
parallel merge sort [6] can be used to sortkhe 1 smallest edges out of each vertex in
O(logk) time usingn(k — 1) processors.

Lemma 3 can then be used to compute the array ok thigortest edges whose tails
are on the path from each vertexo the destination. Here, the labels of the nodes are
sorted arrays of edges. The binary operation on the labels is performed by merging the
two sorted arrays, and then taking the first half of the resulting array. Ties between edge
weights can be broken according to some arbitrary lexicographic order on the edges.
Each merge step can be performedifog logk) time andO(k) work using Borodin
and Hopcroft's merging algorithm [1], so the tree contraction taReél®gnlog logk)
time andO(nk) work in total.

The num fields of the paths found during stage 0 can be filled in as follows. First, the
depth of each vertex ifi is computed using Lemma 3. Here, the label associated with
each node is 1, except for the root, which has label 0, and the binary operation is addition.
This computation use® (logn) time andO(n) work. The value of num for any path
from v to t found during stage 0 of the algorithm can then be computed easily; i)
is the (only) non-tree edge on the path, the value of num is depthdepth(x) + 1.

Stage 0 of the algorithm us&3(logd log* d + logk + lognlog logk) time in total,
and perform€®(m + nklogk) work.
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Now, the computation oA, for i > 0, is described. The candidate paths for in-
clusion in Al are those paths whose sidetracks sequence is obtained by concatenating
S|detrack$p1) and sidetrack®,), wherep; is a path in the array\ ~1 poisapathin
A-1 andw is the head of the last non-tree edgepef Any sidetracks sequence formed
in this way represents a legal path, since there is a pathfiom the head of the last
non-tree edge opf; to the tail of the first non-tree edge p3. For example, in the graph
of Figure 1, combining the path4y = g—s—-—c—a—tandp, =c —

a— f — b— tproducesthepaty —s—-c—a—f —b—1t.

Pathsp; containing non-tree edges will be combined only with patizsvhich have
eitherl orl — 1 non-tree edges. This ensures that each path considered is distinct, since
any sequence of non-tree edges can be divided into such g@a in exactly one
way. In fact, it is sufficient to consider only those pairs which, when concatenated, yield
a path that has more that2 non-tree edges, since theshortest paths with at most
2 -1 non-tree edges are already known.

From among these candidates, together with the path ik, the shortesk are
chosen to be the entries & . To prove that this algorithm solves the problem correctly,
it is helpful to define a total ordering, on the paths from to t so that an invariant
describing the contents @ can be stated precisely. Paths are ordered by weight, and
ties are broken in favour of the path with fewer non-tree edges. If two pathsifrimm
t have the same weight and the same number of non-tree edges, then the lexicographic
order of the sidetracks sequences is used to break the tie. This total ordering is used to
select thek shortest paths for inclusion iA! .

LEMMA 4. The paths in Aare the k smallest path(sith respect to the orde,) with
at most2' non-tree edgeﬁf there are fewer than k such pattal of them appear in A

PrROOF The computation oA described above ensures that the invariant is true for
i =0.

Assume that the invariant is true for— 1. Let p be any path fromv to t with |,
non-tree edges, wheré2 < Ip < 2. Let p;1 be the portion ofp up to and including
the [1,/2]th non-tree edge. Leb be the last vertex op,, and letp, be the remaining
portion of p from w to t. Let p3 be the path fromw to t consisting only of tree edges.
The pathsp; ps and p, each have at most2 non-tree edges.

Supposep is one of thek smallest paths (with respect to,) from v to t with at
most 2 non-tree edges. To prove the invariant, it is sufficient to showphps appears
in A= and p, appears inA -1, since p will then be among the paths considered for
inclusion in Al

Supposep; ps does not appear iA -1, By the inductive hypothesis, there &paths
fromu tot that are smaller thap, ps (with respect to<, ), each with at most'2* non-tree
edges. Howevem, ps <, pP1pP2 = P, sincepz has no non-tree edges. This contradicts
the fact thatp is among thé« smallest paths from to t with at most 2 non-tree edges.
So, p1 p3 must be inAl 2.

Now supposep, does not appear i -1. Then there ar& paths fromw tot, each
with at most 2- non-tree edges, satisfying <, r> <, --- <, Mk <u P2. However,
this implies thatp;r; <, pirz <y -+ <y Pifk < P1pP2 = p (by the definition of the
orders<, and<, ). This is a contradiction, sp, must be |nA' -1 O
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It follows from Lemmata 2 and 4 tha°®*! will contain thek shortest paths from
tot. In the rest of this section, the implementation of the computatio,afn a CREW
PRAM is described, and the analysis of the performance of the algorithm is completed.
Using the notation introduced in the previous proof, the weight of the path formed by
combiningp; andp is just the sum of the weights @i andp,, since the weight of each
tree edge is 0. The num field is filled in similarly. Suppose that the paths dfire sorted
according to the number of non-tree edges in the path, with ties broken in accordance
with the orderingx, . Then the candidates for inclusionAy can be found by combining
each pathp; havingl non-tree edges iA ~* with the paths in two contiguous sub-arrays
of A= the portions containing paths havihgrl — 1 non-tree edges. Each sub-array
will already be sorted by,,, so the paths that result from combining the pathvith the
elements of the sub-array will be sorted according{o Thus, the problem of picking
the shortesk paths is now equivalent to selecting tkeshortest paths from a set of
2k + 1 sorted arrays of paths, each with at mostements (one of the arraysA$1, and
there are two arrays for each pathin Al -* whose elements are obtained by combining
p. with other paths). If the arrays are considered to be the columnkof &2k + 1)
matrix, the computation ol amounts to the selection of tkesmallest elements from a
matrix with sorted columns. If ties between two paths with the same weight that appear
in different columns are broken in favour of the element in the leftmost column, the
elements selected will be tlkesmallest with respect to the orderirg.
Frederickson and Johnson’s sequential algorithm for selection in a matrix with sorted
columns [11] can be adapted to find the requkeuths usingd (log? k log* k) time and
O(k) work. The following lemma describes a parallel implementation of their algorithm
for more general inputs.

LEMMA 5. Letk < n. There is an EREW PRAM algorithm that selects tthesknallest
element of an nx n matrix with sorted columns using(®@gnlog* n + log min(m, k)
logklog* k + logklog logk) time and Qn) work.

PrOOFE Frederickson and Johnson’s algorithm works by discarding elements that are
not among thek smallest elements in the array until on@®(k) elements remain, at
which time thekth smallest element can be selected directly. The elements that have
not yet been discarded are callactive Let k' be the smallest power of two that is at
leastk. The algorithm first performs 4 min(logk’, [logm]) iterations of a loop: for

i =1,2438,..., it selects thgk'/i)th smallest active elemers,, of rowi and re-
indexes the columns so thgtappears in columRk’/i and all smaller active elements in
rowi appear to the left of . There are (k'/i) > k elements above and to the leftef

all of which are at mosg. Thus, the elements below and to the righggfwhich are at
leastg, may be discarded. Elements are not actually removed from the array; instead, the
algorithm simply updates a variable that stores the row index of the last active element
in the column. See Figure 2 for an illustration of the algorithm whea- 10,n = 18

andk’ = 16. Elements discarded by this loop are shaded.

Cole’s selection algorithm [5] is used to select the eleneeand a prefix sum com-
putation is used to re-index the columns of the matrix. The first iteration of the loop is
performed inO(lognlog* n) time andO(n) work. When the algorithm works on row
i > 1, the row will contain(2k’/i) — 1 active elements, so the iteration can be completed
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Fig. 2. Selection in a matrix with sorted columns.

in O(log(k'/1) log*(k'/i)) time, performingO(k’/i) work. The entire loop can therefore
be completed if© (log nlog* n+log min(m, k) logk log* k) time andO(n+k) = O(n)
work.

Now, let Q be the set of active elements in the rows that were considered by the loop.
These are the circled elements in Figure 2. The active elements of the array are partitioned
into O(Kk’) sets. Each set is a contiguous block of a column that contains exactly one
element ofQ as its smallest element. This partition is indicated by broken lines in
Figure 2. Each element @) is assigned a weight equal to the size of its block. Lemma 6,
below, is used to select the smallest elemghtpf Q such thatzqu’qu* weight(q) >
2k’. This is done inO(logk log logk) time andO (k) work. Those sets that contain an
element ofQ that is larger tham* are discarded. Since each set’s weight is at rkgst
the number of active elements remaining is at lelsa8d less thank®3 = O(k). In any
column at least half of the elements that remain active are less than or egyfalito
the last element o in the column that remains active appears in rdwtBen at most
21 — 1 of the active elements in the column are greater thaithus, at leasti2/2 > k
of the active elements are smaller thgin No element smaller thag* is discarded in
this step, so th& smallest elements in the array remain active.

Cole’s selection algorithm can now be used to seleckthemallest element directly
from the remainingO (k) active elements i© (logk log* k) time andO(k) work. O

LEMMA 6. Supposdx, ..., Xs] iS an unsorted array of n distinct integer& non-
negative integer weight; is associated with each element &iven a number Kone
can compute X = min{x;| ijgxi w; > K} using Qlognloglogn) time and Qn)
work on an EREW PRAM

PrOOF  Vishkin's parallel algorithm to select tHeh smallest element of an unsorted
array [23] can be adapted to provide the proof of this lemma. Vishkin’s algorithm parti-
tions the array of elements into groups and finds the mealiaithe medians of these
groups. To reduce the size of the problem, the algorithm then discards either those el-
ements smaller thaa if the number of such elements is less thamr those elements



252 E. Ruppert

larger thana, otherwise. The weighted selection algorithm is similar, except for the
method of choosing elements to discard. If the total weight of the elements less than
is less tharK, the algorithm discards them, and otherwise discards the elements greater
thana. The resources required by the weighted selection algorithm are the same as for
Vishkin's algorithm. O

A more detailed discussion of parallel algorithms for the weighted selection problem
and the problem of selecting an element from a matrix with sorted columns may be found
in [20].

Once thek elements ofAl are found using the algorithm of Lemma 5, they can be
sorted inO(logk) time andO(k logk) work using Cole’s parallel merge sort [6]. The
ith stage of the algorithm that computes the arrdygfor all verticesv) therefore uses
O(log? k log* k) time andO(nklogk) work.

When the[logk] stages of thé& shortest paths algorithm have been completedk the
shortest paths are stored implicitly in the data structure. This completes the proof of the
following theorem.

THEOREM7. LetG be adirected graph with n vertices edgesLet d be the maximum
outdegree of any verteiven the tree of shortest paths rooted at the destination vertex t
an implicit representation of the k shortest paths to t from every vertex can be computed
onaCREW PRAM using g® k log* k+lognlog logk+logd log* d) time and Qm+

nklog? k) work.

As described in Section 3.2, the paths can be explicitly listed USifigg k + logn)
time andO(nlogn + L) work, whereL is the length of the output.

The parallel algorithm developed here will also work on weighted directed multi-
graphs. The performance bounds proven above still apply unchanged. If some of the
edge weights are negative, the algorithm will still work, provided there is no cycle in
the graph whose total weight is negative. Lemma 1 still applies in this case. There-
fore, the transformation used to reduce a general problem instance to one with non-
negative edge weights (defined BYy, where the distance to vertéxfrom any other
vertex is 0, also applies to graphs with negative edge weights that have no negative
cycles.

4. Applications. Two applications of thé& shortest paths problem will now be de-
scribed. More detailed descriptions of these applications may be found in [20].

The Viterbi decoding problem is to estimate the state sequence of a discrete-time
Markov process, given noisy observations of its state transitions. This problem has
applicationsin communications (see [8]). The list Viterbi decoding problemis to compute
thek state sequences that are most likely to have occurred, given a particular sequence of
observations. Sequential algorithms exist that construct a weighted directed acyclic graph
in which each path between two fixed vertices describes a possible state sequence [8]. The
weight of the path corresponding to a state sequence is equal to the conditional probability
thatit occurred, given the observations. Sequential algorithms for the list Viterbi problem
have appeared previously [21], [22], and a straightforward parallel implementation was
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described by Seshadri and Sundberg [21]. The paral#lortest paths algorithm can

be applied to this graph to solve the list Viterbi decoding problem on a CREW PRAM
usingO(log? s + log(sT) log logk + log® k log k) time andO(s®T + s T klog? k) work,
wheres is the size of the state space of the Markov processTaigithe length of the
observation sequence. This is the first parallel algorithm for this problem that runs in
polylogarithmic time.

The quickest path problem [4] is a generalization of the shortest path problem. It
is used to model the problem of transmitting data through a computer network. Each
edge of a directed graph is assigned a positive capacity and a hon-negative latency. The
capacityc(p) of a pathp is defined to be the minimum capacity of any edge on the path.
The latencyl (p) is the sum of the latencies of the edgespofThe time to transmit
bits of data along a patpis| (p) + o /c(p). Thek quickest paths problem is to compute
thek paths that require the least time to transmit a given amount of data between a given
pair of vertices. If all edge capacities are equal, the problem reduces kosthartest
paths problem. Sub-paths of quickest paths need not be quickest paths themselves, so the
approaches used to solve shortest path problems are not directly applicable to quickest
path problems. Sequential algorithms for kguickest paths problem have been studied
previously [2], [3], [20]. The problem can be solved by first finding ikk&hortest paths
(with respect to latency) that have capacity at leador each edge capacity, and
then choosing from among them tkgaths that have the shortest overall transmission
time [3]. Repeated use of the parakethortest paths algorithm yields a CREW PRAM
implementation of this approach that finds thquickest paths to a given destination
vertext from every vertexv. For ann-node graph wittm edges and distinct edge
capacities, the parallel algorithm runs@tlog® nlogr + log®k + lognlog logk) time
usingO(n?mlognlogr + rnklog?k) work.
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