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Abstract. Large-scale global efforts are underway to knockout each of
the approximately 25, 000 mouse genes and interpret their roles in shap-
ing the mammalian embryo. Given the tremendous amount of data gen-
erated by imaging mutated prenatal mice, high-throughput image anal-
ysis systems are inevitable to characterize mammalian development and
diseases. Current state-of-the-art computational systems offer only differ-
ential volumetric analysis of pre-defined anatomical structures between
various gene-knockout mice strains. For subtle anatomical phenotypes,
embryo phenotyping still relies on the laborious histological techniques
that are clearly unsuitable in such big data environment. This paper
presents a system that automatically detects known phenotypes and as-
sists in discovering novel phenotypes in µCT images of mutant mice.
Deformation features obtained from non-linear registration of mutant
embryo to a normal consensus average image are extracted and analyzed
to compute phenotypic and candidate phenotypic areas. The presented
system is evaluated using C57BL/10 embryo images. All cases of ven-
tricular septum defect and polydactyly, well-known to be present in this
strain, are successfully detected. The system predicts potential pheno-
typic areas in the liver that are under active histological evaluation for
possible phenotype of this mouse line.

1 Introduction

Completion of the human genome project brought comprehension of location
and sequence of each human gene. Owing to the 99% genetic homology be-
tween mouse and human, mouse has been chosen as the principal study model
to annotate genetic sequence with its functional information [1], [2]. Gene tar-
geting technology is being actively employed by many international organiza-
tions to generate mutant mouse lines by knocking out each of the approximately
25, 000 mouse genes (i.e., systematically removing each gene one by one and
growing the mouse). High-throughput phenotypic assessment systems are neces-
sary to systematically analyze and interpret the genetic information generated by
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Fig. 1: Defect detection consists of two steps. A mean of the normal mouse group
is computed in the first step. In the second step, mutant group is registered to
the normal mean and the resulting deformations are analyzed to detect defects.

these large-scale mutagenesis programs. A significant proportion of the generated
strains are embryonic lethal resulting in the shift towards prenatal phenotyping.

The research community focusses on semi-automatic analysis of anatomical
volumetric variation in various mouse strains using representative average im-
ages [3], [4], [5]. Although evaluation based on average images may be beneficial
for an initial examination, phentoypes that are randomized in position and tex-
ture such as the intestines and developing trabeculae of the heart [6] or subtle
structural organ failures without large volume changes cannot be characterized
using this technique. Another body of work focusses on detection of defects via
model-based segmentation [7] or by better data visualization using tissue stain-
ing [8], [9]. Segmentation techniques fail if the defect characteristics are unknown
or if the anatomy is hard to label such as bone joints. Enhanced visualization,
while useful, still requires long expert hours to interpret the data.

In this paper, we present a generalized defect detection framework that auto-
matically computes candidate phenotypic areas without using atlas, segmenta-
tion or any defect specific features. Instead, our approach uses deformation fields
that are widely used to study anatomical variations [3], [4], [10], [11]. We extract
various features from deformation fields obtained by registering mutant mice to
a normal mean and combine them to detect coarse, subtle as well as random-
ized defects (Fig. 1). Statistical characteristics of deformation fields have been
previously studied to detect gross defects in mice brain using multi-modality
images [11]. Our approach, however, targets a single imaging modality and suc-
cessfully handles both subtle as well as significantly differing anatomy.

2 Methods

2.1 Sample Preparation and Imaging Protocol

This study is performed using C57BL/10 mutant mice generated at the National
Institute of Genetics, Japan. Post organogenesis, growth and development in the
embryo starts at ∼14.0 days post-coitum (dpc). Image registration cannot be ap-
plied at stages earlier than this due to unformed or absent organs. Further, at
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Fig. 2: This figure illustrates the steps in the computation of normal mean image.
(a) Acquisition volume (b) extracted normalized embryo images (c)-(e) consensus
average images at rigid, affine and B-Spline registration stages respectively.

a relatively mature stage such as 15.5 dpc accurate registration of abdomen is
difficult to achieve due to variation in intestinal position and crowding within
the abdominal cavity [4]. Therefore, embryo samples at 14.5 dpc were collected.
A total of 14 embryos were used out of which 3 were normal and 11 had chromo-
somal aberrations. 11 mutant embryos consisted of 3 homozyogotes generated
by inbreeding C57BL/10 mice and 8 heterozygotes obtained by cross breed-
ing C57BL/10 and normal littermates. The samples were washed in phosphate
buffered saline and fixed in 4% paraformaldehyde until imaging. Before scanning,
embryos were soaked in 1 : 3 mixture of lugol solution and double distilled wa-
ter. Scan was carried out in Scanxmate-E090S 3D µCT system (Comscantecno,
Japan) with the embryos fitted in 1.5 milliliters eppendorf tube fixed using wet
paper. Keeping the X-ray source at 60kVp and 130mA, each specimen was ro-
tated 360◦ in steps of 0.36◦ generating 1000 projections of 640× 480 pixels. The
3D µCT data was reconstructed at an isotropic resolution of 9.5×9.5×9.5 µm3.

2.2 Normal Mouse Consensus Average Image

Embryo pixels are extracted from the acquisition volumes using Gaussian mix-
ture modeling, thresholding and mathematical morphology (Fig. 2(a) and (b)).
Pixel intensity ranges are normalized and a standard group-wise registration
routine consisting of rigid, affine and B-Spline registration stages is initiated.
Rigid registration corrects differing orientations of individual embryos by choos-
ing a reference and spatially aligning the rest to it. Averaging the rigid registered
images results in a blurry reference (Fig. 2(c)) that is not biased towards the
geometry of the initial reference because this step does not affect the geome-
try of the subjects [5]. Embryos are then registered to the blurry reference via
affine transformation and the reference is updated (Fig. 2(d)). As a final step
B-Spline based non-linear registration is applied to locally align the affine regis-
tered embryos to the reference. The non-linear registration is formulated with a
similarity energy function comprising of mutual information [12] and a rigidity
penalty [13]. 10 iterations of this registration are applied in a multi-resolution
fashion where the control point spacing gradually reduces to 8 voxels. The refer-
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Fig. 3: (a),(b),(c) Jacobian, stress and intensity variance masks overlaid on mu-
tant image respectively (d),(e) defective areas identified by (IIV ∩ IJ) (f),(g)
areas generated by (IIV ∩ IS) (h) defective areas captured by (IJ ∩ IS)

ence image is updated after each iteration leading to the final consensus average
(Fig. 2(e)). Elastix toolbox is used to implement this registration scheme [14].

2.3 Deformation Features and Masks for Defect Detection

To detect defects in mutant mice, they are registered to the normal average
image using the same three-stage registration pipeline as above except that in
each stage the reference is always kept fixed to the normal average. Registration
of each mouse results in the corresponding deformation field. These deformation
fields are used to compute 3D Jacobian maps using determinant of local Jacobian
matrix at each voxel [10]. Jacobian determinant greater than one represents
voxel expansion and less than one represents voxel compression. Jacobian of
deformation is a popular tool to study inter-group structural differences [10], [11].
We apply Jacobian determinant in phenotyping by computing a Jacobian mask,
IJ , one for each mutant mouse, that selects voxels at which Jacobian determinant
is δ units away from one (Fig. 3(a)). δ is kept 0.5 for experiments. We realized,
however, that Jacobian determinant fails for defects where volume changes are
minimal. Further, we find that Jacobian introduces numerous false positives by
highlighting areas that are found to be non-defective by the phenotyping experts,
thus resulting in low precision. Performance of IJ in detecting known defects
namely, Ventricular Septum Defect (VSD) and polydactyly is summarized in
Table 1. Detection specificity for both the defects is very low with IJ .

To capture subtle defects with low volumetric changes, we compute another
deformation feature that we call deformation stress. Deformation stress (Ds) is
computed by dividing the volume into small blocks and measuring the entropy
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Table 1: This table compares VSD and polydactyly detection accuracy (in %) of
various features. VSD is assumed detected if the ventricular area is highlighted.

IJ IS (IJ ∩ IS) (IIV ∩ IJ) (IIV ∩ IS) (F2 ∪ F3) (F1 ∪ F4)
F1 F2 F3 F4 F5

VSD Sensitivity 88.8 100.0 88.8 77.7 77.7 77.7 100.0
VSD Specificity 50.0 100.0 100.0 100.0 100.0 100.0 100.0
Polydactyly Sensitivity 76.9 84.6 61.5 46.1 76.9 76.9 92.3
Polydactyly Specificity 48.4 80.6 87.1 90.3 87.1 87.1 87.1

of deformation direction inside each block.

DS(v) = −
∑

u∈B(v)

p(θ(u)) log(p(θ(u)); (1)

B(v) in Equation 1 represents the block in which voxel v lies and θ(u) is the
displacement direction at voxel u. For experiments the volume was divided into
cuboids of size 8 voxels. Using DS we compute a mask, IS , that chooses voxel
blocks that have high entropy of deformation direction and hence are undergoing
incoherent deformation. For experiments IS selected the top 50% blocks that
exhibited high deformation entropy. Fig. 3(b) shows an example of IS and Table 1
enlists its performance in detecting known phenotypes. Some false positives are
introduced due to inclusion of sources and sinks in the deformation field.

Since IJ and IS individually fail to detect all defects and both introduce false
positives, a simple combination of the two does not give satisfactory results (Ta-
ble 1). In practice multiple mice from a mouse line are imaged before phenomic
analysis is performed. We introduce this group information in defect detection
by calculating voxel-wise intensity variance (VIV ) across the group of mutant
mice that are registered to the normal mean.

VIV (v) =
1

NM − 1

NM∑
i=1

(Mi(v)−NAvg(v))
2. (2)

NM ,Mi andNAvg in Equation 2 are mutant mouse population size, ith registered
mutant mouse image and the normal consensus average respectively. From VIV

we compute a mask IIV by selecting the top 50% voxels that have high intensity
variance and hence low registration accuracy(Fig. 3(c)).

We find that many false positives introduced by IJ and IS are pruned when
these features are combined with IIV . Table 1 lists the accuracies when the
detection criterion is (IIV ∩IJ ), (IIV ∩IS) or both combined. From experiments
on C57BL/10 mutant mice we find that (IIV ∩IJ ) mainly captures VSD and
unusually wide liver lobe junctions. Figs. 3(d) and 3(e) show some detection
results obtained by this factor. (IIV ∩IS) captures polydactyly and unnatural
position and deformations of tail and limbs (Figs. 3(f) and 3(g)).

It is possible to have inaccurately registered morphological structures that
are not selected by the intensity variance mask. Uniform body cavities (dark
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(a) (b)

Fig. 4: (a) Defect detection results in the liver lobe junctions, heart and intestine
of C57BL/10 mice (b) the left and right images depict a healthy heart and the
misjudged defect respectively.

regions) or muscular organs (like liver lobes and heart atria) are some examples
where we find that intensity variance is low due to spatially uniform intensity
values even though there is a abnormality. (IJ∩IS) addresses regions where both
Jacobian and stress are high irrespective of the intensity variance. By adding
this term in the detection rule we are able to detect spatially uniform defective
regions. Some secondary phenotypes like enlarged heart atrium due to high blood
pressure induced by VSD are captured by this term as shown in Fig. 3(h).

Combining the three terms we propose the defect detection rule as

IDefect = (IIV ∩ IJ) ∪ (IIV ∩ IS) ∪ (IJ ∩ IS). (3)

Table 1 enlists the performance of this detection rule. Number of detected regions
can be readily increased or decreased by relaxing or tightening the thresholds
while generating the Jacobian, deformation stress and intensity variance masks.
Simple morphological operations like dilation and erosion are applied as noise
reduction measures to clean up the detection results.

3 Results

Complete phenomic analysis of a mouse strain is a very tedious and slow process.
C57BL/10 strain is still under investigation and hence full phenotypic character-
istic consisting of all phenotypic defects is yet unknown. Therefore, even though
we can evaluate the detection rule (Equation 3) in terms of precision, a formal
evaluation of recall is not possible. VSD and polydactyly are two established
genetic defects in C57BL/10 mice. We compute sensitivity and specificity of the
detection algorithm with respect to these two defects.

When evaluated over the mutant database of 3 homozygote and 8 heterozy-
gote embryos, the algorithm detected all cases of VSD without generating any
false positives. Out of the 13 cases of polydactyly 12 were successfully detected
and 1 was missed. The missed case belonged to the only mouse in the database
that had its umbilical chord removed resulting in registration errors at the nearby
areas. 4 false positive polydactyl cases were reported in situations where due to
high proximity toes of both the feet seemed fused in the 3D renderings.

To evaluate the rest of the detected areas, a user study was conducted with
phenotyping experts having long experience in mouse imaging and phenotyping.
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The expert comments were very encouraging and they noted that all the regions
detected by the algorithm had biological significance. Some of the areas were due
to genetic defects, some due to non-genetic defects and some due to organogenesis
or procedural interventions. After careful histological examination, it was found
that majority (57%) of the total detected regions belonged to genetic defects.
Apart from known phenotypes, the algorithm detected areas in the liver lobe
junctions that are candidate areas for potential phenotype of this mouse strain
and are under active phenotypic evaluation.

14% output regions were detected due to malformed body cavities. Though
these regions do not represent defects due to genetic makeup, they still signify
biological malformations. Another 8% regions were noted to be due to genesis
and extensive developmental remodeling of gonads at this gestational stage. The
rest of the output was attributed to blood clots, randomized umbilical chord
regions and pancreatic genesis.

When the detection rule was applied to wild-type mice, some areas were re-
ported. These areas represent blood clots, umbilical chord, malformed body cav-
ities and pancreatic and gonadic organogenesis. One false positive was generated
for heart septal defect in a case where low spatial intensity variance makes the
judgement hard even for an unexperienced human eye (Fig. 4(b)). With further
image processing it is possible to improve the detection accuracy by neglecting
the high intensity blood clots and masking out umbilical chord regions.

4 Discussion and Conclusion

We have presented a generic deformation based defect detection framework for
3D µCT images of mutant mice. Our system has the potential to greatly enhance
phenotyping throughput by automatically detecting all known phenotypes. Un-
like other algorithms designed to detect specific known defects, our system also
highlights candidate novel defects that may not be readily recognized by hu-
man experts due to absence of significant visual features. Owing to voxel-by-
voxel analysis, defects are localized to sub-structures and those affecting multiple
structures are visualized collectively. Though our evaluation database is small,
the results clearly establish the potential of the proposed system in patterning
defects. Our framework can be easily adapted to examine other 3D scan images
amenable to registration. We acknowledge that the registration method may ef-
fect the detection results, however, the registration scheme used in the paper
is widely employed in mice phenotyping [3], [4], [5]. Deformation field result-
ing from only the non-linear registration step is used for defect detection. The
detection performance is found to be fairly robust to parameter variation.

Since the proposed framework is independent of the defect features, classi-
fication of defects into those that are genetically induced and those that are
not is out of scope for the current system. Currently we provide frequency of
occurrence as an indicator of whether or not a defect is genetic. As an example,
since VSD and polydactyly are detected in all homozygote embryos, the proba-
bility of these defects being genetic is reported to be 100%. Similar probabilities
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are assigned to all detected regions. In future we plan to use advanced image
processing and statistical techniques to device classifiers that can differentiate
between genetic and non-genetic defects.
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