
Int J Comput Vis
DOI 10.1007/s11263-012-0589-5

A 3D Imaging Framework Based on High-Resolution
Photometric-Stereo and Low-Resolution Depth

Zheng Lu · Yu-Wing Tai · Fanbo Deng ·
Moshe Ben-Ezra · Michael S. Brown

Received: 5 November 2011 / Accepted: 10 October 2012
© Springer Science+Business Media New York 2012

Abstract This paper introduces a 3D imaging framework
that combines high-resolution photometric stereo and low-
resolution depth. Our approach targets imaging scenarios
based on either macro-lens photography combined with focal
stacking or a large-format camera that are able to image
objects with more than 600 samples per mm2. These imag-
ing techniques allow photometric stereo algorithms to obtain
surface normals at resolutions that far surpass correspond-
ing depth values obtained with traditional approaches such
as structured-light, passive stereo, or depth-from-focus. Our
work offers two contributions for 3D imaging based on these
scenarios. The first is a multi-resolution, patched-based sur-
face reconstruction scheme that can robustly handle the sig-
nificant resolution difference between our surface normals
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and depth samples. The second is a method to improve the
initial normal estimation by using all the available focal infor-
mation for images obtained using a focal stacking technique.

Keywords 3D Reconstruction · High resolution ·
Photometric stereo · Focal stack

1 Introduction

Impressive gains by digital imaging sensors are allowing pho-
tometric stereo techniques to estimate surface normals with
resolutions that far surpass that possible with conventional
3D imaging techniques, e.g. structured-light, time-of-flight
scanners, stereo vision. To help appreciate this difference,
Fig. 1 shows an example of high-resolution surface normals
compared to the 3D geometry captured using a standard
structured-light scanner and a high-end commercial laser
scanner designed for industrial inspection (Fig. 1a–c). The
estimated surface normals exhibit significantly more details
of the object’s surface than that obtained by structured-light
and the laser-scanner.

Photometric stereo, however, only provides 2.5D infor-
mation in the form of surface normals. A common procedure
is to leverage surface normal details with 3D depth values by
combining the data (e.g. Bernardini et al. 2002; Nehab et al.
2005; Vlasic et al. 2009). Such prior techniques however have
not been able to accommodate such vast differences in the
sampling rate between the estimated surface normals and 3D
geometry. Our goal is to be able to address resolution differ-
ences in the order of 100:1. For example, Fig. 1d shows our
results obtained by combining the normals from Fig. 1a sam-
pled at over 600 samples per mm2 with the structured-light
scanner sampled at roughly 6 samples per mm2. To our best
knowledge, this represents 3D data with some of the highest
sampling rate demonstrated to date.
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Fig. 1 Comparison of our results against a standard structure-light
scanner and a state-of-the-art industrial 3D scanner: a our input from
photometric stereo (over 600 samples per mm2), b surface reconstructed

from a standard structured-light system (6.25 samples per mm2), c sur-
face reconstructed by a Konica Minolta Range 7 (168 samples per mm2),
d our reconstructed high-res surface

Fig. 2 Overview of our framework. Both systems, i.e. the large-format
camera with structured-light and the DSLR with macro lens, produce
high-resolution surface normals and sparse/low-resolution depth. Our
surface reconstruction algorithm fuses these inputs together. Our normal
regularization using focal stacking and depth-from-focus estimation are
described in Sect. 4. Our surface reconstruction algorithm is presented
in Sect. 5

In this paper, we examine two ways to obtain such
high-resolution data as shown in Fig. 2. The first uses
a large-format digital camera, while the second relies on a
conventional digital single-lens reflex camera (DSLR) with a
macro lens. In the latter case, the object is required to be much
closer to the camera in order to obtain high-resolution data,
leading to a shallow depth-of-field. As a result, capturing
multiple images at varying focal lengths, i.e. focal stacking,
is required to extend the depth-of-field to capture the object.
This scenario has interesting implications as we now have
significantly more input images with a conventional setup.

Our main contribution of this work is to propose a multi-
resolution surface reconstruction scheme that fuses the low-
resolution geometric data with the photometric stereo data
at increasing levels of details. To deal with the large amount
of data from the high-resolution input, we adopt a patch-
based scheme that uses an additional boundary constraint to
maintain patch coherence at the boundaries. The results of

our approach are 3D surfaces captured at an exceptionally
high level of detail. A secondary contribution is to demon-
strate how to improve the normal estimation by globally opti-
mizing the estimated normals against focal stack images. In
addition, we show how we can use photometric lighting to
improve depth-from-focus results that can be used as geomet-
ric data in our surface reconstruction algorithm. While our
normal refinement algorithm assumes a Lambertian surface,
our multi-resolution surface reconstruction approach directly
processes surface normals and geometry and can therefore
be applied with any photometric stereo approaches.

A shorter version of this work appeared in Lu et al. (2010)
which only focused on the imaging scenario with a large-
format digital camera. This journal version extends our con-
ference work with novel normal refinement algorithm using
focal stack in Sect. 4. Additional experimental results are
shown in Sect. 6.

The remainder of this paper is organized as follows: Sect. 2
discusses related works; Sect. 3 describes our system setup;
Sect. 4 describes our normal regularization using focal stack-
ing and depth-from-focus estimation; Sect. 5 presents our
main algorithm for surface reconstruction; Sect. 6 presents
our results. A summary of this work is presented in Sect. 7.

2 Related Work

There is a vast amount of literature on 3D imaging. Readers
are directed to Seitz et al. (2006) and Whöler (2009) for broad
overviews; here only representative examples are discussed.

3D imaging has been approached using passive triangula-
tion methods such as conventional stereo (e.g. Scharstein and
Szeliski 2002), passive photometric methods such as shape
from shading (e.g. Horn and Brooks 1989), active triangu-
lation methods such as structured-light (e.g. Scharstein and
Szeliski 2003) and active photometric methods such as pho-
tometric stereo (e.g. Woodham 1980). Hybrid methods that
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integrate two or more methods include approaches that com-
bine shape from motion and photometric stereo (e.g. Higo
et al. 2009), positional (3D points) data and normals (e.g.
Terzopoulos 1988; Banerjee et al. 1992; Fua and Leclerc
1994; Lange 1999; Ikeuchi 1987; Bernardini et al. 2002;
Chen et al. 2003; Nehab et al. 2005), visual hull and nor-
mals (Hernández et al. 2008),1 and recently normals and
volume carving (Vlasic et al. 2009).

All of the previously mentioned hybrid methods have
the potential to be adapted to handle very high-resolution
imagery as in our application. We opted for a solution that
is closely related to the work by Nehab et al. (2005). The
system presented in Nehab et al. (2005) used two cameras
in a structured-light setup with one of the cameras also used
to perform photometric stereo. Positional data and surface
normals were fused using a linear formulation that resulted
in a sparse-linear system. In their work, the surface geometry
and the photometric data had approximately the same reso-
lution. In our work, we have 100× more estimated surfaces
normals than we do 3D points. At our resolutions (e.g. 5×5K
surface normals), the sparse matrix proposed by Nehab et al.
(2005) would have ∼150 million entries. Solving such a large
matrix is not straight forward, even for out-of-core linear
solvers such as Reid and Scott (2009). As such, we adopt
a patch-wise strategy to the fusion process. In addition, to
deal with the significant difference in resolutions, we use a
multi-resolution pyramid approach to adaptively incorporate
the geometric constraint from the low-resolution geometry
during the surface integration.

In the case of the macro-lens imaging setup, our work
intends to utilize auxiliary depth information obtained from
depth-from-focus. These methods estimate an object’s sur-
face structure from two or more images with varying focus
parameters. Notable examples include Darrell and Wohn
(1988); Nayar and Nakagawa (1994); Xiong and Shafer
(1993); Malik and Choi (2008). The basic idea involves deter-
mining when a point becomes in focus and relating that to the
(calibrated) focal distance to the camera. While our approach
draws on elements from prior techniques, as far as we
are aware, the combination of photometric stereo and depth-
from-focus with focal stacking is unique. In addition, our
use of the focus images and photometric stereo lighting to
improve the normal estimation and depth-from-focus results
presents a new method for 3D imaging in restricted working
environments.

3 System Setup

In this paper, we examine two ways of obtaining high-
resolution surface normals and low-resolution depth using

1 Also see http://carlos-hernandez.org/gallery/.

the following systems: (1) a large-format digital camera
combined with structured-light; (2) a system consisting of
a conventional DSLR and a macro lens. Both systems use
four controllable lights and a mirrored sphere for light
direction calibration. The photometric stereo technique in
Woodham (1980) is used to obtain the surface normals. While
we assume that the object is Lambertian, cross polarization is
used to reduce specular reflection that arises when the object
is not perfectly Lambertian. Polarization can effectively
reduce most of the specular reflections from the objects. Our
cross polarization is achieved by putting polarizers on the
lens and in front of the four lights such that the polariz-
ers are rotated to the angle that minimizes specular reflec-
tions (Nayar et al. 1997). The details of the two systems are
described in the following.

3.1 Large-Format Digital Camera with Structured-Light

This system uses a large-format camera combined with a sep-
arate structured-light setup. Because the large-format cam-
era used in the system requires roughly a minute to capture
a single image, we opted to use an auxiliary video camera
to perform the structured-light procedure. The two cameras
and projector are calibrated by a physical calibration pattern.
Figure 3a shows our setup.

Instead of using commercial large-format cameras (e.g.
Anagramm And Digital Reproduction 1998), we use a
custom-built 1.6gigapixel camera that uses a translation scan-
ning back with an effective format of 450×300 mm. For
more details of the large-format camera see http://dgcam.
org. Figure 3b shows the scanning setup of an object that is
roughly 20 cm in diameter. The resulting image of this object
is ∼5×5K pixels.

The structured-light setup consists of a Benq MP624 pro-
jector and a 1,024 × 768 video camera. Standard binary
gray-code patterns (Scharstein and Szeliski 2003) are used
to estimate the low-resolution geometry. Figure 1b shows a
small example of the 3D surface geometry estimated using
the structured-light setup. There are slight pixelization-like
artifacts due to inaccuracies in estimating the projected
patterns’ boundaries, however, since the low-resolution
geometry serves only as a soft constraint in the surface recon-
struction process our approach is insensitive to these errors.

3.2 DSLR with Macro Lens

Our macro-lens setup consists of a Canon EOS 1Ds Mark III
camera and a Canon EF 50 mm f/2.5 Compact macro lens.
In order to capture high-resolution data, we place the camera
very close to the target object. As a result, we need to use focal
stacking to capture our target objects. This also makes it hard
to couple our system with structured-light setup. Figure 4
shows our setup. To capture the focal stack photometric stereo
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Fig. 3 Our first system: a The setup consists of an high-resolution
large-format camera with four lights used for photometric stereo. A low-
resolution video camera and digital light projector form the structured-
light system. b The effective resolution of one of our objects is shown.
Note the scale of the physical object, versus the pixel resolution. This
results in a pixel resolution of over 600 samples per mm2

Fig. 4 Our second system: (left) The setup consists of a conventional
DSLR with a macro lens and four lights used for photometric stereo.
Note the two lights are shown for demonstration. In our experiments the
lights are positioned much further from the object. (right) Both focal
stack and photometric data are captured at the same time

data, we first focus on the nearest point on the target object.
Then we increase the focus distance at every 3 mm. In the
setup, we make sure that the depth-of-field for each image is
about 3 mm so that each point on the object is in focus in at
least one image. For each focus distance, the same four lights
are used for photometric stereo.

4 Focal Stack Photometric Stereo

We first describe how we utilize focal stack data in the photo-
metric stereo process as this is intended as a pre-processing
step to our surface reconstruction algorithm shown in Sect. 5.
We start with a short discussion on focal stack imaging and its
relationship to surface normals. This is followed by a descrip-
tion of our normal estimation algorithm which globally opti-
mizes constraints of defocus normals over the entire focal
stack. Finally, a simple method to improve the depth-from-
focus result using the available photometric stereo lighting
is described.

4.1 Focal Stack and Normals

To understand the additional information pertaining to nor-
mals in the focal stack, let us first study the relationship of the
surface normals when the captured images are out-of-focus.
We assume the captured surface follows the Lambertian light-
ing model. For each point of the input image, we can repre-
sent the effect of defocus blur by the following convolution
equation:

I (x, y) =
∑

(m,n)

I ∗(x ′, y′)K (m, n)

=
∑

(m,n)

ρ(x ′, y′)|N∗(x ′, y′) · L(x ′, y′)|K (m, n), (1)

where I is the captured defocus image, I ∗ is the ideal all-in-
focus image, K is the spatially varying defocus blur kernel
with its size proportionates to the depth of the scene, N∗ is
the surface normal, L is the lighting direction, ρ is the surface
albedo, and (x ′ = x-m, y′ = y-n) is the local neighborhood
of (x, y).

In photometric stereo, we assume that L is a directional
light source and therefore constant within the same input
image. Now, suppose for a local region, if ρ is constant, we
can simplify Eq. (1) as follows:

I (x, y) = ρL ·
⎛

⎝
∑

(m,n)

N∗(x ′, y′)K (m, n)

⎞

⎠ . (2)

Solving Eq. (2) using standard least square methods
(Woodham 1980), we obtain the normals which have under-
gone defocus blur:

Ñ (x, y) =
∑

(m,n)

N∗(x ′, y′)K (m, n). (3)

Note that although our formulation assumes that ρ is con-
stant, in practice we find this is not necessary. This will be
demonstrated in our results in Sect. 6.

4.2 Normals Refinement Using Deconvolution

Ideally, within the focal stack, there should be one normal
estimation per pixel that is in-focus (or the best in focus).
Hence, we could obtain all-in-focus normals by applying all-
in-focus methods (e.g. Hausler 1972; Agarwala et al. 2004)
over the normals at different focus distances. However, we
found that computing an all-in-focus normal map this way
resulted in a noisy result. This is due to the quantization effect
in the focal stack and noise in estimating where a surface
patch is in focus. Our aim is instead to estimate the normals
globally using the entire focal stack.

For a focal stack with M number of levels, we can obtain
M observations of normals as follows:
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Ñ1(x, y) =
∑

(m,n)

N∗(x ′, y′)K1(m, n)

Ñ2(x, y) =
∑

(m,n)

N∗(x ′, y′)K2(m, n)

...

ÑM (x, y) =
∑

(m,n)

N∗(x ′, y′)KM (m, n). (4)

Solving each individual equation alone in Eq. (4) is well-
known to be an ill-posed problem. However, when we
combine all the equations together, this problem becomes
well-posed as shown in Agrawal et al (2009). This can be
formulated into a set of linear equations by rewriting Eq. (4)
into AN∗ = b with:

A =
⎡

⎢⎣
K1
...

KM

⎤

⎥⎦

T ⎡

⎢⎣
K1
...

KM

⎤

⎥⎦ + w
(

GT
x Gx + GT

y G y

)

b =
⎡

⎢⎣
K1
...

KM

⎤

⎥⎦

T ⎡

⎢⎣
Ñ1
...

ÑM

⎤

⎥⎦ , (5)

where Gx and G y are the x− and y− derivative filters used as
regularization to help suppress noise and ringing artifacts in
the deconvolution. The term w is the regularization weight.

Since the defocus kernel is different at each pixel, the
deconvolution process is performed for each pixel indi-
vidually. In our implementation, we calibrated the defocus
kernel K using a textured pattern for each level of defocus
in the focal stack. Note that if the lens optics are known, the
K can be computed directly. The defocus kernel is selected
according to the depth map estimated from the depth-from-
focus which will be detailed in next subsection. While the
estimated defocus kernel might be inaccurate, the multiple
observations of the blurry normals and the neighborhood reg-
ularization in Eq. (5) help ameliorate these estimation errors.
Figure 5 shows the comparisons between our estimated nor-
mals and the all-in-focus normals obtained using an all-in-
focus method (Hausler 1972). See Sect. 6.1.1 for the details of
how we compute the normals using this method. While these
look similar, on careful inspection it is clear that the all-in-
focus normal map (Fig. 5b) is more noisy than that obtained
with regularized normal map (Fig. 5a). Further quantita-
tive evaluations of our normal estimation method are given
in Sect. 6.

4.3 Depth-from-Focus Exploiting Photometric Lighting

Techniques for depth-from-focus return a depth map from
the focal stack via edges/textures sharpness analysis. These
measurements depend greatly on the rich texture information
on the object surface. In situations where the object’s surface

Fig. 5 The estimated normals, with a and without b, deconvolution
refinement. While similar at first glance, on careful inspection it is
apparent that the normal map in (b) exhibits more noise than the normals
in (a)

does not contain any texture, the above measurements may
fail since there is no obvious difference between the in-focus
image and the out-of-focus images in the focal stack.

In photometric stereo, scenes are captured with varying
illuminations under different lighting directions. The con-
trolled light sources produce shadings or shadows according
to the geometry and curvature of object surface, regardless of
local albedo. In other words, the shadings/shadows can still
exist when the local albedo is the same. With the induced
discontinuities from shadings or shadows, we can analyze
the amount of defocus even when the object is homogeneous
in color. Note that when more lighting directions are used in
photometric stereo, we can get more accurate depth since we
have more observations of shading/shadows discontinuities.

We take the photometric stereo images at each focus dis-
tance as a trade off of additional capturing time. The light-
ing directions are fixed and calibrated so that at each focus
distance, we can find the corresponding photometric stereo
images in the focal stack for focus analysis. The pseudo code
of our depth-from-focus algorithm is detailed in Algorithm 1.
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Fig. 6 The estimated depth map using depth-from-focus, with (left)
and without (right) photometric lighting. The zoomed-region shows
that the estimated depth is less noisy with photometric lighting. Note
that the red box in the middle shows the zoomed-region of an input
image

The term Fi
k is the focus measured under lighting direc-

tion i at the focus distance k. We use the Sum-Modified-
Laplacian introduced by Nayar and Nakagawa (1994) for
focus analysis. The term dk is the depth corresponding to the
focus distance k. The term d̄ is our resulting depth estima-
tion. In addition to the depth map, we will also compute a
confidence map C which measures the reliability of the depth
value computed at each pixel location. Our confidence map
is computed using the following equation:

C(x, y) =
∑

( j∈J ) F j
max (x, y)

∑
(i∈L ) Fi

max (x, y),
(6)

where J = {i |di = d̄}, L is the set of all illuminations, d̄ is
the overall depth estimate and di is depth estimate for i th illu-
mination, as computed in Algorithm 1. Figure 6 shows the
comparison between our estimated depth using photometric
lighting and usual lighting. The zoomed-in region shows the
estimated depth is less noisy when the photometric lighting
is used. Under ideal conditions, depth-from-focus produces
the same resolution depth map as the input images. In prac-
tice, however, the depth maps are often noisy even with our
photometric lighting. We further reduce the effects of noise
by removing the low confidence depths using C and a median
filtering followed by downsampling the depth map by a fac-
tor of four. We use this sparse/low-resolution depth map as
the low-resolution constraint in our surface reconstruction
algorithm (see Sect. 5).

5 Surface Reconstruction Algorithm

This section describes the surface reconstruction algorithm
of our framework. The basic algorithm to reconstruct a sur-
face from normals is described first. This is followed by a
description on how to include the low-resolution geometry

ni nj

hij

nj

ni

Osculating arc

(b)(a)

Fig. 7 The osculating arc constraint (Wu et al. 2008) for surface recon-
struction. Given the normal configuration {ni , n j } between neighbor-
hood pixel i and j in a, we can uniquely define the relative height hi j
in b by using an osculating arc to connect ni and n j with minimum
curvature

constraint and boundary connectivity constraint into the algo-
rithm. Finally, the steps of the multi-resolution strategy is
described in detail.

5.1 Surface from Normals

Given a dense set of normals the goal is to reconstruct a sur-
face that satisfies the normals’ orientation constraint. We use
the recent approach presented by Wu et al. (2008) for obtain-
ing a surface from normals that constrains the estimated sur-
face using an osculating arc between neighboring normals
(see Fig. 7). This problem can be cast as a least-square prob-
lem that minimizes the following energy function:

E(S|−→n ) =
N∑

i

∑

j∈N (i)

(
(Si − S j ) − hi j

)2
, (7)

where S is the surface we want to reconstruct, (Si − S j )

is the first derivative of S in discrete form, hi j is the rela-
tive height defined by the osculating arc constraint between
neighborhood pixels, N (i) is the first order neighborhood of
a pixel, and N is number of pixels. A qualitative comparison
of the osculating arc constraint with other surface from nor-
mals algorithms can be found in Wu et al. (2008). While the
osculating arc constraint does not explicitly deal with depth
discontinuity, Wu et al. (2008) showed that the osculating arc
constraint produces the least distorted results compared with
methods that explicitly consider discontinuity such as affine
transformation and M-Estimator (Agrawal et al. 2006).

Equation (7) can be solved using Gauss-Seidel iteration.
At each iteration, the surface height is updated according to
the following equations:

St+1
i = St

i + λ1ξ1

ξ1 = 1

|N (i)|
∑

j∈N (i)

(hi j − (St
i − St

j )), (8)

where |N (i)| is the number of neighborhood pixels, λ1 =
0.9 is the step size and t is the iteration index. Note that hi j

is the same for all iterations and can be pre-computed.
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5.2 Low-Resolution Geometry Constraint

Because photometric stereo inherently captures only local
reflection information rather than global structure, many
surface from normal reconstruction approaches do not
accurately reflect the real surface geometry. As discussed
in Sect. 2, one strategy to overcome this is to incorporate
positional information in the reconstruction process.

Our low-resolution geometry constraint is modeled using
the following equation:

E(S|L) =
M∑

i

(|d(h(Si )) − Li | − �)2 , (9)

where L is the low-resolution geometry, M is the number of
pixels in the low-resolution geometry, h(·) is a Gaussian con-
volution process with radius equals to two times the down-
sample rate, d(·) is a downsample operation to match the
high-resolution normals to the low-resolution geometry, and
| · | is the L1 norm (absolute value) of the errors. The term �

is a parameter controlling the amount of depth tolerance for
surface details to be reconstructed and refined by the normals.

With the additional low-resolution geometry constraint,
the iterative update equation in Eq. (8) is updated as follows:

St+1
i = St

i + λ1ξ1 + λ2ξ2

ξ2 =
{

h(u(Li−d(h(Si )))), if |d(h(Si ))−Li |>�

0, otherwise,
(10)

where u(·) is an upsample operator. The effect of our low-
resolution geometry constraint is shown in Fig. 8. The value
of � is estimated according to the variance of surface details
reconstructed from normals and can be spatially varying.

5.3 Boundary Connectivity Constraint

As discussed in Sect. 2, the high-resolution of the photo-
metric stereo component makes it challenging to perform
integration on the entire surface in one pass. To overcome
this the surface can be subdivided into more manageable
sized patches and each patch is reconstructed individually.
This leads to a problem that the boundaries of adjacent
patches may not be properly aligned after reconstruction. To
overcome this, we add a boundary connectivity constraint
described by the following equation:

E(S|B) =
∑

i∈�

(Si − Bi )
2, (11)

where � is the overlapping area of neighborhood surface
patch, B is a surface computed by blending the intermediate
reconstructed surface in � between neighborhood patches
using linear feathering. Adding the boundary constraint
into Eq. (8), we get:

Fig. 8 Example of surface reconstruction with/without including the
low-resolution geometry constraint: a reconstructed surface from nor-
mals only, b a side view of (a), c reconstructed surface with low-
resolution geometry constraint, d a side view of (c). Note that this patch
is at the edge (bending) of a plate. See Fig. 19 for the overall geometry
and surface normals of the plate

Fig. 9 Effect of the boundary connectivity constraint: a without the
boundary connectivity constraint, and b with the boundary connectivity
constraint

St+1
i = St

i + λ1ξ1 + λ2ξ2 + λ3ξ3

ξ3 =
{

Bi − Si , if i ∈ �

0, otherwise.
(12)

For this boundary connectivity constraint, the weight of λ3

during the update iterations needs to be adjusted as the system
is iterated. In the initial estimation, λ3 is equal to zero, and
its weight is gradually increased as the number of iterations
increases. This allows the surface patch to be reconstructed
freely at initial iterations and later refined to meet the bound-
ary of neighborhood patches. In our implementation, λ3 and
B are updated at every 100 iterations. With this boundary
connectivity constraint, surface reconstruction can be done
in parallel and the problem of resolution is no longer an issue.
The effect of this boundary constraint is shown in Fig. 9. For
the results in this paper, surface patches are taken to be of
size 1024 × 768 with overlaps of 100 pixels (i.e. 10 %).
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Fig. 10 Example of the benefits of the multi-resolution scheme: a our
surface reconstruction directly using the low-resolution geometry, b
reconstructed surface using the multi-resolution scheme. The 3D sur-
face in a shows noticeable quantization errors due to the low-resolution
geometry

5.4 Multi-Resolution Pyramid Approach

Due to the very large differences in resolutions between the
surface normals and the low-resolution geometry, directly
adding the surface normals to the low-resolution geometry
will result in noisy reconstruction as shown in Fig. 10. To
avoid this, our surface reconstruction is done in a multi-
resolution pyramid fashion. The main purpose of using the
pyramid approach is to correct the low-resolution geome-
try using normals at the equivalent level before we use the
geometry as soft constraint at a higher resolution. In the

case of the large-format camera setup, the multi-resolution
pyramid approach also allows us to resolve small mis-
alignments between the high-resolution normals and low-
resolution geometry due to device calibration errors.

We divide the pyramid uniformly into different levels
starting at the resolution used to capture the low-resolution
geometry (i.e. 1,024 × 768 for the large-format camera setup
and 1,404×936 for macro-lens setup). For each level, instead
of downsampling the estimated high-resolution normals, we
downsampled the high-resolution input images and estimate
the normals from the dowsampled images. We run our sur-
face reconstruction algorithm described in Eq. (12) with the
results from previous level as the low-resolution constraint.
For the lowest resolution, the low-resolution geometry esti-
mated by structured-light is used. Figure 11 shows our inter-
mediate surface reconstruction results (i.e. the evolution) at
different levels in the pyramid.

6 Results

In this section we first demonstrate our normal estimation
refinement using focal stacking on both synthetic and real
objects. This is followed by our high-resolution results cap-
tured by our large-format camera with structured-light.

6.1 Photometric Stereo using Focal Stacking

We test our algorithm on synthetic and real objects. Since
ground truth normals are difficult to obtain for this type of
setup, we performed a series of synthetic experiments using
the Maya rendering software to simulate shallow depth-of-
field imaging with 3D models from which we can compute
normals for ground truth. Experiments are also performed on
real objects which show the difference in quality using both
our estimated normals and depth-from-focus algorithms.

Fig. 11 Evolution of our 3D surface up the multi-resolution pyramid: a low-resolution geometry, b intermediate result at the lowest level of the
pyramid, c the third level, d the last level and final 3D reconstruction
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Fig. 12 On the left, we show the full input images of example 1. The object without texture (A), normal map of the ground truth (B) and our
method (C) are shown too. On the right, example 2, 3 and 4 are shown with and without texture, as well as normal maps computed from our method

6.1.1 Synthetic Examples with Ground Truth

Generating Synthetic Data We use four objects with known
geometry and surface normals. We select the object material
to be purely Lambertian. To unify the camera setup in Maya,
all the objects are scaled to the similar size. To simulate the
focal stack, we set the camera in Maya at a fix distance look-
ing at the object. We turn on Maya’s depth-of-field setting and
set the camera aperture to f 1.0 to simulate a shallow depth-
of-field at each focus distance. We then render the objects
using this synthetic camera model. In order to test the effect
of texture on our method, we render each object both with
and without texture.

The camera in Maya is focused at four different distances
from the closest point of the object to the furthest point
observable from the camera. To simulate photometric stereo,
we set up four different directional lights. The intensities of
all the lights are set to the same value. At each focus distance,
four images are generated such that each image is rendered
with only one light on. In total, 16 images are rendered and
serve as input for our methods.

Calibrating Defocus Kernels To perform our normal refine-
ment, we need to calibrate the defocus kernels for each focus
distance. While we could compute this from the lens model
used by Maya, to provide a more realistic experiment, the
defocus kernels are estimated in the same manner as with
real objects. This is done by placing a textured plane at the
nearest focus distance. Then we render multiple images with
the camera focused at each focus distance. As a result, the
textured plane is blurred with different defocus kernels at

different focus distance. These images are then used for defo-
cus kernel estimation.

Comparisons and Results With the focal stack photometric
stereo images rendered from Maya, we compute the normals
using our method described in Sect. 4. As a comparison,
we also compute all-in-focus normals using two focal stack
methods: a classic all-in-focus method (Hausler 1972) and
a recent method based on graph-cut (Agarwala et al. 2004).
For the latter, we use the code provided by the authors’ web-
page. We first compute the normals at the different focus dis-
tances. These normals are then used as input (instead of RGB
images) to the two methods for computing all-in-focus nor-
mals. Figure 12 shows our synthetic examples with and with-
out texture, as well as normals computed using our method.
In Table 1, we show the mean angular errors (in degrees)
between normals computed by ours and the two all-in-focus
methods and the ground truth, for each object used. To show
our method is not just a matter of filtering, we applied bilat-
eral filtering on normals computed by the two all-in-focus
methods. While the overall error is relatively small for the
all-in-focus approaches, our approach is consistently better.
We also applied our method on the four examples without
texture (see the last two rows of Table 1) with virtually the
same results. This shows the ability of our approach to handle
textured and textureless inputs. Because of the photomet-
ric lighting, our depth-from-focus gives better estimations
in regions with less texture. Using these depth estimation
to assist in selecting the correct defocus kernel, our normal
refinement technique achieves comparable results even for
textureless objects.
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Table 1 Comparison on average angular error (in degrees) of normals
among our method and the all-in-focus methods with and without bilat-
eral filtering

Textured Ex1 Ex2 Ex3 Ex4

Hausler (1972) 2.51 1.07 0.97 2.12

Agarwala et al. (2004) 2.44 0.88 1.07 1.63

Hausler (1972) + BL 2.71 1.12 1.10 2.22

Agarwala et al. (2004) + BL 2.12 0.88 0.97 1.50

Ours 2.06 0.77 0.69 1.41

Ours textureless 2.05 0.78 0.70 1.41

Comparisons are on textured objects. The last row shows the results are
virtually identical when the object is textureless

6.1.2 Real Objects

This section shows several real objects captured by our
DSLR with macro lens setup described in Sect. 3.2. For each
object, normals and depths were estimated using the meth-
ods described in Sect. 4. Then the surfaces were reconstructed
using the technique in Sect. 5. Each surface was generated
using 800 iterations (per patch) of our surface reconstruc-
tion algorithm with the boundary constraint applied once
after every 100 steps. Each of the objects required about
12 patches. Similar to the synthetic experiments, we pre-
calibrated the defocus kernels using a patterned board.

In Fig. 13, we show an example with heavy texture and pit-
ted surface. The zoomed-region shows the difference of nor-
mals and relighted images from our method and all-in-focus
method (Hausler 1972). Figures 14 and 15 show estimated
normals and 3D reconstructions of a statue and an angel
figurine. The zoomed-regions on the right show the com-
parisons of our method and all-in-focus methods (Hausler
1972; Agarwala et al. 2004). Figure 16 shows the estimated
normals and the 3D reconstruction of a duck figurine. The
zoomed-regions on the right show the comparisons of our
methods with and without normal refinement, and depth-
from-focus with and without exploiting photometric lighting.
The improvements in the results using the depth-from-focus

Fig. 14 Normal map and 3D reconstruction result of statue figurine.
(Left) normal map and 3D reconstruction of our approach, Hausler
(1972) and Agarwala et al. (2004). (Top right) the comparison of a
zoomed-region of our and Hausler (1972). (Bottom right) the compar-
ison of a zoomed-region of our and Agarwala et al. (2004)

algorithm are clear, producing less noticeable artifacts in the
coarse depth estimation. The normal map improvements are
more subtle, but on close inspect reveal that our approach
has less noisy normals, resulting in smoother results that
still contain small details present on the objects surface. For
the examples produced using Agarwala et al. (2004), seams
are often noticeable in the final results due to the graph-cut
algorithm.

Fig. 13 An example with heavy texture and pitted surface. (Left) an example of input image, normal map computed by our method and Hausler
(1972). (Right) the comparison of a zoomed-region of our and Hausler (1972). Note that bottom right shows re-lighted images from normals
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Fig. 15 Normal map and 3D reconstruction result of angel figurine.
(Left) normal map and 3D reconstruction of our approach, Hausler
(1972) and Agarwala et al. (2004). (Top right ) the comparison of a
zoomed-region of our and Hausler (1972). (Bottom right) The compar-
ison of a zoomed-region of our and Agarwala et al. (2004)

Fig. 16 Normal map and 3D reconstruction result of duck figurine.
(Bottom left) the comparison of a zoomed-region with (left) and without
(right) photometric depth-from-focus. (Bottom right) the comparison
of a zoomed-region with (left) and without (right) normal refinement

6.2 Results from Our Large-Format Camera System

This section shows several results captured by our large-
format camera system described in Sect. 3.1. The number
of iterations (per patch) and steps for boundary constraint
are the same as those used in Sect. 6.1.2. Besides qualitative
results, we also evaluate our reconstruction results quantita-
tively for one of the objects.

Figure 17 shows 3D reconstruction of an elephant fig-
urine which is ∼15 cm wide. Figure 18 shows example of
a man figurine of roughly 12 cm high. The objects required
9 patches and resulted in about 6.5 million reconstructed

Fig. 17 3D reconstruction of the elephant figurine. The zooms show
exceptional detail on the surface of the object

3D points, while the man required 12 patches and resulted
in about 4.5 million reconstructed 3D points. Both of these
results show exceptional surface detail. The man figurine is
further zoomed to reveal detail that would require a magni-
fying glass to be seen (properly) with the unaided eye. For
visual comparison, zoom and double-zoom regions from one
of the input images are also shown.

Finally, we compare our result, a scanned dragon plate,
with that obtained from an industrial standard high end laser
scanner in Fig. 19. We took the object to an industrial scan-
ning facility using a Konica Minolta Range 7. This serves
as our baseline comparison against a state-of-the-art indus-
trial laser scanner. The finest scanning resolution that can be
obtained by the laser scanner is 168 samples per mm2, while
our sampling rate is 600 samples per mm2. The plate required
25 patches and resulted in about 21.5 million reconstructed
3D points. The state-of-the-art scanner reports to have a scan-
ning accuracy of 40 microns. We can see that on the double-
zoom of these two surfaces, we reveal detail while the result
from the laser scanner is almost completely flat. Zoomed
regions from one of the input images are also provided to aid
the visual comparison. Note that in order to capture the whole
plate by the laser scanner, several scans were performed and
stitched together. Our approach, on the other hand, was able
to image the entire 3D object in one pass. In addition, even
though we use a patch-wise approach in surface integration,
our surface does not contain any blocking or pixelization
artifacts. This helps demonstrate the effectiveness of our
boundary connectivity constraint and multi-resolution pyra-
mid approach. Comparing the surface depth, our estimated
surface depths are consistent with surface depths captured by
laser scanner.
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Fig. 18 3D reconstruction of the man figurine. Due to the high-
resolution of the 3D scan, we can show a zoom and “double zoom”
of the 3D surface. We also show the zoom and “double zoom” from one

of the input images. This double zoom reveals detail that would require
a magnifying glass to see properly
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Fig. 19 Full-size comparison with an industrial laser scanner. Shown
are the full 3D reconstruction from our approach and that from a
Konica Minolta Range 7 industrial scanner. Insets for our approach
show the surface normals and low-resolution geometry. Zoomed and
double zoomed regions from both 3D results and one of the input images

show that while the two scans reveal that our result contains consider-
able more surface detail, both appear to reflect the correct geometry.
Note that the Konica Minolta Range 7 specifications state a scanning
accuracy of up to for ±40 mu

To quantitatively evaluate the effectiveness of our low-
resolution geometry constraint in assisting the 3D recon-
struction, we compute the distances on the dragon plate
example from the surface captured with the laser scanner to

our reconstructed surface with and without the low-resolution
geometry constraint. Due to the large resolution difference,
we have to apply preprocessing steps to make the evalu-
ation feasible and meaningful. We first downsampled our
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Table 2 Numerical evaluation on the reconstructed dragon plate
surfaces

Distance to laser scanner result With low-res Without low-res

Max 0.01954 0.03328

Mean 0.00167 0.00803

RMS 0.00299 0.01224

We use Metro (Cignoni et al. 1998) to compute the max, mean and RMS
distances from the laser scanner result to the surfaces reconstructed
with/without the low-resolution constraint. The reported numbers are
with respect to the bounding box diagonal

high-resolution surfaces into the same level as the laser scan-
ner result. Then a low-pass filter was applied to the down-
sampled surfaces. After alignment of the surfaces (manual
alignment followed by automatic alignment using ICP), we
used Metro (Cignoni et al. 1998) to compute the mean,
max, and root mean square (RMS) distances of the surfaces.
Table 2 shows the Metro output. While this evaluation is only
an approximation due to the additional errors introduced by
down-sampling, filtering, and alignment, we can nonethe-
less see our surface reconstructed with the low-resolution
constraint is more consistent to the laser scanner result than
the one reconstructed without the low-resolution constraint.

7 Discussion and Summary

This paper describes a 3D imaging framework that combines
high-resolution photometric stereo data and low-resolution
depth. Through either a macro-lens setup or large-format
camera setup, our system is able to capture 3D surfaces at
more than 600 samples per mm2. Based on these imaging
scenarios, we first show how to use the focal stack data in the
photometric stereo process by introducing a method to regu-
larize normals against the varied focused images to improve
normal estimation. We then propose a multi-resolution patch-
based approach that combines surface normals and depth
samples with vast resolution differences. Our results demon-
strate some of the most detailed 3D imaging data captured to
date.

We note that the work presented in this paper operates
within a conventional photometric stereo context which has
many known issues that remain unsolved (e.g Lambertian
surface assumption, albedo estimation, use of light sources
and their calibration, etc). Another issue is sharp depth dis-
continuities that can cause distortion in the final reconstruc-
tion. One method to help overcome this is to include a
discontinuity map (Wu and Tang 2006) to help constrain
the surface reconstruction within continuous regions. This
is an interesting area that warrants further research effort. In
addition, our future work seeks to examine if information

offered by the very high-resolution imagery or focal stack
data may help overcome some of these limitations, espe-
cially in estimating more complex lighting models. Another
avenue for future work is to attempt to derive second-order
surface geometry information from the blur profiles of sur-
face points that are presented in the focal stack data. Such
information may be useful in further improving the surface
normal estimation.
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