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Abstract

Most camera images are saved as 8-bit standard RGB 
(sRGB) compressed JPEGs. Even when JPEG compres-
sion is set to its highest quality, the encoded sRGB image 
has been significantly processed in terms of color and tone 
manipulation. This makes sRGB-JPEG images undesirable 
for many computer vision tasks that assume a direct rela-
tionship between pixel values and incoming light. For such 
applications, the RAW image format is preferred, as RAW 
represents a minimally processed, sensor-specific RGB im-
age with higher dynamic range that is linear with respect 
to scene radiance. The drawback with RAW images, how-
ever, is that they require large amounts of storage and are 
not well-supported by many imaging applications. To ad-
dress this issue, we present a method to encode the nec-
essary metadata within an sRGB image to reconstruct a 
high-quality RAW image. Our approach requires no cali-
bration of the camera and can reconstruct the original RAW 
to within 0.3% error with only a 64 KB overhead for the ad-
ditional data. More importantly, our output is a fully self-
contained 100% compliant sRGB-JPEG file that can be 
used as-is, not affecting any existing image workflow -  the 
RAW image can be extracted when needed, or ignored oth-
erwise. We detail our approach and show its effectiveness 
against competing strategies.

1. Introduction

The vast majority of images used in computer vision
and image processing applications are 8-bit standard RGB
(sRGB) images, typically saved using the JPEG compres-
sion standard. Virtually all image processing application
workflows support sRGB and JPEG images. There are
many drawbacks, however, when working with sRGB im-
ages, e.g. it is well known that sRGB images have a number
of non-linear operations applied that makes it difficult to re-
late the sRGB values back to scene radiance [3, 8, 13, 17,
22, 24].
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Figure 1. (a) A 5616× 3744 resolution high-quality sRGB-JPEG
with our metadata embedded (original JPEG size of 9,788 KB,
new size of 9,852 KB). (b) Original RAW image is 25,947 KB. (c)
Our reconstructed RAW image using the data in the self-contained
JPEG. (d) Error map between (b) and (c). Overall reconstruction
error is 0.2%.

Most cameras now allow images to be saved in a RAW
image format that is an uncompressed, minimally processed
image representing the response from the camera sensor.
RAW has many advantages over sRGB, including linear re-
sponse to scene radiance, wider color gamut, and higher
dynamic range (generally 12 − 14 bits). Not surprisingly,
RAW is desirable for many computer vision applications,
such as photometric stereo, image restoration (e.g. deblur-
ring), white-balance, and more. RAW is also preferred
by photographers as it allows the most flexility in post-
processing image manipulation. One of the major draw-
backs is that RAW files takes up significantly more space
than their sRGB counterpart. In addition, the vast major-
ity of all existing image-based applications are designed
to work with 8-bit sRGB images. Images saved in RAW
must typically undergo some intermediate process to con-
vert them into sRGB to be useful for many existing tasks.

Given the utility of RAW image data, there has been a
number of approaches to map sRGB images back to the



their RAW values. Work by Yuan and Sun [31] demon-
strated an effective hybrid-image method that stored a lower
resolution version of the original RAW image (e.g. 1

2 or 1
4

resolution) and applied smart upsampling that leveraged the
sRGB image. One impetus for [31] is that many cameras
now support a small-RAW format that save the RAW im-
age in either half and quarter-size resolutions. However, it
is important to note that these smaller RAW images still re-
quire roughly 1.5 − 6 MB to store. Other closely related
work [30, 3, 17, 19, 20] used a calibration procedure to
compute parameters to model the onboard camera process-
ing pipeline in order to reserve sRGB values back to their
RAW values. While this calibrated metadata is generally
smaller than the 1.5 − 6 MB needed using the small-RAW
strategy, these methods still have a drawback that additional
metadata needs to be stored separately for reconstructing
the RAW image. Moreover, the calibration procedure needs
to be done for several different settings on the camera. The
goal of this paper is to provide a fully self-contained JPEG
image that allows RAW image reconstruction. In addition,
we want to do this with a small memory overhead and in
a manner that is 100% compatible with existing JPEG stan-
dards. Figure 1 shows an example of our proposed method’s
ability. An sRGB-JPEG image is embedded with 64 KB of
metadata that is used to reconstruct the RAW image with
an overall reconstruction error of less than 0.3% (in RAW
pixels values).
Contribution We provide a straight-forward and effective
procedure to extract the necessary data for reconstructing a
RAW image given the corresponding sRGB-JPEG image.
As part of this procedure, we describe a fast breadth-first-
search octree algorithm for finding the necessary control
points to provide a mapping between the sRGB and RAW
sensor color spaces. In addition, we also describe a method
to encode our data efficiently within the allowed 64 KB text-
comment field that is supported by the JPEG compression
standard. This allows our method to be fully compatible
with existing JPEG libraries and workflows. We compare
our approach with existing methods and demonstrate the
usefulness of the reconstructed RAW on two applications:
white-balance correction and image-deblurring.

2. Related Work
Work related to RAW image reconstruction can be cat-

egorized into two areas: radiometric/camera color calibra-
tion and methods for image-upsampling.
Radiometric/Color Calibration are methods that aims to
compute the necessary mappings to invert the non-linear
transformations applied onboard cameras in order to have
pixel values that are linear with respect to scene radiance.
Conventional radiometric calibration algorithms used mul-
tiple images taken with controlled exposures in order to
compute inverse response functions of the camera output in-

tensity values to the incoming light. These methods targeted
greyscale images [21], or computed a individual response
functions per color channel [8, 13, 22, 24]. The main differ-
ence among these methods are the models used to represent
the response function, e.g. exponentiation [22], polyno-
mial [24], non-parametric [8], and PCA-based model [13].

These early methods discarded RGB values that were
too saturated, treating them as outliers to the radiometric
model. Work in [2] and [17] found that these outliers were
due to limitations in the radiometric models being used. To
overcome this, Chakrabarti et al. [2] proposed a method
that used combinations of cross-channel linear transforms
with per-channel multi-variate polynomials to model the
camera color mapping process. Kim et al. [17] proposed
a in-camera imaging model that introduced an additional
gamut mapping step for handling the out-of-gamut (i.e. sat-
urated) colors. Later, Chakrabarti et al. [3] extended this
idea and suggested using uncertainty modelling for han-
dling the quantization of the sRGB colors. These methods
significantly improved the ability to reverse sRGB images
back to their RAW values, however, they do have two lim-
itations with respect to the problem addressed in this pa-
per. The first limitation is the need to calibrate the color
models for a given camera. As discussed by [17], this in-
volves computing multiple parameterized models for dif-
ferent camera settings (e.g. different picture styles). As a
result, a single camera would have several different color
mappings. Such calibration can be burdensome in practice.
The second drawback is the parameterized models are still
saved as offline data and the appropriate model based on the
camera settings needs to be determined when one desires to
reverse an sRGB image.
Image Upsampling are methods that attempt to increase
the resolution, or quality, of an image. Representative work
include interpolation-based methods [15, 29], edge-based
methods [6, 9, 27], and example-based methods [11, 12].
These methods leverage a dictionary of image patches from
high-quality images that are used to guide the upsampling
process. The most similar to the problem addressed in this
paper is the work by Yuan and Sun [31] who demonstrated
a hybrid-image method that stored a low resolution version
of the RAW image. The low resolution RAW image was
upsampled to have the same resolution as the sRGB image
by using the sRGB image to guide the upsampling process.
The RAW images used in this work were one half or one
quarter size of the original RAW image. While these small-
RAW are smaller than the original RAW image, they are
still require approximately 1.5 − 6 MB to store. Also, like
the work of [17] and [3], this approach requires additional
data to be stored separately from the JPEG image in order
to perform upsampling.

The work in this paper is distinguished from prior work
in two ways. First, the aim here is to embed the neces-
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Figure 2. This figure shows an overview of our approach. The section of the paper detailing each component is shown.

Orignal Size Type Storage Size (byte)
T−1
w 3× 1 double 24

T−1
s 3× 3 double 72

f−1 256× 1 int16 512

g−1 4728× 6 int16 56, 736

Table 1. This table shows the amount of data allocated to model
the camera-pipeline parameters for a RAW-sRGB image pair. The
goal is to keep this within 64KB. The g−1 allows up to 4728 con-
trol points pairs consisting of an sRGB and RAW-rgb color point
(i.e. 6 values in total).

sary information for RAW reconstruction inside the existing
sRGB-JPEG image. This is more practical than requiring
the user to maintain a companion file containing the neces-
sary data for reconstruction (e.g. small-RAW file or cam-
era calibration data). Second, unlike the radiometric ap-
proaches, our approach does not require a calibration pro-
cedure involving multiple images. Instead, we only need
to estimate a mapping between the given sRGB and RAW
image pair provided by the camera. To this end, our goal
is to efficiently estimate this necessary metadata such that it
can fit inside a single 64 KB text-based comment that can
be embedded in the JPEG image [1, 14].

3. Proposed Approach

The work by Kim et al. [17] and Chakrabarti et al. [3]
have shown the processing from RAW to sRGB can be de-
scribed by a number of parameters that model various steps
in the onboard camera color processing pipeline. In partic-
ular, there is a white-balance matrix Tw, and a color correc-
tion matrix Ts, that is first applied. The color correction ma-
trix is used to convert the camera-specific RAW color space
into a device-independent color space. This is followed by
a tone map operator f applied to all color channels and a
gamut mapping g that maps an 3-D color value to a new 3-D
color value. The work in [17, 3] parameterized these mod-

els by using many sRGB-JPEG pairs of color charts under
different illuminations captured by the camera with specific
settings. This type of parameterization is necessary when
the input is an arbitrary sRGB image. We follow a similar
procedure, but our problem is slightly simplified as we only
need to compute these parameters for a single pair of RAW
image E and sRGB-JPEG image I . In addition, our ap-
proach needs to keep the results to within 64 KB overhead
and embed this as a text field in the JPEG image.

Figure 2 provides a diagram that illustrates the overall
procedure of our method. Our input is the RAW image
captured from the camera and the corresponding sRGB-
JPEG. We assume the RAW image has been demosaiced
and use the DCRAW utility [5] to perform this task. The
data storage budget for each part of the camera model is pre-
allocated as shown in Table 1. The total budget is less than
64 KB because it will later be converted to a text format that
avoids a 0x00 bit sequence (described in Section 3.3). The
following sections describe how the metadata is computed
and embedded in the sRGB-JPEG file.

3.1. In-Camera Imaging Model Estimation

Our first step is to compute an inverse tone-curve, f−1,
from a pair of sRGB-JPEG and RAW images. This is used
to make the sRGB values more linear with respect to the
RAW value. We assume that the color correction matrix
did not change the brightness of the RAW colors. Addi-
tionally, it is assumed that the gamut-map targets chromatic
colors, e.g. g(p) = p’ where p is an achromatic color (i.e.
sRGB saturation value less than 0.2). Based on these two
assumptions, the images are converted into the HSV color
space, and the V channels are selected to estimate the in-
verse tone-curve f−1. This curve can be estimated using
the spline fitting technique [26] as follows:

1
N

∑N
i=1 ||f−1(Ii)− Ei||2 + λ||O2f−1||2,

s.t O1f−1 ≥ 0
(1)
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Figure 3. This figure shows an example of with/without using sat-
uration threshold for estimating an inverse tone-curve f−1.

where i is the index to color pixels,N is the number of color
points after applying a saturation threshold, O1 denotes the
first derivative, and O2 denotes the second derivative. The
first term measures the agreement of f−1 with the obser-
vations while the second term constraints the smoothness
of the curve. The weight λ controls the relative contribu-
tion of the two (λ = 0.1 for all our examples). There is
also a hard constraint that the function is monotonically in-
creasing. Note that color values with any channel set to 255
are not used as they represent fully saturated pixels. Fig-
ure 3 shows an example of with/without using the saturation
threshold for estimating an inverse tone-curve f−1.

After the tone mapping f is estimated, sRGB values are
converted to linearized sRGB values using f−1. As with
the tone-curve, the linear color correction matrix Tc is com-
puted using the color values with low color saturation that
are not affected by the gamut mapping. Here, the color cor-
rection matrix Tc is the combination of the white balance
matrix Tw and the color space transformation matrix Ts.
We estimate the matrix Tc that minimize the following er-
ror function:

N∑
i=1

||f−1(Ii)− TcEi||2. (2)

Note that most of consumer cameras that are supported
RAW format often embeds the white-balance matrix Tw
with the RAW files. With Tw, we can obtain the color cor-
rection matrix Ts from Tc (Tc = Ts × Tw). Decomposing
the color correction matrix into two matrices: white-balance
and the color space transformation (Ts) will provide several
advantages for editing tasks such as the white-balance mod-
ification.

According to [17], the color gamut mapping g can poten-
tially be highly non-linear and challenging to model using
parametric functions. We therefore use scattered point inter-
polation to model this mapping as done in [17]. These scat-
tered points are sampled from the input image. We exam-
ined three different strategies to select the scattered points,
namely: uniform sampling, k-means clustering, and octree
partitioning. The mean values for each partition or cluster
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Figure 4. This figure shows an example of partition color space
using uniform and octree approaches. The same number of bins
64 = 43 is used for both two approaches.

are chosen as the control points.
It is worth noting that the sRGB and RAW colors in an

image are rarely distributed through the whole color space.
Therefore, using uniform sampling for the color space has
two disadvantages. The first is that many samples are empty
and need to be ignored. This makes it hard to know the num-
ber of non-empty samples before hand and therefore chal-
lenging to efficiently control the exact number of non-empty
samples. Second, the number of colors are not distributed
equally, and non-empty samples may not represent a good
usage of allocating control points. Figure 4-(a) shows an
example using uniform sampling. These also means lattice-
based methods (e.g. [20]) are also not the right fit for this
problem as they attempt to define a lattice over the entire
color space. A straight-forward solution would be to use k-
means clustering. The drawback for k-means clustering is
the required running-time since the number of points and
clusters are relative large (e.g. 106 in the RAW image).
In this paper, we adapt an octree algorithm proposed by
Meagher [23] to partition the RGB color space. To do so,
we introduce a slight modification to the traditional octree
approach that is based on a depth-first mechanism, to one
that uses a breadth-first approach. This breadth-first octree
construction allows us to control the number of non-empty
partitions and sample more scatter points in dense regions
(as shown in Figure 4-(b)). The details of the octree imple-
mentation is presented in the next section.

3.2. Modified Octree Partitioning

The basic approach for octree partitioning is a depth-first
search that explores as far as possible along each branch be-
fore backtracking. The implementation starts with a single
bin surrounding all 3D (R/G/B) input points. This bin is re-
cursively subdivided into eight smaller bins. Recursion is
stopped when a certain criteria is met. Three common con-
ditions to stop bin subdivision are: 1) a bin contains fewer
than a given number of points δp; 2) a bin reaches the mini-
mum volume δl; 3) a bin reaches the maximum depth δd.



Uniform K-means Octree
Begin 4096 4096 4096

Return 283 4096 4091

Time(s) 0.53 101.70 11.18

RMSE 0.0037 0.0026 0.0023

Table 2. This table shows the three different strategies to select
the scattered points for modeling the gamut mapping. These are
uniform partition, k-means clustering, and our octree partitioning.

However, in our situation, since we need to limit the
amount of control points estimated, we need to keep track
of the number of non-empty bins and stop the partition pro-
cess when it reaches a given number of bins. Using the
depth-first search strategy, some of the tree nodes may be
divided many times while the others may not be divided al-
though they are similar size and contain similar the number
of points. To overcome this limitation, we modify the oc-
tree partitioning to use a breath-first search strategy. This
involves using a queue Q to store all the current leaf-nodes.
At each iteration, the node at the front of the queue Q is
extracted and checked whether it satisfies one of the above
stopping conditions or not. If the nodes need further di-
vision, the non-empty sub-bins of its will be added to the
rear of the queue Q and the number of non-empty bins is
updated. This process will be iterated until it reaches the
desired number of bins K. By doing so, bins having similar
size and the number of points will be divided a similar num-
ber of times. The details for our modified octree partition
are shown in Algorithm 1.

Table 2 shows the comparison among the three strategies
to select the scattered points for modeling the gamut map-
ping function g. Here, the same number of bins (4096 =
163) is used in all three sampling methods. As can be seen,
the running time for uniform sampling is the smallest but
its reconstructed errors are highest since the number of non-
empty bins is relatively small (around 7%). Using k-means
can obtain reasonable reconstructed results but the running
time is significantly high. Our modified octree sampling
obtains the best reconstructed results and is 10× faster than
k-means clustering. It is worth noting that the octree par-
titioning may not guarantee the exact number of returned
non-empty bins as one or more sub-bin(s) (up to eight) are
created at each division. However, it can reach very close to
the given number within 8 control points.

3.3. Metadata Embedding

After color mapping parameters are estimated, they are
embedded as metadata into the JPEG file. The metadata
structure in JPEG contains several segments. Each segment
has capacity for a different kind of data. These are delim-
ited by two-byte codes called markers [1, 14]. One of these
segments is the comment (COM) segment. A COM seg-

Algorithm 1 Modified Octree Partition
Input: a set of n color points {pi}ni=1, the desired number of bins

K, the minimum capacity δp, the minimum size of bin δl, and
the maximum depth of bin δd.

1: B ← [n] . Array of Point Counts
2: C ← [min(pi),max(pi)] . Array of Bin Conners
3: D ← [0] . Array of Bin Depths
4: Mi ← 1 . Map of Point Bin
5: create an empty queue Q
6: Q.enqueue(1) . Insert the first bin
7: t← 1 . Total number of non-empty bins
8: while (t < K) ∧ ¬Q.isEmpty() do
9: u← Q.dequeue()

10: Lu ← min(Cu(4 : 6)− Cu(1 : 3))
11: scd← (Bu < δp) ∨ (Lu < δl) ∨ (Du > δd)
12: if scd then
13: continue . Move to the next bin
14: end if
15: m← (Cu(1 : 3) + Cu(4 : 6))/2 . The center
16: t← t− 1 . Remove the old bin
17: for i = 1 : 8 do
18: v ← length(D) + 1 . New bin number
19: Dv ← Du + 1 . Increase depth
20: Cv ← getConners(m,Cu)
21: Calculate mask which points belong in v
22: Mmask ← v
23: Bv ← countPointNumber(M, v)
24: if Bv > 0 then
25: t← t+ 1 . Insert the new bin
26: Q.enqueue(v)
27: end if
28: end for
29: end while

Output: a map of point bins M .

ment does not interfere with the image stored in the JPEG
file. The maximum size of a COM segment is 64 KB.

We used the COM segment to store estimated color map-
ping data. Since the COM segment can only contain a text
string, we need to encode these parameters into an array
of characters, however, we must avoid the special character
“null” (i.e. 0x00) as it denotes the end of the text comment.
To avoid the null character in the sequence of characters, we
used a simple (and fast) scheme as follows. The character
sequence is converted into a sequence of binary bits. At ev-
ery seventh bits, an additional bit 1 is inserted. This new bit
stream is then converted to ASCII characters. By inserting
this additional bit in this periodic manner the COM segment
will not contain the null character. Figure 5 shows an exam-
ple of this approach. By inserting this additional bit, the real
storage size of metadata in the COM segment reduces to 56
KB (7/8 of the original size 64 KB). This is why the data
allocation shown in Table 1 is only 56 KB.
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Figure 5. This figure shows an example of our encoding method
which avoids null characters.

3.4. RAW Reconstruction

To reconstruct the RAW values, the metadata embedded
in the JPEG file is first extracted and decoded by convert-
ing the text string to an bit string and then removing the
additional bit pattern. We now have back all the parameter-
ized data: the inverse white-balance matrix T−1

w , the inverse
color space transformation T−1

c , the control points for the
inverse gamut map g−1 and the control points for the inverse
tone mapping f−1. The RAW values are reconstructed by
first applying the inverse tone-mapping f−1 to obtain the
linearized sRGB image. Then the gamut mapping is ap-
plied. We adopt a linear tetrahedral interpolation [16] to
model the gamut mapping since the scattered points are in
3D color space. Next, the inverse color space transforma-
tion is applied and finally, the white-balance step is undone
to obtain the reconstructed RAW image.

4. Experiments

In this section, we compared our RAW reconstruction
strategy with alternative techniques, including our method
using k-means clustering, our method using the octree, and
the upsampling method by Yuan and Sun [31]. Yuan and
Sun [31] do not provide code and we have re-implemented
their approach. We note that we have modified their ap-
proach to use the recent state-of-the-art method proposed
by Ferstl et al. [10] to perform the image upsampling. Im-
ages used in this paper were taken from various online
data sets that contain RAW-sRGB pairs, including images
from [17], [4], [25], and [7].

Figure 6 shows the results for images from various cam-
eras and scenes. A jet map is used to show the error between
the original and reconstructed RAW image. The root mean
square error (RMSE) is also shown to quantitatively eval-
uate the results. For Yuan and Sun’s method [31], RAW
images at resolutions of 1/2 of the original size are used for
upsampling. For a fairer comparison, we also used a small-
RAW image of resolution 100 × 90 which can be placed
inside the 64 KB metadata. Table 3 shows the results in
terms of RMSE. For each camera, 30 images were exam-
ined and the average RMSE was reported. The proposed
octree partitioning approach provides RAW reconstructions

Camera Name Ours [31] (1/2) [31] (100× 90)
Canon 1Ds 0.0018 0.0049 0.0135

Canon 600D 0.0038 0.0085 0.0191

Nikon D5200 0.0033 0.0078 0.0173

Sony α57 0.0020 0.0055 0.0150

Table 3. This table shows the comparison between our method and
up-sampling method proposed in [31] in terms of RMSE. For up-
sampling method [31], RAW images at resolutions of 1/2 of the
original size and 100× 90 are used for upsampling.

with the lowest RMSE. Note that the errors shown also in-
cludes quantization errors in the 8-bit sRGB image which is
around 0.001, or 0.1% in average.

The proposed method does not attempt to remove com-
pression artifacts that arise due to the lossy nature of JPEG.
We assume that the input image is saved as a high-quality
JPEG, however, for sake of completeness, we examine the
effect of different JPEG qualities on the reconstructed RAW
results. Most DSLR cameras support three image quality
types, e.g.: fine, normal, and basic, that corresponds to the
compression ratios (1/4, 1/8 and 1/16). Figure 7 shows
an example for a Nikon D5200 camera. Unsurprisingly,
the quality does affect the reconstructed RAW-RGB images,
however the overall difference between them is not signifi-
cant.

5. Applications
We demonstrate the usefulness of the reconstructed

RAW image data with two applications: white-balance and
image deblurring. It is well known that having access to the
original RAW image is advantageous for these applications.

5.1. White-Balance Correction

As noted in the processing pipeline in Figure 2 in Sec-
tion 3, white-balancing is a procedure that is applied early
in the processing pipeline. Attempting to change white-
balance in the sRGB image is challenging as it cannot undo
the photo-finishing that has been applied to the sRGB im-
age. In this experiment, we compared applying white-
balance correction on our reconstructed RAW and the orig-
inal sRGB-JPEG. The comparison results are shown in Fig-
ure 8. The input images are captured under wrong white-
balance settings; while the ground truth images are captured
under the proper settings. Here, the achromatic colors on
the color checker boards are manually selected to use as the
scene illumination color. White-balance correction on the
reconstructed RAW images is visually better than correc-
tion using the sRGB images.

5.2. Image Deblurring

Image deblurring assumes a linear image formation
model in the form: IB = I ⊗ h, where I is the latent im-
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Figure 6. This figure shows comparisons between our approach and our implementation of the upsampling approach proposed by Yuan and
Sun [31] for various scenes and cameras (a Canon 1Ds Mark III, a Canon 600D, a Nikon D5200, and a Sony α57). The white points on
the difference maps indicate overexposed pixels with a value of 255 in any of the channels. The RMSEs for the each method are shown in
the bottom right of each error map.
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Figure 7. This figure shows an example of using different qualities
of sRGB-JPEG images for reconstructing the RAW-RGB image.
Here, three different qualities: fine, normal, and basic (which sup-
ports in Nikon cameras) are examined. The RMSEs for the each
quality are shown in the bottom right of each error map.

age and h is a blur kernel. For blurred sRGB images, the
relationship is not truly linear between IB and I . Work by
Tai et al. [28] showed that the non-linear response of the
camera changes the shape of the h to a spatially varying
convolution making image deblurring even more challeng-
ing. Thus, it is desirable to deblur the image in the linear
RAW space. We compared the deblurring method proposed
in [18] on our reconstructed RAW and sRGB-JPEG images.
This is done by applying a motion blur on a ground truth
RAW image and then use the estimated parameters in the
camera color pipeline to synthesize the blurred sRGB input
images. Figure 9 shows the results of the deblurred sRGB
and deblurred reconstructed RAW image. The signal-to-

noise ratios (SNRs) are also reported at the bottom right of
each image. Deblurring of the reconstructed RAW images
gives superior results.

6. Discussion and Conclusion

We have described a method to encode the necessary 
metadata with the sRGB image for reconstructing a high-
quality RAW image. Our approach produces a fully self-
contained 100% compliant JPEG file that can be used as-is, 
not affecting any existing image workflows. This method 
can reconstruct the original RAW to within 0.3% error with 
only 64 KB overhead to the original JPEG file.

One drawback of our method is that we cannot properly
handle sRGB image values that are saturated or images that
have spatially-varying tone-mapping applied. Upsampling
methods (e.g. [31]) can better estimate these values given
the availability of spatial RAW values in these regions. Fu-
ture work would be to embedded additional RAW values
spatially to help in-paint or interpolate these regions. We
also note that we have optimized our framework to min-
imize error for backward mapping from sRGB to RAW,
however, for many photography tasks (such as our white-
balance example), the forward mapping from RAW back to
sRGB is needed. A future topic would be to modify our
method to consider this bi-directional reconstruction error.
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Figure 8. This figure shows examples on correcting white-balance for different cameras: a Canon 1Ds Mark III, a Nikon D5200, and a Sony
α57. The first column is the input images captured under the wrong white-balance settings; the second column shows the ground truth
images captured under the proper settings. The third column displays the results applied the white-balance correction on our reconstructed
RAW images. The final column shows the results applied the white-balance correction directly on the sRGB-JPEG images.
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Figure 9. This figure shows examples for image deblurring. A motion blur on the non-blurred ground truth RAW images is performed. The
blurred sRGB image is synthesized using the parameterized color pipeline model. We applied our method to reconstruct the blurred RAW
image, then deblurred it, and converted it back to the sRGB image. The first and third rows show the results, while the second and fourth
rows shows close-ups of particular regions. The signal-to-noise ratios (SNRs) were reported at the bottom right of each image.
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