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Abstract—This paper addresses the problem of matting motion blurred objects

from a single image. Existing single image matting methods are designed to

extract static objects that have fractional pixel occupancy. This arises because the

physical scene object has a finer resolution than the discrete image pixel and

therefore only occupies a fraction of the pixel. For a motion blurred object,

however, fractional pixel occupancy is attributed to the object’s motion over the

exposure period. While conventional matting techniques can be used to matte

motion blurred objects, they are not formulated in a manner that considers the

object’s motion and tend to work only when the object is on a homogeneous

background. We show how to obtain better alpha mattes by introducing a

regularization term in the matting formulation to account for the object’s motion. In

addition, we outline a method for estimating local object motion based on local

gradient statistics from the original image. For the sake of completeness, we also

discuss how user markup can be used to denote the local direction in lieu of

motion estimation. Improvements to alpha mattes computed with our

regularization are demonstrated on a variety of examples.

Index Terms—Matting, regularization, motion direction estimation, motion blur.

Ç

1 INTRODUCTION

SEGMENTING a motion blurred object from a background scene is
desirable for various image processing tasks such as image editing
(i.e., cut and paste) and image deblurring. Such object segmenta-
tion is inherently a matting problem given that the object’s motion
over the exposure time results in a mixture of foreground (FG) and
background colors. This mixture can be expressed as

I ¼ PsðSÞ þ ð1� PsðMsÞÞB; ð1Þ

where I is the observed image, Psð�Þ is the point spread function
(PSF) of the motion blur, S is the foreground object, Ms is the
binary mask of the object, and B is the background image. Here,
we assume that the moving object is opaque and in sharp focus
and the fractional pixel occupancy targeted by conventional
matting is negligible as the significant color mixing effect is
attributed to the motion. We also assume that the motion blur
region does not contain any saturated pixels. Combining (1) with
the conventional matting equation I ¼ �F þ ð1� �ÞB [1], where F
is the foreground object and � 2 ½0; 1�, we obtain

� ¼ PsðMsÞ; F ¼ PsðSÞ=PsðMsÞ; B ¼ B: ð2Þ

Working from (2), one solution to compute � would be to first

estimate the motion blur PSF, Psð�Þ. Applying the inverse motion

blur, P�1
s ð�Þ would, in an ideal situation, result in a binary image,

Ms, with hard boundaries. This suggests the possibility of

designing an alternative optimization strategy to iteratively solve

for � and Ms using Psð�Þ. This approach, however, relies heavily on

obtaining a satisfactory estimation of the object’s PSF from the
image. State-of-the-art techniques (see [3] for a review) almost
exclusively estimate PSFs that are spatially invariant and are only
valid for moving objects with in-plane translational motion. In
practice, however, motion blurred objects include complex motion
such as rotation, zoom in/out, and even arbitrary deformations.
Second, in the case where a suitable Psð�Þ can be found, the original
binary mask of the object Ms must still be estimated through some
form of motion deblurring and thresholding, which presents
challenges of its own.

We propose a solution to the motion matting problem that
avoids estimating the object’s PSF and original hard boundary.
Instead, we assume that an object’s motion can be described by a
series of piecewise 1D translational motions, a representation that
has been shown to be a highly effective approximation for many
real-world scenarios [4]. Our approach is to incorporate an
estimation of the local 1D motion of the blurred object into the
matting process to regularize the matte, as shown in Fig. 1. To do
this, we first describe how to estimate the local object’s motion based
on local gradient statistics from the original image, or by simple user
markup. We then describe how to incorporate a regularization term
based on the estimated motion directions as a soft constraint in two
existing matting techniques: closed-form matting formulation [2]
and robust matting (RM) [5]. The effectiveness of our approach is
demonstrated on a variety of inputs.

The remainder of this paper is organized as follows: Section 2
discusses related work, Section 3 describes local motion estimation,
Section 4 presents our algorithm for matting, and Section 5
presents results and comparisons with other approaches. A
discussion and summary of this work is presented in Section 6.

2 RELATED WORK

The focus of alpha matting is to perform a soft segmentation of a
foreground object from the background scene. While prior work
has used matting to extract soft segmentation of motion blurred
objects, the matting techniques utilized were designed for static
objects and did not consider the objects’ motion. To the best of our
knowledge, there is no previous image matting work that explicitly
targets obtaining mattes of motion blurred objects. We therefore
discuss existing conventional matting (i.e., static object) techniques
first. For a more complete survey on matting, readers are referred
to [6]. We also discuss recent techniques that use alpha mattes as
inputs for object deblurring and motion estimation.

2.1 Matting Algorithms

Image matting can be classified into two types: 1) single image
approaches with user-supplied markup and 2) multi-image
approaches exploiting hardware or imaging manipulation. In
single image approaches, the user supplies a trimap (typically
user-supplied scribbles) that identifies definite foreground regions,
definite background regions, and the unknown regions where the
alpha values need to be estimated. Representative work includes
Bayesian matting [1], Poisson matting [7], and closed-form matting
[2]. The basic idea of these approaches is to use the definite
foreground and background regions as hard constraints to infer
the alpha values within the unknown regions. This is done by
assuming that the colors within local regions are smooth [1], the
color gradients are smooth [7], or the local color distribution
satisfies a linear model [2]. Soft scissors [8] proposed an interactive
user interface to identify foreground, background, and unknown
regions along an object’s boundary. This work was based on robust
matting [5], which incorporates better sampling in the closed-form
matting formulation. Recently, Rhemann et al. [9] proposed a PSF-
based matting algorithm which included a deconvolution step into
their framework. Their approach, however, targets blurring effects
caused by limited resolution or out-of-focus blur.
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Compared to single image approaches, multi-image approaches

are fully automatic. These techniques capture several images to

identify foreground, background, and unknown regions automa-

tically. Representative work includes defocus matting [10], camera

array matting [11], and flash matting [12]. In [10], a set of images

with different focal settings is captured. By analyzing the amount

of defocus blur, a trimap can be automatically computed. Similarly

to [10], Joshi et al. [11] use a camera array to capture multiple

images and estimate the trimap based on stereoview analysis.

Work in [12] takes two images of the same scene with and without

flash. By assuming that the foreground object is near and the

background is distant (and unaffected by the flash), a trimap can

be automatically computed.

2.2 Mattes for Blurred Images

Several deblurring approaches [13], [14], [15], [16], [17], [18] use

matting to first segment a motion blurred object from the

background before applying deconvolution. Alpha matting has

also been used as the input to directly estimate the PSF of an object

[19], [20]. In [4], local motions of a blurred object are estimated

directly from an alpha matte of the blurred object. Interestingly,

these approaches [19], [20], [4] work from results based on

conventional matting that is not designed to matte motion blurred

objects. This can lead to unsatisfactory results, as discussed in [20].
Compared to prior work, our approach is unique in its focus on

matting of motion blurred objects and its use of local gradient

statistics to estimate local motion. Related work in [4], [21] has

addressed the inverse problem which uses alpha mattes to help

estimate object motion. Because these approaches rely on conven-

tional matting that is not designed for motion blurred objects, the

examples demonstrated in this prior work target objects on

homogenous backgrounds.

3 LOCAL MOTION DIRECTION ESTIMATION

Since our approach uses local motion estimation in the proposed

regularization, we first describe how we extract and represent

motion directions. The actual motion regularization term is

described in Section 4. Two methods to obtain the local motions

are discussed: 1) automatic estimation from local gradient statistics

and 2) interactive estimation based on user markup.

3.1 Motion from Local Gradient Statistics

Local motion estimation is based on the observation that motion

blurring smoothes gradients parallel to the motion direction but

has significantly less effect on gradients perpendicular to the

motion direction. This statistical property has been exploited for

blur detection [22] and blur classification [23], but not for

estimating local blur direction.
Fig. 2 is provided to help illustrate the idea. Shown are the

gradient magnitude distributions for a natural image (Fig. 2a), a

globally motion blurred image (Fig. 2b), and a natural image

containing a motion blurred object (Fig. 2c). Two local regions

(19� 19) are selected (labeled as box 1 and box 2). The global

statistics of the gradient distributions are plotted in the second row

of Fig. 2. The local statistics of the gradient distributions (within

the boxes) are shown in the third and fourth rows.
Fig. 2 (column 1) shows that for the natural image, a long-

tailed distribution exists in the overall image as well as local

regions. Fig. 2 (column 2) shows that for the image with global

motion blur, the gradient distribution for the x-direction has

much of its mass about zero. This is because the gradients along

the x-direction are blurred by the motion. The gradient distribu-

tion in the y-direction, however, is relatively unaffected and

exhibits a much wider distribution. This effect is also exhibited in

the local regions in box 1 and box 2 in Figs. 2h and 2k. Fig. 2

(column 3) shows that the image of the motion blurred object has

a mixture of distributions. For example, box 1 (Fig. 2h), which is

selected from the moving object, shows characteristics of motion

blur in its gradient distributions, while the region in box 2

(Fig. 2l), from the static backgrounds, has wider distributions in

the x and y-directions.
To estimate the motion direction about a pixel x, we compute

the local gradient distributions within a 19� 19 window along

eight different radial directions: 0; �=8; 2�=8; . . . ; 6�=8; 7�=8. For

each of these eight directions, we parameterize the distribution by

fitting it to a Laplacian and Gaussian mixture defined as

�DðxÞ ¼ �0Lðx;�0; �0Þ þ �1Gðx;�1; �1Þ; ð3Þ
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Fig. 2. Global and local distributions for gradients in the x and y-directions are
shown for a natural image, a globally motion blurred image, and an image
containing a motion blurred object.

Fig. 1. (a) An image with motion blurred foreground object, (b) conventional matte
obtained from closed-form matting [2], (c) estimated local motion, and (d) motion
matting using [2] with motion regularization incorporated.



where �0; �1 are the estimated weights of the two distributions,
�0 ¼ �1 ¼ 0 are the means of the distributions, and �0 and �1 are
the shape parameters of the two distributions.

Each of the eight discrete directions will be assigned a weight,
wd, based on the area under the Laplacian. This process is shown in
Fig. 3a. The idea is that directions with more gradients centered
about 0 represent the underlying local motion (i.e., a larger area
under the Laplacian). The exact computation of wd is explained in
Section 4 as it relates to our regularization. Note that the motion is
not explicitly detected; instead, weights are assigned to each of the
discrete motions. Therefore, regions with ambiguous motion
(uniform blurring or homogenous texture) will have weights that
favor no particular direction. For the needle maps shown in this
paper to represent estimated motion, only the direction with the
largest weight is drawn (e.g., Fig. 3b).

Local motion estimation is performed only for pixels in the
definite foreground region. Pixels in the unknown region exhibit a
mixture of the foreground and background motion and, hence, are
not reliable. For unknown regions, the direction weights are
propagated smoothly from the estimated motion based on (4),
which will be described in the next section as it is also used to
propagate directions from user-supplied markup.

Our method for computing the dominant direction of a motion
blurred patch is based on the assumption that there is no dominant
gradient direction inside the original unblurred patch. To test this
assumption, we performed a simple analysis on the PASCAL VOC

2006 database which contains more than 2,000 images of different

objects and scenes. We computed the standard deviation (std) of the

directional weights wd for 20,000 randomly selected patches (size

19� 19). Fig. 4 shows that the vast majority of patches exhibit a low

std of the directional weights implying no dominate direction.

3.2 User-Supplied Local Motion

Since matting already requires user markup, another option for

obtaining local motion is to have the user mark up the motion

directly. Such markup is not difficult to perform as the blurred

object typically has strong visual cues to the underlying motion.
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Fig. 3. This figure shows: (a) the process of estimating weights on eight directions
about a pixel, (b) resulting estimated directions (direction with the largest weight is
shown at each pixel), (c) example of user markup and direction decomposition,
and (d) propagated directions from markup.

Fig. 4. This histogram plots the standard deviation of gradient directions computed
from 20,000 patches from the PASCAL data set. The histogram peaks with a very
low std imply that most unblurred patches have no dominant direction.

Fig. 5. A comparison of foreground estimation using closed-form matting [2] and
our approach (described in Section 4.2). By adding the motion regularization into
foreground estimation, we get a better foreground estimation as shown in the
zoomed in composites. Note that the same matte is used to estimate both results.

Fig. 6. This figure compares our results with other matting techniques on (a) a
synthetic input (with known ground truth). Other techniques are (b) closed-form
matting and (c) robust matting. (d) We also show the results of using simple
uniform motion weights (i.e., all weights are equal). (e) Our result. (f) Ground-truth
image. While the root mean square (RMS) error for our approach is only slightly
better than other approaches, our results are the most visually similar to the
ground truth.



For this approach, the user draws scribbles on top of the image
in the direction of the motion. Based on the user-provided
directions, we obtain a set of sparse local motion directions along
the scribbles. These sparse direction labels can be propagated to
other unmarked pixels by solving the following equation:

arg min
v!
X
r2S
ð v!r � v!�rÞ

2 þ
X
r2U

X
s2NðrÞ

ð v!r � v!sÞ2; ð4Þ

where v!r are the local motion directions we want to estimate for
each pixel r and v!�r are the sparse local motion directions obtained
from user markup. The terms S and U are the scribble areas and the
unknown areas, respectively, and NðrÞ is the first order neighbor-
hood of a pixel r. Equation (4) can be solved using a sparse linear
solver. We project the user-supplied motion to the two closest
discrete directions as described in Section 3.1. To assign the weights,
the user can either select a weight via a GUI (large, medium, or
small) or we can use the length of the drawn stroke—longer strokes
equal more weight. Similarly, if an image region does not contain
any motion blur, the user can simply draw a “dot,” meaning that the
regularization weight at that local region is zero. The direction
weight is propagated in the same fashion as the directions using (4).
Figs. 3c, 3d and 3e, 3f show an example of our estimated local
motion direction and its regularization weight map.

4 MOTION MATTING PROCEDURE

Here, we describe how to include the local motion information into
conventional matting, in particular closed-form matting [2] and

robust matting [5]. Our approach assumes that the inputs are an
image, a trimap, and local motions with regularization weights,
either estimated by our gradient statistics technique or provided by
the user. We also describe how to estimate the extracted
foreground colors by incorporating motion information.

4.1 Motion Regularization

In closed-form matting [2], for an N pixel natural image, the
optimal matte is the one that minimizes the following energy:

E ¼ �TL�þ �ð�� ~�ÞTDð�� ~�Þ; ð5Þ

where � is the solution of closed-form matting, ~� is the vector
containing user specified � values for constrained pixels, D is an
N �N diagonal matrix with its entries equal to 1 for constrained
pixels and 0 for unconstrained pixels, � is a large number to
guarantee that � is consistent with the constrained pixels. The
term L is the matting Laplacian matrix whose ði; jÞth element is

X
kjði;jÞ2wk

�ij �
1

jwkj
ð1þ ðIi � �kÞ �k þ

"

jwkj
I3

� ��1

ðIj � �kÞÞ
 !

; ð6Þ

where wk represents the 3� 3 window which contains pixels i and
j, �k and �k are the color mean and variance in each window, I3 is
a 3� 3 identical matrix, and " is a regularization coefficient which
is set to 10�6 in our implementation. In robust matting [5], an
additional data constraint is added, accounting for the alpha
estimation with its confidence based on robust local sampling. The
energy function is formulated as [6]
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Fig. 7. Comparison of results using estimated motion and user markup. Shown (left-to-right) are (first row) the original image, estimated direction using local gradient
statistics, result using estimated directions; (second row) user-directional markup, propagated directions, result using user markup.

Fig. 8. Several examples comparing our results which are based on closed-form matting with closed-form matting [2] and robust matting [5]. Estimated directions are
shown in column 3.



E ¼
X
i2 
½f̂ið�� �̂iÞ2 þ ð1� f̂iÞð�� �ð�̂i > 0:5ÞÞ2�

þ �1 � �TL�þ �2 � ð�� ~�ÞTDð�� ~�Þ;
ð7Þ

where �̂i is the estimated alpha value at pixel i from sampling, f̂i is
the corresponding confidence value, and �ð�Þ is a Boolean function
which returns 0 or 1. By introducing the confidence values, reliable
samples are favored while bad estimations, associated with low
confidence values, are suppressed.

To include motion information into these matting techniques,
we add the following regularization:

Rmð�Þ ¼
X8

d¼1

wdrd�
Trd�; ð8Þ

where rd� is the �-gradient in direction d, and wd is the weight of

regularization for direction d. We set

wd ¼ AreaðLdÞ �min
i
ðAreaðLiÞÞ; ð9Þ

where AreaðLdÞ is the area under the Laplacian curve (estimated in

(3)) at direction d within the range ½�0:05; 0:05�. The term

miniðAreaðLiÞÞ is the minimal area among the eight Laplacians

and is considered to correspond to the direction perpendicular to

the motion direction. Thus, wd corresponds to the strength of

motion blur. Regularizing the alpha matte based on these wd
essentially suppresses the matte gradient according to local motion

estimates. If an image region does not contain any motion blur, the

term AreaðLdÞ will be similar in all eight directions. This will
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Fig. 9. Several examples comparing our results that incorporate regularization into robust matting with those of other techniques.

Fig. 10. Compositing examples that paste images matted in previous figures onto new backgrounds. The first row shows the result using mattes from robust matting; the
second row shows the result using our mattes for compositing. Our results are visual compelling and more plausible than the results from robust matting.



produce a result similar to conventional matting since wd is small
making the regularization term to have little effect on the estimated
matte. For user-supplied motion, the regularization is identical.
The only difference is that the user-supplied directions are
decomposed into their two most dominant directions (as pre-
viously shown in Fig. 3c).

Combining our regularization term, the final matting energy
function becomes

Em ¼ E þ � �Rmð�Þ; ð10Þ

where E is the conventional energy function and � ¼ 1 is a
weighting factor. In our implementation, we removed the pixels
from the linear system within the interior regions (measured by
5� 5 window) of definite foreground and definite background.
The removed pixels are considered as hard constraint in the
system. By removing these interior pixels, we significantly reduce
the size of the linear system in (10).

4.2 Color Estimation

With the estimated �, we can solve for F and B using least-squares
minimization of the following energy:

EðF;Bj�Þ ¼ k�F þ ð1� �ÞB� Ik2

þ
X8

d¼1

wdrdF
TrdF þ$b

X8

d¼1

rdB
TrdB;

ð11Þ

where k�F þ ð1� �ÞB� Ik2 is a data term to minimize the
estimation error according to matte compositing equation in [1],P8

d¼1 wdrdF
TrdF and

P8
d¼1rdB

TrdB are regularization terms to
enforce spatial smoothness of estimated color, and the term $b is a
small number ($b ¼ 0:01) to enforce background color smoothness.

Note that we use the same weighting scheme as in (9) for the
estimation of F . Hence, our estimated foreground colors better
reflect the estimated local motion directions while the approach in
[2] produces oversmoothed foreground colors as demonstrated in
Fig. 5.

5 RESULTS AND COMPARISONS

Experimental results on a variety of input images exhibiting
various types of motion blur effects are shown in this section. If not
specified, our results are obtained using the closed-form matting
energy function. For comparisons with existing matting ap-
proaches, we chose closed-form matting [2] and robust matting
[5] to serve as representative conventional matting techniques. For
comparisons with [5], the primary author from [5] has vetted our
parameters used to produce the results for robust matting.

5.1 Synthetic Example

Fig. 6 shows a synthetic example. Here, the motion blur is
synthesized by rotating the object about the center and accumulat-
ing the results. We compare our result with those obtained by
closed-form matting and robust matting, as well as the result
obtained using uniform regularization (i.e., wd are the same for all
directions). We can see that the result obtained by our approach
more closely resembles the ground truth, while closed-form matting
and robust matting produce unsatisfactory results. The result using
uniform regularization produces an oversmoothed matte.

5.2 Real Examples

Figs. 8 and 9 show several examples of images containing motion
blurred objects. Our results are compared with closed-form
matting [2] and robust matting [5]. For our approach, the motions
have been estimated by the technique described in Section 3.1.
Some of the images contain both motion blurred regions and sharp
regions. The transition of the extracted matte in the motion blurred
regions to the sharp regions is smooth since the regularization
weights are gradually decreased based on the amount of estimated
motion blur. The trimaps are shown in the second column of the
figures. Fig. 10 shows the comparisons of compositing results
using our mattes and mattes from robust matting. The mattes from
robust matting transfers structures from the original image that
should not appear in the composited images. Fig. 14 shows more
compositing results using our mattes on different backgrounds.
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Fig. 11. This figure shows a comparison of our result and that obtained by closed-
form matting that has been blurred using the estimated motion directions. Simple
postprocessing of a conventional matte does not produce results similar to ours.

Fig. 13. This example shows a failure case where the motion direction in the blur
region deviates the locally linear assumption.

Fig. 12. In this example, the estimated motion is erroneous in nonblurred regions (a). This results in a slight blurring in the edges of the matte (b). By denoting the blurred
region (c), the matte can be improved (d). For user-supplied markup (e), this could easily be avoided by ignoring these regions, producing a good matte shown in (f).



5.3 Estimated Motion versus Motion Markup

Fig. 7 compares the mattes obtained using estimated motion versus
user-supplied motion. We can see that the motion estimation
results are better for user-supplied motion; however, the overall
mattes are similar.

In some cases when automatic estimation is used and there is
no blurring, our approach can produce erroneous errors due to
strong local content posing as blur. Fig. 12 shows an example. In
such cases, the user can simply mark up the region that is to be
estimated as shown in Fig. 12c. In the case where user markup was
performed, the user would have correctly marked up these regions
(e.g., Fig. 12e), resulting in the matte shown in Fig. 12f.

5.4 Blurring a Conventional Matte

Our motion regularization is inherently a part of the alpha matte
optimization; therefore, simply applying a blur to a conventional
matte cannot obtain results of the same quality. Fig. 11 demon-
strates this by comparing our results with those obtained by
closed-form matting that have been blurred in the same direction
as the estimated motion. This simple postprocessing blurring does
not produce a matte similar to ours.

6 DISCUSSION AND SUMMARY

This paper has presented two contributions relevant to the task of
matting motion blurred objects. First, we introduced a regulariza-
tion term that was added to closed-form matting and robust
matting to incorporate local motion constraints. Second, a method
to estimate local motions by analyzing the local gradient statistics
was presented. In addition, local motion estimation from simple
user markup was also discussed.

As mentioned in Section 2, while there has been a great deal of
work targeting matting of static objects, it is a bit surprising that
there is no prior work explicitly targeting motion blurred objects.
This is likely due to the fact that motion blurred objects are
perceived as degraded and therefore not targeted by tasks such as
cutting and pasting. However, motion blurred objects are inter-
esting from a graphics design standpoint as they can be used to
give a clear indication of energy (and not surprisedly motion). In

such situations, graphics arts often synthesize object motion blur
using motion-blur filters. Our work allows them to avoid this step
by facilitating cut and paste of blurred objects directly. Further-
more, in the case where the motion blur is considered an
undesirable degraded artifact, matting of the blurred object is
one of the first steps necessary for applying deblurring algorithms.

We note that our approach requires a reasonably tight trimap,
similar to techniques like robust matting. We have found that first
applying closed-form matting with no regularization and thresh-
olding the results can provide a good initial trimap. As discussed
in Section 3.1, our approach assumes that the original unblurred
image patches have a uniform distribution of the image gradients.
This can be violated if there is strong structure in the image
content. Regions with strong image content, however, are the ones
that are easiest to mark up by hand since image content under
motion is easy to distinguish. This suggests that one strategy may
be to combine automatic estimation with user corrections.

Another assumption of our approach is that the motion is locally
linear. Our approach fails when this is violated as shown in Fig. 13.
Part of future work will be to explore how more complex motions
can be incorporated into our regularization scheme. In addition, we
would like to explore if our regularization can also help to
overcome situations where the object boundary is near highly
saturated regions such as that shown in Fig. 9 (third row). Finally,
while we demonstrated the ability to incorporate this regularization
into closed-form matting and robust matting, our regularization
approach should be applicable to other matting techniques.
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