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Abstract. Identification of the basal slice in cardiac imaging is a key step to measuring the ejection fraction of the
left ventricle. Despite all the effort placed on automatic cardiac segmentation, basal slice identification is routinely
performed manually. Manual identification, however, suffers from high interobserver variability. As a result, an
automatic algorithm for basal slice identification is required. Guidelines published in 2013 identify the basal slice
based on the percentage of myocardium surrounding the blood cavity in the short-axis view. Existing methods,
however, assume that the basal slice is the first short-axis view slice below the mitral valve and are consequently
at times identifying the incorrect short-axis slice. Correct identification of the basal slice under the Society for
Cardiovascular Magnetic Resonance guidelines is challenging due to the poor image quality and blood move-
ment during image acquisition. This paper proposes an automatic tool that utilizes the two-chamber view to
determine the basal slice while following the guidelines. To this end, an active shape model is trained to segment
the two-chamber view and create temporal binary profiles from which the basal slice is identified. From the 51
tested cases, our method obtains 92% and 84% accurate basal slice detection for the end-systole and the end-
diastole, respectively. © 2016 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.3.3.034004]
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1 Introduction
Cardiac magnetic resonance (CMR) imaging is routinely used to
evaluate cardiac function. CMR imaging consists of a time
series of 12 to 15 short-axis view slices together with two
long-axis views, a two-chamber view and a four-chamber
view that are captured first to plan the short-axis view acquis-
ition. One of the key applications of CMR is to measure the
ejection fraction (EF) of the heart by estimating the volume
of the left ventricle (LV) at the end-systolic and the end-diastolic
phases. To compute the volume, most prior work focuses pri-
marily on segmenting the short-axis view slices. The work
done by Tufvesson et al.,1 Ayed et al.,2 and Jolly et al.3 are typ-
ical examples. Several short-axis view segmentation methods
have been compared by Petitjean and Dacher.4 There are also
challenges on LV volume reconstruction.5

Although significant progress has been made in automatic
volume segmentation, to accurately estimate the EF, the basal
slice at the end-systolic and end-diastolic phases needs to be
specified. Errors in manual basal slice selection are the main
cause of interobserver variability and can increase or decrease
the EF by up to 6% and the ED volume by up to 21 ml.6,7 Efforts
have been made to automatically detect the base of the LV.
Mahapatra,8 e.g., proposed a learning-based method that trains
a random forest classifier by extracting intensity, texture, and
contextual features from a bounding box around the annotated
points at both sides of the mitral valve. Lu and Jolly9 proposed a
learning-based method by introducing auxiliary markers along
with contextual landmarks in the images to help identify the
mitral value points. These methods work under the assumption

that the basal slice is the first short-axis view slice below the
line connecting the mitral valve points. However, the Society
for Cardiovascular Magnetic Resonance (SCMR) recently pub-
lished guidelines for cardiac image analysis10 that describe pre-
cisely how to select the basal slice. According to the SCMR
guidelines, the basal slice is the topmost short-axis view slice
that has more than 50% myocardium around the blood cavity.
Figures 1(a) and 1(b) show examples of short-axis view slices in
which less than 50% myocardium and more than 50% myocar-
dium is found around the blood cavity, respectively. Figures 1(c)
and 1(d) show a heart for which the basal slice is not below the
line connecting the mitral valve points.

While clinical guidelines describe basal slice detection based
on features present in the short-axis view images, the base of the
LV is visually clearer in the long-axis views of the heart. This is
mainly because the base is primarily composed of moving blood
which deteriorates quality of the acquired short-axis view slices
in this area. As such, we focused our attention on the long-axis
view of the LV for basal slice detection. Our proposed method
utilizes the two-chamber view sequence together with the short-
axis view slice planes. To the best of our knowledge, our work is
the first to attempt automatic basal slice detection while exploit-
ing the availability of the two-chamber view. For that purpose,
we need to segment the LV in the two-chamber view.
Segmentation of the myocardium wall from the two-chamber
view allows us to estimate the thickness of the two opposite
walls of LV where the short-axis view slice intersects the LV.
These two pieces of data can be used to estimate whether
more or less than 50% of the blood cavity is surrounded by myo-
cardium for a certain short-axis view slice plane. The deployed
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segmentation method needs to be automatic and relatively fast to
provide segmentation of all the temporal images in a reasonable
amount of time. Uzumcu et al.11 have proposed using an active
appearance model (AAM) to segment the long-axis view of the
heart. Their method requires annotation of points on the heart as
well as knowledge of the end-systolic and end-diastolic phases.
Works by Zhuang et al.12 and Van Assen et al.13 leverage three-
dimensional (3-D) heart models to help segment the LV from
different orientations, including the two-chamber view. These
approaches require significantly more training data compared
to two-dimensional (2-D) models and involve a much longer
run-time. In this paper, we have utilized a 2-D active shape
model (ASM)14 to automatically segment the two-chamber
view of heart. Although we used an ASM for segmentation
of the LV in the long-axis view, any of the mentioned methods
could be automated (if not) and deployed. The main contribution
in this paper, however, is how to use the segmentation results to
find the basal slice at the end-systolic and end-diastolic phases
of the cardiac cycle.

The paper is structured as follows: Sec. 2.1 demonstrates
how the LV walls are segmented from the two-chamber view
using an ASM of the LV. From the segmented LV in the
two-chamber view images, the end-systolic and end-diastolic
phases are estimated in Sec. 2.2 and the basal slice is identified
in the short-axis view image in Sec. 2.3. Section 3 provides
details about the experiments and demonstrates the effectiveness
of the approach. This is followed by a discussion in Sec. 4 and a
conclusion in Sec. 5.

2 Proposed Algorithm
In the following, we will explain how a 2-D model is trained and
used for segmentation of the LV from the two-chamber view of
the heart.

2.1 Two-Chamber View Segmentation

In order to segment the LV, an ASM14 is used. ASM is a well-
established method in the medical imaging and computer vision
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Fig. 1 (a) A slice with less than 50%myocardium around the blood cavity. (b) A slice with more than 50%
myocardium. (c, d) An example of a heart for which the basal slice at end-systole is not below the line
connecting the mitral valve points (l).
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Fig. 2 (a) The training phase of the ASM and overall ASM information. (b) Model used to segment an
input sequence.
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community for segmentation. Training of the ASM requires the
input of a number of landmarks on the contour of the object to
be modeled. In the proposed implementation, 181 landmarks are
considered around the walls of the LVas well as the lungs beside
the heart. The model is trained with 650 segmented images that
include 13 phases of the cardiac cycle from 50 MRI scans. Due
to the variation in heart orientation in CMR studies, the images
are first aligned and reoriented such that the heart is in an upright
position, using the intersection vector of the two-chamber view
and the four-chamber view.

Figure 2 shows the training phase of the ASM as well as an
image sequence segmented by the trained ASM. The trained
ASM is then applied to the input two-chamber view image
sequence. The images in the time-series are both fed to an algo-
rithm that segments one image in the time series and takes the
segmentation result as the initial position for the segmentation of
the next image and another algorithm that segments each image
independently. The segmentation with the best normalized cross
correlation is selected for that image. The best location to ini-
tialize the trained ASM on the first image in the sequence is also
found by applying the ASMwith a few iterations on a number of
locations along the intersection vector of the two-chamber view
and the four-chamber view slices and choosing the location with
the best normalized cross correlation. Figure 3 shows a diagram
of this procedure.

Given the segmented two-chamber view images, a one-
dimensional (1-D) binary profile of the LV is created by col-
lecting the intensity values of the segmented two-chamber
view slice along the intersecting line between the two-chamber
view slice and the corresponding short-axis view slice plane
over time and concatenating the collected pixel values based
on their time order. Figure 4 shows this procedure. An example
of the constructed 1-D binary profiles for 12 short-axis view

slices passing through a segmented two-chamber view of a
heart is also shown in Fig. 5. The next goal is to estimate the
end-systolic and end-diastolic phases of the heart and find the
basal slice for the two phases from these binary profiles.

2.2 Estimation of the End-Diastolic and the
End-Systolic Phases

Guidelines10 state that the LV end-systolic and end-diastolic
phases are the time when the segmented short-axis view slices
are at their smallest and largest LV blood volumes, respectively.
In order to estimate these two phases, the area of the blood cav-
ity was measured for all the phases from the two-chamber view.
This is carried out by finding the convex hull of the landmarks
after segmentation and subtracting off the area of the myocar-
dium which is surrounded by those landmarks. The two phases
with the largest and smallest areas for the blood volume cavity
are chosen as the end-systole and end-diastole. Figure 6 shows
the area of the blood cavity of a heart measured for each time
phase within the cardiac cycle and the identified end-systolic
and end-diastolic phases. Accuracy of this method was tested
and is discussed later in Sec. 3. Having estimated the end-systole
and end-diastole, a certain number of phases around the esti-
mated end-systolic and end-diastolic phases are considered in
the next step while searching for the basal slice from the tem-
poral binary profiles.

2.3 Basal Slice Selection

Searching for the basal slice is first conducted for the end-
diastole. The basal slice selection algorithm goes through the
1-D binary profiles for the short-axis view slices from the top
to the bottom until it finds the basal slice for the corresponding
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Fig. 3 (a) The location for initialization of the ASM on the image is found and (b) the best segmentation is
chosen for each image in the sequence.
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Fig. 4 The 1-D binary profile is constructed for a short-axis view slice, which passes through the seg-
mented two-chamber view slice.
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phase. Once the basal slice for the end-diastole is detected,
searching for the basal slice for the end-systole begins from
the selected end-diastole basal slice to the bottom. For both
phases, the first short-axis view slice for which the binary profile
contains at least one wall of the LV during the whole time win-
dow (around the approximated end-diastolic or end-systolic
phases) is considered as the basal slice for the corresponding
phase. This is subject to the condition that the average thickness
of the observed wall in the time window is larger than a defined
threshold, where the threshold is set to 60% of the average thick-
ness of the segmented LV wall for that heart. The threshold is set
to avoid selecting a short-axis view slice that slightly touches the
base but is not inside the LV.

The described basal slice selection algorithm relies on a good
segmentation algorithm. In order to decrease this dependency, a
condition was added to the algorithm. Specifically, if the status
of a wall alternates between observed and not observed in the
time window, the short-axis view slice for that profile still has
the potential to be the basal slice only if the frequency of the wall

being observed in that time window is more than 60%. However,
in this case a higher threshold of 70% is set for the average thick-
ness of the observed wall. In Fig. 7, the binary profile for the
basal slices of two different hearts are provided. As can be seen
in the binary profile of the second heart at end-systole, the seg-
mentation was found to be inaccurate, and consequently deci-
sion making was carried out using the 70% threshold. The
generally defined 60% threshold also avoids mistaking the
left atrium walls for the LV walls, knowing that the former
are thinner than the latter.

3 Results
This study was approved by the National Healthcare Group
Domain Specific Review Board. The method was applied to
clinical data from 51 cases, including 33 MRI scans of patients
with degenerative mitral valve regurgitation acquired on a
Siemens 3T Biograph mMR scanner, 13 MRI scans of healthy
subjects acquired on a Siemens 3T Magnetom Trio, and 5 MRI
scans of patients with ST-segment elevation and myocardial

Fig. 5 The two-chamber view intensity and segmented (binary) 1-D profile over time at the intersection of
the corresponding short-axis view slice. The basal slice is detected based on this information. LA and LV
stand for left atrium and left ventricle, respectively.

Fig. 6 The end-systolic and end-diastolic phases are estimated by examining the area of the LV in the
segmented two-chamber view images. The time of these phases are used to constrain the search for the
basal slice in the temporal profiles of the short-axis view slices.
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infarction acquired on a Siemens 3T Magnetom Prisma scanner.
Informed consent was obtained from all the subjects. The two-
chamber cine CMR sequences comprised of 25 phases and the
images were 256 × 232, 192 × 192, and 256 × 216 pixels in
size respectively with resolutions in the range of 1.13 to
1.56 mm. Images with 192 × 192 pixels were upsampled to
256 × 256 pixels. The short-axis view cine CMR scans included
12 to 15 slices with a similar number of phases. All 25 images of
the two-chamber views were segmented by applying the ASM
model as described in Sec. 2. The average segmentation error at
the basal part of the LV was measured by finding the average
vertical distance of the landmarks to the manually segmented LV
and was 4.1 mm.

In order to evaluate accuracy of our estimation of the ED and
ES phases, the proposed method was applied to manually seg-
mented two-chamber view slice of 40 different hearts from our
51 heart samples and the estimated end-systolic and end-dia-
stolic phases were compared with the same phases identified
by segmentation of the short-axis view slices of those hearts.
Figure 8 shows the number of cases for which the difference
between the two methods was 1, 2, 3, or 4 phases for both
the end-diastolic phase (left) and the end-systolic phase
(right). Considering the phase differences, a time window of
7 frames was considered while searching for the basal slice.

The basal slice selection algorithm was applied to the series
of short-axis view slices for each patient from our 51 heart sam-
ples and the results were compared to the manual selections
done by an expert prior to this work. For each test case, the
basal slice was detected in the end-systolic and the end-diastolic
phases, giving a total of 102 basal slices. Overall, the proposed
algorithm selects the same basal slices as the expert selection for
47 out of the 51 subjects for end-systole and 43 out of the 51
subjects for end-diastole. We compared the results of our

algorithm with those of the proposed method by Tufvesson
et al.,1 which is implemented in the segment tool.15 Their
approach works by segmenting the basal short-axis view slices
by considering 24 circumferential sectors over the LV, which are
analyzed individually and removed in case no myocardium is
detected. We used the segment tool to automatically segment
the short-axis view slices of the same test data. The topmost
short-axis view slice with more than 50% myocardium segmen-
tation in the end-diastolic phase was defined as the basal slice
for end-diastole. The basal slice for end-systole was defined
similarly. The results are shown in Table 1. Additionally, the
proposed method is compared statistically to the expert’s analy-
sis using intraclass correlation coefficient (ICC) in Table 2. As
can be seen, our algorithm performs significantly better than the

Fig. 7 The 1-D binary profile for the basal slice at the end-diastole and the end-systole for two different
hearts. The two profiles in the first row and the first profile in the second row satisfy the 60% threshold
rule. The second profile in the second row shows signs of inaccuracy in segmentation, yet it satisfies the
70% threshold rule.

Fig. 8 The number of cases for which 0, 1, 2, 3, or 4 phase-difference was found between the estimated
end-diastolic (end-systolic) phase using the two-chamber view slice and the one detected by segmenting
the short-axis view slices for the 40 tested hearts.

Table 1 Accuracy of the proposed algorithm for basal slice selection
for the end-diastolic phase and the end-systolic phase compared to
the segment tool.

Success rate (ED) Success rate (ES)

Proposed algorithm 43/51 (84%) 47/51 (92%)

Segment tool 26/51 (51%) 17/51 (33%)

Table 2 ICC for the proposed method and segment tool against the
expert’s analysis.

ICC EDV ESV EF

Proposed algorithm 0.996 0.971 0.963

Segment tool 0.979 0.761 0.544
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segment tool (p-value<0.05). The mean and standard deviation
for the measured ED volume, ES volume, and EF by our algo-
rithm, the segment tool, and the expert are also shown in Table 3.
The values indicate that the proposed algorithm provides closer
measurements to the expert’s measurements for all the three
parameters. The average running time for our algorithm was

about 24 s on a 64-bit machine with 16GB of RAM and
Intel Core i7 CPU.

As previously mentioned, our basal slice selection algorithm
failed in a certain number of cases. Table 4 shows details of
these failed cases. The second and the third columns show
the difference between the selected basal slice by our algorithm
and the expert’s selection for end-diastole and end-systole,
respectively. Also shown are the LV ED volume, ES volume,
and EF for the proposed algorithm, the segment tool, and their
differences. The mean absolute differences for the measured ED
volume, ES volume, and EF are reported in the last row of this
table. The mean absolute difference of 4.13% for the EF indi-
cates that in case of failure in basal slice detection, the error in
EF measurement by the proposed algorithm still remains in the
range of interobserver variability (6%) reported in the literature.

Examples of detection results are shown in Fig. 9. Also
shown are the corresponding short-axis view slices, including

Table 4 The difference between the detected basal slice by the proposed algorithm and the expert selected basal slice for ED (second column)
and ES (third column). The Ed volume, the ES volume, and the EF are also shown for the detected basal slice by the proposed algorithm and the
expert. The last line shows the mean absolute difference and the standard deviation for the measurements.

Failed cases

Basal diff. EDV (ml) ESV (ml) EF (%)

ED ES Proposed Expert Difference Proposed Expert Difference Proposed Expert Difference

1 −1 −1 117.1 126.0 −8.96 34.9 45.4 −10.48 70.2 64.0 6.20

2 −1 0 115.5 123.2 −7.73 37.3 36.8 0.50 67.7 70.1 −2.43

3 −1 0 128.9 140.0 −11.15 36.0 35.7 0.36 72.0 74.5 −2.48

4 1 0 95.0 87.4 7.56 23.7 24.0 −0.27 75.1 72.6 2.47

5 1 0 162.6 150.4 12.23 46.2 46.6 −0.41 71.6 69.0 2.58

6 1 1 107.1 101.1 6.03 38.4 29.5 8.90 64.1 70.8 −6.66

7 1 1 117.4 110.1 7.23 36.2 29.8 6.42 69.1 73.0 −3.80

8 1 1 131.3 121.5 9.81 56.2 44.2 11.96 57.2 63.6 −6.39

Mean absolute error� Std 8.84� 2.11 4.91� 5.08 4.13� 1.95

Fig. 9 Two examples of correctly identified basal slices (middle). The figure also shows adjacent slices to
the basal slice, the left slice is the next slice inside the LV, and the right slice is out of the LV.

Table 3 Mean and standard deviation of the measured ED volume,
ES volume, and EF by the proposed algorithm, the segment tool, and
the expert.

Mean� Std EDV (ml) ESV (ml) EF(%)

Proposed algorithm 146.6� 33.3 49.3� 14.7 66.1� 8.9

Segment tool 136.2� 38.3 47.2� 16.5 65.2� 7.1

Expert’s analysis 146.3� 33.6 48.9� 14.9 66.3� 8.9
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the slice below the basal slice (left), the basal slice (middle), and
the slice above the basal slice (right). These additional slices are
included to reveal the complexity of the basal slice appearance
in the short-axis view images. For both cases the proposed algo-
rithm selected the same basal slice as the expert. One can see
that selecting the short-axis view slice below the line that con-
nects the mitral valve points would give incorrect results for the
first case. It is worth mentioning that we found 10 cases in the 51
MRI scans for which the previous definition did not provide a
correct basal slice.

Figure 10 shows two examples for which the proposed algo-
rithm selected a different slice in the end-diastolic phase than
manual selection. Regarding the first case, the short-axis
view image for this slice is of poor quality due to significant
artifacts caused by blood movement around this area and con-
sequently prevents the expert from making a good judgment
about the correct basal slice. However, the basal slice for this
case can be found by looking at the two-chamber view. The sec-
ond example highlights the importance of having a correct seg-
mentation algorithm. Wrong selection in this case stems from
the fact that the basal slice is almost tangent to the base of
the LV and consequently a minor error in segmentation of
this area on the two-chamber view can prevent correct selection
of the basal slice.

4 Discussion
An automatic basal slice selection algorithm is proposed using
the two-chamber view of the LV. The end-systolic and end-dia-
stolic phases are estimated using the same view. As a result, the
algorithm can be incorporated into any software and selection of
the basal slice can be carried out at the loading of the image
sequences without the need for manual interaction. The pro-
posed method follows the SCMR guidelines for basal slice
selection.

With regards to the current performance of landmark detec-
tion algorithms,8,9 updating these methods to the SCMR guide-
lines may not result in as accurate a basal slice detection
algorithm as the proposed method in this paper. Further
improvement is needed for this class of methods to be able to

utilize them for our purpose. Not having a basic shape from the
two-chamber view, the myocardium needs to be segmented
using a method that values the morphology as importantly as
the intensity, texture, and contextual information. ASM14 is
an excellent example of such a method. This method allows
us to estimate the percentage of myocardium around the
blood cavity by examining the two-chamber view slice and find-
ing the thickness of both walls of LV in this slice. Other methods
such as AAMs16 or 3-D models12,13 have also been introduced
previously. However, these methods are usually slower and can-
not provide fast results for the problem being discussed in this
paper. The proposed algorithm performs better than the state-of-
the-art method1 for basal slice selection. The poor performance
of this existing method1 mainly stems from the low quality of
short-axis view slices in the base, which makes myocardium
segmentation difficult and also explains the poor interobserver
reproducibility in manual selection of the basal slice.6,7

Collecting the thickness of the two walls for the basal slice
for all the patients in the training dataset showed that at least
one of the walls should be more than 60% as thick as the
average thickness of myocardium in order to consider this
short-axis view slice inside the LV. The 70% threshold set
for the cases with high segmentation error was defined empir-
ically. The proposed algorithm is a reliable strategy for auto-
mation of the basal slice, which can reduce the intra- and
interobserver variabilities in medical reports for a more con-
sistent diagnostic or medical trial. This is mainly because the
proposed method does not require any user input and there-
fore is fully automatic. As a result, there is no interobserver
variability impact on basal slice selection. The only remaining
reproducibility errors result from segmentation of the short-
axis view slices, which are a similar problem for the segment
tool or manual segmentation.

Although the two-chamber view provides an overview of
two opposite walls of LV that are very close to the center of
the ring, the authors agree that making decisions based on
the information obtained from this view is not physically equiv-
alent to the 50% myocardium rule. A more accurate estimation
would be to use the four-chamber view as well.

Fig. 10 Two examples of segmentation results that were different from the expert selected basal slice. In
the first case, an incorrect slice was selected as the basal slice by the expert. In the second case, an
incorrect slice was selected as the basal slice by the proposed algorithm.
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5 Conclusion
A framework for automatic basal slice detection that follows the
SCMR guidelines is presented. The key idea of the approach is
to examine the status of the segmented two-chamber ventricle
walls that pass through the short-axis view slices. It was also
shown that the two-chamber view can be used to provide a
good estimation of the end-systolic and the end-diastolic phases
and consequently, it does not require any segmentation of the
short-axis view slices. The method produces results in accor-
dance with manually selected basal slices for normal and dis-
eased hearts. Future work will use the information from the
short-axis view for validation of the two-chamber view segmen-
tation results and will perform the basal slice selection for every
time frame of the cardiac cycle for a complete four-dimensional
function evaluation.

Acknowledgments
This work has been partially funded by the Singapore NMRC
NUHS Centre Grant – Medical Image Analysis Core (NMRC/
CG/013/2013). The authors declare that they have no conflicts
of interest or financial interests.

References
1. J. Tufvesson et al., “Validation and development of a new automatic

algorithm for time-resolved segmentation of the left ventricle in mag-
netic resonance imaging,” BioMed Res. Int. 2015, 970357 (2015).

2. I. B. Ayed et al., “Left ventricle segmentation via graph cut distribution
matching,” in Medical Image Computing and Computer-Assisted
Intervention (MICCAI), Vol. 5762, pp. 901–909, Springer (2009).

3. M. P. Jolly et al., “Combining registration and minimum surfaces for the
segmentation of the left ventricle in cardiac cine MR images,” in
Medical Image Computing and Computer-Assisted Intervention
(MICCAI), Vol. 5762, pp. 910–918, Springer (2009).

4. C. Petitjean and J. N. Dacher, “A review of segmentation methods in
short axis cardiac MR images,” Med. Image Anal. 15(2), 169–184
(2011).

5. A. Suinesiaputra et al., “Left ventricular segmentation challenge from
cardiac MRI: a collation study,” in Statistical Atlases and
Computational Models of the Heart, Imaging and Modelling
Challenge, Vol. 7085, pp. 88–97, Springer (2012).

6. J. T. Marcus et al., “The influence of through-plane motion on left ven-
tricular volumes measured by magnetic resonance imaging: implica-
tions for image acquisition and analysis,” J. Cardiovasc. Magn.
Reson. 1(1), 1–6 (1999).

7. S. Marchesseau, J. X. Ho, and J. J. Totman, “Influence of the short-axis
cine acquisition protocol on the cardiac function evaluation: a reproduc-
ibility study,” Eur. J. Radiol. 3, 60–66 (2016).

8. D. Mahapatra, “Landmark detection in cardiac MRI using learned local
image statistics,” in Statistical Atlases and Computational Models of the
Heart, Imaging and Modelling Challenges, Vol. 7746, pp. 115–124,
Springer (2013).

9. X. Lu and M. P. Jolly, “Discriminative context modeling using auxiliary
markers for LV landmark detection from a single MR image,” in
Statistical Atlases and Computational Models of the Heart, Imaging
and Modelling Challenges, Vol. 7746, pp. 105–114, Springer (2013).

10. J. Schulz-Menger et al., “Standardized image interpretation and post
processing in cardiovascular magnetic resonance: society for cardio-
vascular magnetic resonance (SCMR),” J. Cardiovasc. Magn. Reson.
15(35), 1167–1186 (2013).

11. M. Uzumcu et al., “Multiview active appearance models for simultane-
ous segmentation of cardiac 2- and 4-chamber long-axis magnetic res-
onance images,” Invest. Radiol. 40(4), 195–203 (2005).

12. X. Zhuang et al., “A registration-based propagation framework for auto-
matic whole heart segmentation of cardiac MRI,” IEEE Trans. Med.
Imaging 29(9), 1612–1625 (2010).

13. H. C. V. Assen et al., “SPASM: a 3D-ASM for segmentation of sparse
and arbitrarily oriented cardiac MRI data,” Med. Image Anal. 10(2),
286–303 (2006).

14. T. F. Cootes et al., “Active shape models—their training and applica-
tion,” Comput. Vision Image Understanding 61(1), 38–59 (1995).

15. E. Heiberg et al., “Design and validation of segment a freely available
software for cardiovascular image analysis,” BMC Med. Imaging 10(1),
1 (2010).

16. T. F. Cootes et al., “Active appearance models,” IEEE Trans. Pattern
Anal. Mach. Intell. 23(6), 681–685 (2001).

Mahsa Paknezhad is a PhD student at the National University of
Singapore. She received her BS and MS degrees in information tech-
nology engineering from Shiraz University of Technology in 2011 and
2013, respectively. Her research focuses on using computer vision
and image processing to solve problems in the area of medical
image analysis. Recently, she has taken an active interest in cardiac
image analysis.

Stephanie Marchesseau obtained an engineering degree from
“Ecole des Mines de Nancy” (France), and a MSc degree of applied
maths and theoretical physics from the University of Cambridge (UK)
in 2008. She obtained her PhD from “Ecole des Mines de Paris”
(France) in 2013 for her work at Inria Sophia Antipolis (France).
From January 2013, she pursued her postdoctoral research at Ascle-
pios. Since March 2014, she has been a research fellow at Clinical
Imaging Research Center.

Michael S. Brown is a professor in the Department of Electrical
Engineering and Computer Science at York University. His research
interests include computer vision, image processing, and computer
graphics. He is currently an associate editor for the IEEE Transac-
tions on Pattern Analysis and Machine Intelligence and the Interna-
tional Journal of Computer Vision.

Journal of Medical Imaging 034004-8 Jul–Sep 2016 • Vol. 3(3)

Paknezhad, Marchesseau, and Brown: Automatic basal slice detection for cardiac analysis

http://dx.doi.org/10.1155/2015/970357
http://dx.doi.org/10.1007/978-3-642-04271-3_109
http://dx.doi.org/10.1007/978-3-642-04271-3_109
http://dx.doi.org/10.1007/978-3-642-04271-3_110
http://dx.doi.org/10.1007/978-3-642-04271-3_110
http://dx.doi.org/10.1016/j.media.2010.12.004
http://dx.doi.org/10.1007/978-3-642-28326-0_9
http://dx.doi.org/10.1007/978-3-642-28326-0_9
http://dx.doi.org/10.1007/978-3-642-28326-0_9
http://dx.doi.org/10.3109/10976649909080828
http://dx.doi.org/10.3109/10976649909080828
http://dx.doi.org/10.1016/j.ejro.2016.03.003
http://dx.doi.org/10.1007/978-3-642-36961-2_14
http://dx.doi.org/10.1007/978-3-642-36961-2_14
http://dx.doi.org/10.1007/978-3-642-36961-2_13
http://dx.doi.org/10.1007/978-3-642-36961-2_13
http://dx.doi.org/10.1186/1532-429X-15-35
http://dx.doi.org/10.1097/01.rli.0000154216.94316.f7
http://dx.doi.org/10.1109/TMI.2010.2047112
http://dx.doi.org/10.1109/TMI.2010.2047112
http://dx.doi.org/10.1016/j.media.2005.12.001
http://dx.doi.org/10.1006/cviu.1995.1004
http://dx.doi.org/10.1186/1471-2342-10-1
http://dx.doi.org/10.1109/34.927467
http://dx.doi.org/10.1109/34.927467

